
SIGMORPHON 2020

The 17th SIGMORPHON Workshop
on Computational Research in Phonetics

Phonology, and Morphology

Proceedings of the Workshop

July 10, 2020



c©2020 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-952148-19-4

ii



Preface

Welcome to the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology,
and Morphology, to be held on July 10, 2020 as part of a virtual ACL. The workshop aims to
bring together researchers interested in applying computational techniques to problems in morphology,
phonology, and phonetics. Our program this year highlights the ongoing and important interaction
between work in computational linguistics and work in theoretical linguistics. This year, work in
both theoretical phonology and computational morphology were strongly represented in the workshop
submissions. We received 14 submissions, and after a competitive reviewing process, we accepted 8.
The workshop is privileged to present four invited talks this year, all from very respected members of the
SIGMORPHON community.

This year also marks the fifth iteration of the SIGMORPHON Shared Task. Unlike previous years, this
year, we hosted three distinct tasks:

Task 0: SIGMORPHON’s fifth installment of its inflection generation shared task focuses on languages
that are typologically diverse from languages in our previous tasks. Many of these languages are
extremely low-resource. In this edition, we are specifically interested in inflection generation systems’
ability to generalize to new languages, including languages that are typologically distinct. For example,
if you have a neural network architecture that works well for a sample of Indo-European languages,
should you expect the same architecture to also work well for Tupi–Guarani languages (where nouns are
"declined" for tense)?

Task 1: This new task, the first of its kind at SIGMORPHON, focuses on grapheme-to-phoneme
conversion. This technology is a key component of speech recognition and synthesis engines, but much
of the existing published research is either limited to a small number of closely related languages/scripts,
or uses proprietary data sets, limiting replicability. The training and development data consists of words
and corresponding IPA pronunciations extracted from Wiktionary, a free online encyclopedia, in 15
languages and scripts. 9 teams submitted a total of 23 different systems.

Task 2: Task 2 fills the gap between recent SIGMORPHON shared tasks on morphological inflection
learned from limited training data and completely unsupervised morphological generation by proposing
the task of unsupervised morphological paradigm completion. The goal is to generate complete inflection
tables exclusively from raw text and a lemma list for a known part of speech. 3 teams submitted a total
of 7 different systems to tackle this new task.

We are grateful to the program committee for their careful and thoughtful reviews of the papers submitted
this year. Likewise, we are thankful to the shared task organizers for their hard work in preparing the
shared tasks. We are looking forward to a workshop covering a wide range of topics, and we hope for
lively discussions.

Garrett Nicolai
Kyle Gorman
Ryan Cotterell
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Çağrı Çöltekin (University of Tübingen, Germany)
Daniel Dakota (Indiana University, USA)
Ewan Dunbar (Université Paris Diderot, France)
Micha Elsner (The Ohio State University, USA)
Jeffrey Heinz (Stony Brook University, USA)
Mans Hulden (University of Colorado, USA)
Adam Jardine (Rutgers University, USA)
Christo Kirov (Google AI, USA)
Greg Kondrak (University of Alberta, Canada)
Sandra Kübler (Indiana University, USA)
Andrew Lamont (University of Massachusetts Amherst, USA)
Fred Mailhot (Dialpad, Inc., Canada)
Arya D. McCarthy (Johns Hopkins University, USA)
Kemal Oflazer (CMU Qatar, Qatar)
Jeff Parker (Brigham Young University, USA)
Gerald Penn (University of Toronto, Canada)
Jelena Prokic (Ludwig Maximilian University of Munich, Germany)
Mohamad Salameh (Huawei, Canada)
Miikka Silfverberg (University of British Columbia, Canada)
Kairit Sirts (University of Tartu, Estonia)
Kenneth Steimel (Indiana University, USA)
Francis Tyers (Indiana University, USA)
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Abstract

A broad goal in natural language processing
(NLP) is to develop a system that has the capac-
ity to process any natural language. Most sys-
tems, however, are developed using data from
just one language such as English. The SIG-
MORPHON 2020 shared task on morpholog-
ical reinflection aims to investigate systems’
ability to generalize across typologically dis-
tinct languages, many of which are low re-
source. Systems were developed using data
from 45 languages and just 5 language fam-
ilies, fine-tuned with data from an additional
45 languages and 10 language families (13 in
total), and evaluated on all 90 languages. A
total of 22 systems (19 neural) from 10 teams
were submitted to the task. All four winning
systems were neural (two monolingual trans-
formers and two massively multilingual RNN-
based models with gated attention). Most
teams demonstrate utility of data hallucination
and augmentation, ensembles, and multilin-
gual training for low-resource languages. Non-
neural learners and manually designed gram-
mars showed competitive and even superior
performance on some languages (such as In-
grian, Tajik, Tagalog, Zarma, Lingala), espe-
cially with very limited data. Some language
families (Afro-Asiatic, Niger-Congo, Turkic)
were relatively easy for most systems and
achieved over 90% mean accuracy while oth-
ers were more challenging.

