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Abstract
The team from the University of Michigan participated in three tasks in the Social Media Mining
for Health Applications (#SMM4H) 2020 shared tasks – on detecting mentions of adverse effects
(Task 2), extracting and normalizing them (Task 3), and detecting mentions of medication abuse
(Task 4). Our approaches relied on a combination of traditional machine learning and deep
learning models. On Tasks 2 and 4, our submitted runs performed at or above the task average.

1 Introduction

The Social Media Mining for Health Applications (#SMM4H) Shared Task 2020 provided a unique
hands-on experience for graduate students and researchers to apply concepts in text cleaning, natural
language processing, and health informatics on standardized research tasks. The tasks are motivated by
challenges in using social media data for health research, including informal, colloquial expressions and
misspelling of clinical concepts, data sparsity, noise, and ambiguity (Klein et al., 2020).

This year, a team of students from the University of Michigan participated in three tasks – on classi-
fication of tweets that report adverse effects (Task 2 English), extraction and normalization of adverse
effects (Task 3), and characterization of chatter related to prescription medication abuse (Task 4). We
submitted three runs for each of these tasks. This paper describes our approach in developing and training
the components for our participation, along with the results over validation and test data sets.

2 Task 2: Classifying tweets that report adverse effects

This binary classification task aimed at distinguishing tweets that report a medication adverse effect (AE)
(labeled “positive”), from those that do not (labeled “negative”), taking into account subtle linguistic vari-
ations between adverse effects and “indication” or the reason for using the medication (Weissenbacher
et al., 2019). The training data (n=25,672) was split into train (n=20,544; 80%) and validation (n=5,134;
20%) sets. 2,374 (9.2%) tweets in the training data were “positive”. The test data had 4,759 tweets.

We participated in the previous iteration of this task in #SMM4H 2019, and proposed two support
vector machine (SVM) models and a bidirectional long short-term memory (LSTM) model (Vydiswaran
et al., 2019). We followed up on our participation during the post evaluation phase to further develop
our approaches and proposed a neural network (NN) model called the collocated LSTM with attentive
pooling and aggregated representation (CLAPA) (Zhao et al., 2019), that performed better than the three
official submissions. Based on those insights, this year we proposed three NN models, viz. a multi-stage
convolutional neural network model, the CLAPA model, and a BERT-augmented CLAPA model.

Data cleaning and preprocessing: We removed all duplicate tweets between the training and val-
idation data sets, removed URLs and non-alphanumeric characters, and normalized the Twitter user
mentions by replacing them with a token “username”. We also applied the emoji library1 in Python
to substitute the emoticons with synonymous descriptive text. The tweets were tokenized and padded to
normalize them to the same length.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. License details:
http://creativecommons.org/licenses/by/4.0/.

1The emoji library. Last accessed 2020 Jul 7. https://pypi.org/project/emoji/
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Run 1 – Convolutional Neural Network (CNN): The CNN model consisted of an input representation
using Twitter Word2Vec embeddings (Godin, 2019) fed into a convolutional layer of 128 filters and 5
kernels, followed by a global max pooling layer to reduce input dimensionality, and a dropout layer to
reduce overfitting. A sigmoid activation function is used to output the final label. The model parameters
were tuned over the validation set, and used to train the final model on train and validation sets.

Run 2 – CLAPA: We retrained a model we proposed last year, called CLAPA – a collocated LSTM
model with attentive pooling and aggregated representation (Zhao et al., 2019). This model takes a
concatenation of word embbedings and collocated embedding into an LSTM layer, and passes the final
hidden states to an attentive pooling layer. These pooled states are aggregated with medical collocation
information and fed into a fully connected layer for final prediction label.

Based on the model described by (Zhao et al., 2019), medical concepts were constructed over the
training set and expanded with a list of drugs from MedlinePlus2. A collocation graph was constructed
with nodes as unique words in the dataset, and undirected edges from each medical concept to its 15
closest word neighbors. FastText pretrained word embedding (Joulin et al., 2017) was used as the input
representation. The model consists of one layer of LSTM network with the hidden size as 300 and three
multi-head attention layers.

Run 3 – BERT-augmented CLAPA: As our third run, we developed an extension to CLAPA with
Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019). We extended
CLAPA to utilize BERT’s logits because BERT encodes a powerful, yet functionally different, represen-
tation for a given input. Specifically, the logits generated by BERT focus on representations from the full
context of a tweet while the logits generated by CLAPA focus heavily on external medical domain infor-
mation. While both CLAPA and BERT are independently trained on the dataset, in this BERT-augmented
CLAPA model, we configure BERT to pass its logits to the CLAPA to allow the CLAPA model to make
prediction based on the concatenation of the two logits.