1 Introduction

Human language is marked by considerable diver-
sity around the world. Though the world’s lan-
guages share many basic attributes (e.g., Swadesh,

1950 and more recently, List et al., 2016), gram-
matical features, and even abstract implications
(proposed in Greenberg, 1963), each language nev-
ertheless has a unique evolutionary trajectory that
is affected by geographic, social, cultural, and
other factors. As a result, the surface form of
languages varies substantially. The morphology
of languages can differ in many ways: Some
exhibit rich grammatical case systems (e.g., 12
in Erzya and 24 in Veps) and mark possessive-
ness, others might have complex verbal morphol-
ogy (e.g., Oto-Manguean languages; Palancar and
Léonard, 2016) or even “decline” nouns for tense
(e.g., Tupi–Guarani languages). Linguistic typol-
ogy is the discipline that studies these variations
by means of a systematic comparison of languages
(Croft, 2002; Comrie, 1989). Typologists have de-
fined several dimensions of morphological varia-
tion to classify and quantify the degree of cross-
linguistic variation. This comparison can be chal-
lenging as the categories are based on studies of
known languages and are progressively refined
with documentation of new languages (Haspel-
math, 2007). Nevertheless, to understand the po-
tential range of morphological variation, we take a
closer look at three dimensions here: fusion, inflec-
tional synthesis, and position of case affixes (Dryer
and Haspelmath, 2013).
Fusion, our first dimension of variation, refers

to the degree to which morphemes bind to one an-
other in a phonological word (Bickel and Nichols,
2013b). Languages range from strictly isolat-
ing (i.e., each morpheme is its own phonolog-
ical word) to concatenative (i.e., morphemes
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bind together within a phonological word); non-
linearities such as ablaut or tonal morphology
can also be present. From a geographic perspec-
tive, isolating languages are found in the Sahel
Belt in West Africa, Southeast Asia and the Pa-
cific. Ablaut–concatenative morphology and tonal
morphology can be found in African languages.
Tonal–concatenative morphology can be found in
Mesoamerican languages (e.g., Oto-Manguean).
Concatenative morphology is the most common
system and can be found around the world. Inflec-
tional synthesis, the second dimension considered,
refers towhether grammatical categories like tense,
voice or agreement are expressed as affixes (syn-
thetic) or individual words (analytic) (Bickel and
Nichols, 2013c). Analytic expressions are com-
mon in Eurasia (except the Pacific Rim, and the Hi-
malaya and Caucasus mountain ranges), whereas
synthetic expressions are used to a high degree in
the Americas. Finally, affixes can variably sur-
face as prefixes, suffixes, infixes, or circumfixes
(Dryer, 2013). Most Eurasian and Australian lan-
guages strongly favor suffixation, and the same
holds true, but to a lesser extent, for South Ameri-
can and New Guinean languages (Dryer, 2013). In
Mesoamerican languages and African languages
spoken below the Sahara, prefixation is dominant
instead.
These are just three dimensions of variation in

morphology, and the cross-linguistic variation is
already considerable. Such cross-lingual variation
makes the development of natural language pro-
cessing (NLP) applications challenging. As Ben-
der (2009, 2016) notes, many current architectures
and training and tuning algorithms still present
language-specific biases. The most commonly
used language for developing NLP applications is
English. Along the above dimensions, English is
productively concatenative, a mixture of analytic
and synthetic, and largely suffixing in its inflec-
tional morphology. With respect to languages that
exhibit inflectional morphology, English is rela-
tively impoverished.1 Importantly, English is just
one morphological system among many. A larger
goal of natural language processing is that the sys-
tem work for any presented language. If an NLP
system is trained on just one language, it could
be missing important flexibility in its ability to ac-
count for cross-linguistic morphological variation.
1Note that many languages exhibit no inflectional morphol-
ogy e.g., Mandarin Chinese, Yoruba, etc.: Bickel and
Nichols (2013a).

In this year’s iteration of the SIGMORPHON
shared task on morphological reinflection, we
specifically focus on typological diversity and aim
to investigate systems’ ability to generalize across
typologically distinct languages many of which
are low-resource. For example, if a neural net-
work architecture works well for a sample of Indo-
European languages, should the same architecture
also work well for Tupi–Guarani languages (where
nouns are “declined” for tense) or Austronesian
languages (where verbal morphology is frequently
prefixing)?

2 Task Description

The 2020 iteration of our task is similar to
CoNLL-SIGMORPHON 2017 (Cotterell et al.,
2017) and 2018 (Cotterell et al., 2018) in that
participants are required to design a model that
learns to generate inflected forms from a lemma
and a set of morphosyntactic features that derive
the desired target form. For each language we
provide a separate training, development, and
test set. More historically, all of these tasks
resemble the classic “wug”-test that Berko (1958)
developed to test child and human knowledge of
English nominal morphology.
Unlike the task from earlier years, this year’s

task proceeds in three phases: a Development
Phase, a Generalization Phase, and an Evaluation
Phase, in which each phase introduces previously
unseen data. The task starts with the Develop-
ment Phase, which was an elongated period of
time (about two months), during which partici-
pants develop a model of morphological inflection.
In this phase, we provide training and develop-
ment splits for 45 languages representing the Aus-
tronesian, Niger-Congo, Oto-Manguean, Uralic
and Indo-European language families. Table 1 pro-
vides details on the languages. The Generaliza-
tion Phase is a short period of time (it started
about a week before the Evaluation Phase) during
which participants fine-tune their models on new
data. At the start of the phase, we provide train-
ing and development splits for 45 new languages
where approximately half are genetically related
(belong to the same family) and half are geneti-
cally unrelated (are isolates or belong to a different
family) to the languages presented in the Develop-
ment Phase. More specifically, we introduce (sur-
prise) languages from Afro-Asiatic, Algic, Dravid-
ian, Indo-European, Niger-Congo, Sino-Tibetan,
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Siouan, Songhay, Southern Daly, Tungusic, Tur-
kic, Uralic, and Uto-Aztecan families. See Table 2
for more details.
Finally, test splits for all 90 languages are re-

leased in theEvaluation Phase. During this phase,
themodels are evaluated on held-out forms. Impor-
tantly, the languages from both previous phases are
evaluated simultaneously. This way, we evaluate
the extent to which models (especially those with
shared parameters) overfit to the development data:
a model based on the morphological patterning of
the Indo-European languages may end up with a
bias towards suffixing and will struggle to learn
prefixing or infixation.

3 Meet our Languages

In the 2020 shared task we cover 15 language fam-
ilies: Afro-Asiatic, Algic, Austronesian, Dravid-
ian, Indo-European, Niger-Congo, Oto-Manguean,
Sino-Tibetan, Siouan, Songhay, Southern Daly,
Tungusic, Turkic, Uralic, and Uto-Aztecan.2 Five
language families were used for the Development
phase while ten were held out for the Generaliza-
tion phase. Tab. 1 and Tab. 2 provide informa-
tion on the languages, their families, and sources
of data. In the following section, we provide an
overview of each language family’s morphological
system.

3.1 Afro-Asiatic

The Afro-Asiatic language family, consisting of
six branches and over 300 languages, is among
the largest language families in the world. It is
mainly spoken in Northern, Western and Central
Africa as well as West Asia and spans large mod-
ern languages such as Arabic, in addition to an-
cient languages like Biblical Hebrew. Similarly,
some of its languages have a long tradition of writ-
ten form, while others have yet to incorporate a
writing system. The six branches differ most no-
tably in typology and syntax, with the Chadic lan-
guage being the main source of differences, which
has sparked discussion of the division of the fam-
ily (Frajzyngier, 2018). For example, in the Egyp-
tian and Semitic branches, the root of a verb may
not contain vowels, while this is allowed in Chadic.
Although only four of the six branches, excluding
Chadic and Omotic, use a prefix and suffix in con-
jugation when adding a subject to a verb, it is con-
2The data splits are available athttps://github.com/
sigmorphon2020/task0-data/

sidered an important characteristic of the family.
In addition, some of the families in the phylum use
tone to encode tense, modality and number among
others. However, all branches use objective and
passive suffixes. Markers of tense are generally
simple, whereas aspect is typically distinguished
with more elaborate systems.