3 Task 3: Extracting and normalizing adverse effects mentioned in tweets

This task involves extracting the span of text containing an AE of a medication from tweets that report
an AE, and then mapping the extracted AE to a standard concept ID in the Medical Dictionary for Regu-
latory Activities (MedDRA) vocabulary (Mozzicato, 2009). The training data includes tweets that report
an AE (annotated as “positive”) and those that do not (annotated as “negative”). For each “positive”
tweet, the training data contains the span of text containing the AE, the character offsets of that span of
text, and the MedDRA ID of the AE. There were 2,376 tweets in the training set, of which 1,212 (51%)
were “positive”. The test set had 1,000 tweets.

Data cleaning and preprocessing: We removed all usernames, URLs, and non-alphanumeric char-
acters in the tweets, and expanded all the contractions to normalize the text. To avoid downstream
challenges of the preprocessing steps changing the character offsets of subsequent tokens, we created a
character offset map for tokens in the raw tweet. Finally, we changed the tweet text to lowercase, and
tokenized it using NLTK’s twitter tokenizer package.

We formulated the adverse effect extraction task as a sequence classification problem. We prepared
the tokenized tweet text for this task by tagging each token in the training set with one of B-AE, I-AE, or
O tags, to indicate the beginning, inside, and outside an AE span, respectively. Regular expression-based
matching was used to identify the annotated spans in the training set.

Model development: All three runs that we submitted for Task 3 were based on a standard bidirec-
tional long short-term memory (Bi-LSTM) model, followed by a conditional random field (CRF) model.
However, the three models differed on the word embedding used to represent the tweet tokens, in model
hyperparameters, and in the MedDRA Concept Unique Identifier (CUI) lists for the normalization task.

2MedlinePlus [Internet]. Bethesda (MD): National Library of Medicine (US); [updated 2020 Jul 6]. Drugs, Herbs and
Supplements; [updated 2015 Apr 28; cited 2020 Jun 29]. Available from: https://medlineplus.gov/druginformation.html
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Run 1 – Bi-LSTM CRF + MedDRA: For Run 1, we concatenated the representation from two word
embbedings – viz. GloVe (Pennington et al., 2014) and EXT (Komninos and Manandhar, 2016) – and
fed into a bi-LSTM model, followed by a CRF layer for this sequence classification task. The size of the
hidden layer in the LSTM model was set as 75, the batch size was set as 64, and learning rate was 0.005.

To normalize the extracted text to a MedDRA term code, we applied QuickUMLS (Soldaini and
Goharian, 2016) on the extracted text. QuickUMLS performs a fuzzy string match to find potential
candidate CUI matches. When two or more CUIs were identified as candidates, the UMLS-MedDRA3

list was used to choose the first candidate match as our normalized MedDRA CUI output.

Run 2 – Bi-LSTM CRF + MedDRA with different hyperparameters: The model architecture is
similar to the one used in Run 1, except that we used only the EXT word embedding as the input repre-
sentation. The size of the hidden layer in the LSTM model was set as 55, the batch was set as 32, and
learning rate was 0.001. The approach used for normalization was identical to the one used in Run 1.

Run 3 – Bi-LSTM CRF with a modified version of MedDRA: For Run 3, the extraction model
was identical to that used in Run 1, but the normalization method was different. Instead of the UMLS-
MedDRA list, we used a modified version of the dictionary. This modified version was created by first
identifying examples of the most commonly missed phrases in the training set, and then manually adding
them based on their concept identifiers in the UMLS Metathesaurus (Bodenreider, 2004).

4 Task 4: Characterizing prescription medication abuse in tweets

This multi-class classification task involves distinguishing, among tweets that mention at least one pre-
scription opioid, benzodiazepine, atypical anti-psychotic, central nervous system stimulant, or GABA
analogue, tweets that report potential abuse/misuse (annotated as “A”), non-abuse/-misuse consump-
tion (annotated as “C”), merely mention medications (annotated as “M”), or are unrelated (annotated as
“U”) (O’Connor et al., 2020). The training and test sets consist of 13,172 and 3,271 tweets, respectively.

The evaluation metric was set as the F1 score for the potential abuse/misuse class. So, we reformulate
the task as a binary classification task of distinguishing potential abuse/misuse tweets (class “A”) from
non-abuse tweets (union of classes “C”, “M”, and “U”).

Data cleaning and preprocessing: We removed all usernames, URLs, punctuation symbols, and spe-
cial characters because they did not add substantial value to the classification of the tweet based on our
initial analysis of the training set. We also removed all emojis as we observed that they were not as help-
ful, and often detrimental, to the training of our models, even when they were converted to descriptive
tags such as “:smilingface:”. We converted tweets to lower case and replaced all drug names, generic
and brand name, with a token “drugname” so that models could focus on the context surrounding the
mention of a drug, rather than the name of the drug itself.

Runs 1 & 3 – SVM with radial basis function (RBF) and linear kernels: Runs 1 and 3 were based
on SVM models trained with an RBF kernel and a linear kernel, respectively. For both models, we set
C = 1.0 and γ = 0.5. We also set the class weight parameter as “balanced” to adjust for the uneven
distribution of classes in our binary abuse vs. non-abuse formulation. The model parameters were tuned
over the validation set, and used to train the final model on train and validation sets. The primary
difference between Runs 1 and 3 was that for Run 1, we explicitly balanced the abuse to non-abuse
distribution in the train set by sub-sampling the non-abuse class during the training phase.

Run 2 – Sequential neural network: Run 2 was based on a sequential neural network composed of
three dense layers utilizing relu activation. The input text was transformed into tf-idf weighted represen-
tation and fed into the first dense layer of size 16, followed by a dropout of 0.5. In the second dense layer,
the number of training features was reduced to 4, followed by another dropout of 0.5. The output layer
was configured to generate a binary output using sigmoid activation. We used a binary cross-entropy loss
during optimization, using the Adam optimizer with a learning rate of 0.001 and a decay rate of 1e-6.

3MDR (MedDRA) - Synopsis. U.S. National Library of Medicine. Last accessed 2020 Jul 8.
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/MDR/index.html
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Task Run description Validation F1 Test set F1

Task 2

Run 1: CNN 0.510 0.35
Run 2: CLAPA 0.603 0.44
Run 3: BERT-augmented CLAPA 0.629 0.51

Averaged best performance (n = 16) – 0.46

Task 3:
Extraction

Run 1: Bi-LSTM CRF + MedDRA 0.331 0.463
Run 2: Bi-LSTM CRF + MedDRA w/ different hyperparameters 0.350 0.463
Run 3: Bi-LSTM CRF + modified MedDRA 0.331 0.463

Averaged best performance, Relaxed (n = 7) – 0.564

Task 3:
Normalization

Run 1: Bi-LSTM CRF + MedDRA 0.112 0.193
Run 2: Bi-LSTM CRF + MedDRA w/ different hyperparameters 0.115 0.193
Run 3: Bi-LSTM CRF + modified MedDRA 0.154 0.196

Averaged best performance, Relaxed (n = 7) – 0.292

Task 4

Run 1: SVM with RBF kernel 0.46 0.49
Run 2: Sequential neural network 0.41 0.43
Run 3: SVM with Linear kernel 0.45 0.47

Averaged best performance (n = 4) – 0.49

Table 1: Summary of the runs submitted by our team, and their F1 scores over validation and test sets.
For Task 3, only the results corresponding to the “relaxed” token match are shown.

5 Results

The performance of our submitted runs for all three tasks on validation and test sets are summarized in
Table 1. The table also includes the averaged F1 score of the best runs submitted by all participating
teams in each task on the test set. In Task 2, the run using the BERT-augmented CLAPA model (Run 3)
performed the best, and outperformed the averaged F1 score of best-performing runs submitted by Task
2 participants. We also note that the performance of our submitted runs on the test set were significantly
lower than those on the validation set. In Task 3, all three runs we submitted performed similarly, which
implies that the variations we tried in the word embedding used to represent the tweet tokens did not
affect the overall performance. Run 3 performed slightly better on the normalization task, but was below
the average F1 score for the task. Finally, in Task 4, the SVM model with RBF kernel (Run 1) performed
the best among our submitted runs, and was at par with the average F1 score of the best-performing runs.

Task Run description Precision Recall F1

Task 2 Run 3: BERT-augmented CLAPA 0.48 0.54 0.51
Averaged best performance (n=16) 0.42 0.59 0.46

Task 3:
Extraction

Run 3: Bi-LSTM CRF + modified MedDRA 0.806 0.324 0.463
Averaged best performance, Relaxed (n=7) 0.607 0.557 0.564

Task 3:
Normalization

Run 3: Bi-LSTM CRF + modified MedDRA 0.345 0.137 0.196
Averaged best performance, Relaxed (n=7) 0.312 0.290 0.292

Task 4 Run 1: SVM with RBF kernel 0.462 0.513 0.49
Averaged best performance (n=4) – – 0.49

Table 2: Comparison of precision, recall, and F1 measures of the best runs submitted by our team on the
test set, compared to the average of the best-performing runs from all participants in each task.

Table 2 shows additional details of our best-performing runs in terms of precision, recall, and F1
scores on the test set, and the corresponding measures averaged over the best-performing runs from all
participants in each task. All of our best-performing runs, including those for Task 3, achieved a higher
precision than the average precision of all submitted best-runs, but have lower recall. In future, we plan
to further explore ways to improve the recall of our proposed approaches for all three tasks.

6 Conclusion

Our approach for participating in the #SMM4H 2020 Shared Tasks focused on building on our previous
efforts in addressing related tasks. We participated in three tasks and experimented with a combination
of traditional machine learning and deep learning models. Two of the submitted runs performed at or
above the average task performance. Additional experiments are planned to further improve the recall,
and thereby the overall performance, of our proposed models for these tasks.
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