3.2 Algic

The Algic family embraces languages native to
North America—more specifically the United
States and Canada—and contain three branches.
Of these, our sample contains Cree, the language
from the largest genus, Algonquian, from which
most languages are now extinct. The Algonquian
genus is characterized by its concatenative mor-
phology. Cree morphology is also concatenative
and suffixing. It distinguishes between impersonal
and non-impersonal verbs and presents four ap-
parent declension classes among non-impersonal
verbs.

3.3 Austronesian

The Austronesian family of languages is largely
comprised of languages from the Greater Central
Philippine and Oceanic regions. They are charac-
terized by limited morphology, mostly prefixing in
nature. Additionally, tense–aspect affixes are pre-
dominantly seen as prefixes, though some suffixes
are used. In the general case, verbs do not mark
number, person, or gender. In Māori, verbs may be
suffixed with a marker indicating the passive voice.
This marker takes the form of one of twelve end-
ings. These endings are difficult to predict as the
language has undergone a loss of word-final conso-
nants and there is no clear link between a stem and
the passive suffix that it employs (Harlow, 2007).

3.4 Dravidian

The family of Dravidian languages comprises sev-
eral languages which are primarily spoken across
Southern India and Northern Sri Lanka, with over
200 million speakers. The shared task includes
Kannada and Telugu. Dravidian languages primar-
ily use the SOV word order. They are agglutina-
tive, and primarily use suffixes. A Dravidian verb
indicates voice, number, tense, aspect, mood and
person, through the affixation of multiple suffixes.
Nouns indicate number, gender and case.

3



Family
Afro−Asiatic
Algic
Austronesian

Dravidian
Indo−European
Niger−Congo

Oto−Manguean
Sino−Tibetan
Siouan

Songhay
Southern Daly
Tungusic

Turkic
Uralic
Uto−Aztecan

Figure 1: Languages in our sample colored by family.

3.5 Indo-European
Languages in the Indo-European family are native
to most of Europe and a large part of Asia—with
our sample including languages from the genera:
Germanic, Indic, Iranian, and Romance. This is
(arguably) the most well studied language family,
containing a few of the highest-resource languages
in the world.

Romance The Romance genus comprises of a
set of fusional languages evolved fromLatin. They
traditionally originated in Southern and Southeast-
ern Europe, though they are presently spoken in
other continents suchAfrica and the Americas. Ro-
mance languages mark tense, person, number and
mood in verbs, and gender and number in nouns.
Inflection is primarily achieved through suffixes,
with some verbal person syncretism and suppletion
for high-frequency verbs. There is some morpho-
logical variation within the genus, such as French,
which exhibits comparatively less inflection, and
Romanian has comparatively more—it still marks
case.

Germanic The Germanic genus comprises sev-
eral languages which originated in Northern and
Northwestern Europe, and today are spoken in
many parts of the world. Verbs in Germanic lan-
guages mark tense and mood, in many languages

person and number are also marked, predomi-
nantly through suffixation. Some Germanic lan-
guages exhibit widespread Indo-European ablaut.
The gendering of nouns differs between Germanic
languages: German nouns can be masculine, femi-
nine or neuter, while English nouns are not marked
for gender. In Danish and Swedish, historically
masculine and feminine nouns have merged to
form one common gender, so nouns are either com-
mon or neuter. Marking of case also differs be-
tween the languages: German nouns have one of
four cases and this case is marked in articles and
adjectives as well as nouns and pronouns, while
English does not mark noun case (althoughOld En-
glish, which also appears in our language sample,
does).

Indo-Iranian The Indo-Iranian genus contains
languages spoken in Iran and across the Indian
subcontinent. Over 1.5 billion people worldwide
speak an Indo-Iranian language. Within the Indo-
European family, Indo-Iranian languages belong
to the Satem group of languages. Verbs in Indo-
Iranian languages indicate tense, aspect, mood,
number and person. In languages such as Hindi
verbs can also express levels of formality. Noun
gender is present in some Indo-Iranian languages,
such as Hindi, but absent in languages such as Per-
sian. Nouns generally are marked for case.
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Development
Family Genus ISO 639-3 Language Source of Data
Austronesian Barito mlg (plt) Malagasy Kasahorow (2015a)

Greater Central Philippine ceb Cebuano Reyes (2015)
Greater Central Philippine hil Hiligaynon Santos (2018)
Greater Central Philippine tgl Tagalog NIU (2017)
Oceanic mao (mri) Māori Moorfield (2019)

Indo-European Germanic ang Old English UniMorph
Germanic dan Danish UniMorph
Germanic deu German UniMorph
Germanic eng English UniMorph
Germanic frr North Frisian UniMorph
Germanic gmh Middle High German UniMorph
Germanic isl Icelandic UniMorph
Germanic nld Dutch UniMorph
Germanic nob Norwegian Bokmål UniMorph
Germanic swe Swedish UniMorph

Niger-Congo Bantoid kon (kng) Kongo Kasahorow (2016)
Bantoid lin Lingala Kasahorow (2014a)
Bantoid lug Luganda Namono (2018)
Bantoid nya Chewa Kasahorow (2019a)
Bantoid sot Sotho Kasahorow (2020)
Bantoid swa (swh) Swahili Kasahorow (2012b)
Bantoid zul Zulu Kasahorow (2015b)
Kwa aka Akan Imbeah (2012)
Kwa gaa Gã Kasahorow (2012a)

Oto-Manguean Amuzgoan azg San Pedro Amuzgos Amuzgo Feist and Palancar (2015)
Chichimec pei Chichimeca-Jonaz Feist and Palancar (2015)
Chinantecan cpa Tlatepuzco Chinantec Feist and Palancar (2015)
Mixtecan xty Yoloxóchitl Mixtec Feist and Palancar (2015)
Otomian ote Mezquital Otomi Feist and Palancar (2015)
Otomian otm Sierra Otomi Feist and Palancar (2015)
Zapotecan cly Eastern Chatino of San Juan Quiahije Cruz et al. (2020)
Zapotecan ctp Eastern Chatino of Yaitepec Feist and Palancar (2015)
Zapotecan czn Zenzontepec Chatino Feist and Palancar (2015)
Zapotecan zpv Chichicapan Zapotec Feist and Palancar (2015)

Uralic Finnic est Estonian UniMorph
Finnic fin Finnish UniMorph
Finnic izh Ingrian UniMorph
Finnic krl Karelian Zaytseva et al. (2017)
Finnic liv Livonian UniMorph
Finnic vep Veps Zaytseva et al. (2017)
Finnic vot Votic UniMorph
Mari mhr Meadow Mari Arkhangelskiy et al. (2012)
Mordvin mdf Moksha Arkhangelskiy et al. (2012)
Mordvin myv Erzya Arkhangelskiy et al. (2012)
Saami sme Northern Sami UniMorph

Table 1: Development languages used in the shared task.

3.6 Niger–Congo

Our language sample includes two genera from
the Niger–Congo family, namely Bantoid and Kwa
languages. These have mostly exclusively con-
catenative fusion, and single exponence in verbal
tense–aspect–mood. The inflectional synthesis of
verbs is moderately high, e.g. with 4-5 classes per
word in Swahili and Zulu. The locus of marking
is inconsistent (it falls on both heads and depen-
dents), and most languages are are predominantly
prefixing. Full and partial reduplication is attested
inmost languages. Verbal person–numbermarkers
tend to be syncretic.
As for nominal classes, Bantoid languages are

characterized by a large amount of grammatical
genders (oftenmore than 5) assigned based on both
semantic and formal rules, whereas someAkan lan-
guages (like Ewe) lack a gender system. Plural
tends to be always expressed by affixes or other
morphological means. Case marking is generally
absent or minimal. As for verbal classes, aspect is
grammaticalized in Akhan (Kwa) and Zulu (Ban-
toid), but not in Luganda and Swahili (Bantoid).
Both past and future tenses are inflectional in Ban-
toid languages. 2-3 degrees of remoteness can
be distinguished in Zulu and Luganda, but not in
Swahili. On the other hand, Akan (Kwa) has no
opposition between past and non-past. There are
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Generalization (Surprise)
Family Genus ISO 639-3 Language Source of Data
Afro-Asiatic Semitic mlt Maltese UniMorph

Lowland East Cushitic orm Oromo Kasahorow (2017)
Semitic syc Syriac UniMorph

Algic Algonquian cre Plains Cree Hunter (1923)

Tungusic Tungusic evn Evenki Klyachko et al. (2020)

Turkic Turkic aze (azb) Azerbaijani UniMorph
Turkic bak Bashkir UniMorph
Turkic crh Crimean Tatar UniMorph
Turkic kaz Kazakh Nabiyev (2015); Turkicum (2019a)
Turkic kir Kyrgyz Aytnatova (2016)
Turkic kjh Khakas UniMorph
Turkic tuk Turkmen Abdulin (2016); US Embassy (2018)
Turkic uig Uyghur Kadeer (2016)
Turkic uzb Uzbek Abdullaev (2016); Turkicum (2019b)

Dravidian Southern Dravidian kan Kannada UniMorph
South-Central Dravidian tel Telugu UniMorph

Indo-European Indic ben Bengali UniMorph
Indic hin Hindi UniMorph
Indic san Sanskrit UniMorph
Indic urd Urdu UniMorph
Iranian fas (pes) Persian UniMorph
Iranian pus (pst) Pashto UniMorph
Iranian tgk Tajik UniMorph
Romance ast Asturian UniMorph
Romance cat Catalan UniMorph
Romance frm Middle French UniMorph
Romance fur Friulian UniMorph
Romance glg Galician UniMorph
Romance lld Ladin UniMorph
Romance vec Venetian UniMorph
Romance xno Anglo-Norman UniMorph
West Germanic gml Middle Low German UniMorph
West Germanic gsw Swiss German Egli-Wildi (2007)
North Germanic nno Norwegian Nynorsk UniMorph

Niger-Congo Bantoid sna Shona Kasahorow (2014b); Nandoro (2018)

Sino-Tibetan Bodic bod Tibetan Di et al. (2019)

Siouan Core Siouan dak Dakota LaFontaine and McKay (2005)

Songhay Songhay dje Zarma Kasahorow (2019b)

Southern Daly Murrinh-Patha mwf Murrinh-Patha Mansfield (2019)

Uralic Permic kpv Komi-Zyrian Arkhangelskiy et al. (2012)
Finnic lud Ludic Zaytseva et al. (2017)
Finnic olo Livvi Zaytseva et al. (2017)
Permic udm Udmurt Arkhangelskiy et al. (2012)
Finnic vro Võro Iva (2007)

Uto-Aztecan Tepiman ood O’odham Zepeda (2003)

Table 2: Surprise languages used in the shared task.

no grammatical evidentials.

3.7 Oto-Manguean

The Oto-Manguean languages are a diverse family
of tonal languages spoken in central and southern
Mexico. Even though all of these languages are
tonal, the tonal systemwithin each language varies
widely. Some have an inventory of two tones (e.g.,

Chichimec and Pame) others have ten tones (e.g.,
the Eastern Chatino languages of the Zapotecan
branch, Palancar and Léonard (2016)).

Oto-Manguean languages are also rich in tonal
morphology. The inflectional system marks
person–number and aspect in verbs and person–
number in adjectives and noun possessions, rely-
ing heavily on tonal contrasts. Other interesting as-
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pects of Oto-Manguean languages include the fact
that pronominal inflections use a system of encli-
tics, and first and second person plural has a dis-
tinction between exclusive and inclusive (Camp-
bell, 2016). Tone marking schemes in the writ-
ing systems also vary greatly. Some writing sys-
tems do not represent tone, others use diacritics,
and others represent tones with numbers. In lan-
guages that use numbers, single digits represent
level tones and double digits represent contour
tones. For example, in San Juan Quiahije of East-
ern Chatino number 1 represents high tone, num-
ber 4 represents low tone, and numbers 14 repre-
sent a descending tone contour and numbers 42 rep-
resent an ascending tone contour Cruz (2014).

3.8 Sino-Tibetan
The Sino-Tibetan family is represented by the
Tibetan language. Tibetan uses an abugida script
and contains complex syllabic components in
which vowel marks can be added above and below
the base consonant. Tibetan verbs are inflected
for tense and mood. Previous studies on Tibetan
morphology (Di et al., 2019) indicate that the
majority of mispredictions produced by neural
models are due to allomorphy. This is followed
by generation of nonce words (impossible combi-
nations of vowel and consonant components).

3.9 Siouan
The Siouan languages are located in North Amer-
ica, predominantly along the Mississippi and Mis-
souri Rivers and in the Ohio Valley. The fam-
ily is represented in our task by Dakota, a criti-
cally endangered language spoken in North and
South Dakota, Minnesota, and Saskatchewan. The
Dakota language is largely agglutinating in its
derivational morphology and fusional in its inflec-
tional morphology with a mixed affixation system
(Rankin et al., 2003). The present task includes
verbs, which are marked for first and second per-
son, number, and duality. All three affixation
types are found: person was generally marked by
an infix, but could also appear as a prefix, and plu-
rality was marked by a suffix. Morphophonologi-
cal processes of fortition and vowel lowering are
also present.

3.10 Songhay
The Songhay family consists of around eleven or
twelve languages spoken in Mali, Niger, Benin,

Burkina Faso and Nigeria. In the shared task we
use Zarma, the most widely spoken Songhay lan-
guage. Most of the Songhay languages are pre-
dominantly SOVwith medium-sized consonant in-
ventories (with implosives), five phonemic vowels,
vowel length distinctions, and word level tones,
which also are used to distinguish nouns, verbs,
and adjectives (Heath, 2014).

3.11 Southern Daly
The Southern Daly is a small language family of
the Northern Territory in Australia that consists of
two distantly related languages. In the current task
we only have one of the languages, Murrinh-patha
(which was initially thought to be a language iso-
late). Murrinh-patha is classified as polysynthetic
with highly complex verbal morphology. Verbal
roots are surrounded by prefixes and suffixes that
indicate tense, mood, object, subject. As Mans-
field (2019) notes, Murrinh-patha verbs have 39
conjugation classes.

3.12 Tungusic
Tungusic languages are spoken principally in Rus-
sia, China and Mongolia. In Russia they are con-
centrated in north and eastern Siberia and in China
in the east, in Manchuria. The largest languages
in the family are Xibe, Evenki and Even; we use
Evenki in the shared task. The languages are of the
agglutinating morphological type with a moderate
number of cases, 7 for Xibe and 13 for Evenki. In
addition to case markers, Evenki marks possession
in nominals (including reflexive possession) and
distinguishes between alienable and inalienable
possession. In terms of morphophonological pro-
cesses, the languages exhibit vowel harmony, con-
sonant alternations and phonological vowel length.

3.13 Turkic
Languages of the Turkic family are primarily spo-
ken in Central Asia. The family is morphologi-
cally concatenative, fusional, and suffixing. Tur-
kic languages generally exhibit back vowel har-
mony, with the notable exception of Uzbek. In ad-
dition to harmony in backness, several languages
also have labial vowel harmony (e.g., Kyrgyz,
Turkmen, among others). In addition, most of the
languages have dorsal consonant allophony that ac-
companies back vowel harmony. Additional mor-
phophonological processes include vowel epenthe-
sis and voicing assimilation. Selection of the in-
flectional allomorph can frequently be determined
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from the infinitivemorpheme (which frequently re-
veals vowel backness and roundedness) and also
the final segment of the stem.

3.14 Uralic

The Uralic languages are spoken in Russia from
the north of Siberia to Scandinavia and Hungary
in Europe. They are agglutinating with some sub-
groups displaying fusional characteristics (e.g., the
Sámi languages). Many of the languages have
vowel harmony. The languages have almost com-
plete suffixal morphology and a medium-sized
case inventory, ranging from 5–6 cases to num-
bers in the high teens. Many of the larger case
paradigms are made up of spatial cases, sometimes
with distinctions for direction and position. Most
of the languages have possessive suffixes, which
can express possession, or agreement in non-finite
clauses. The paradigms are largely regular, with
few, if any, irregular forms. Many exhibit complex
patterns of consonant gradation—consonant muta-
tions that occur in specific morphological forms in
some stems. Which gradation category a stem be-
longs to in often unpredictable. The languages spo-
ken in Russia are typically SOV, while those in Eu-
rope have SVO order.

3.15 Uto-Aztecan

The Uto-Aztecan family is represented by the To-
hono O’odham (Papago–Pima) language spoken
along the US–Mexico border in southern Arizona
and northern Sonora. O’odham is agglutinative
with a mixed prefixing and suffixing system. Nom-
inal and verbal pluralization is frequently realized
by partial reduplication of the initial consonant
and/or vowel, and occasionally by final consonant
deletion or null affixation. Processes targeting
vowel length (shortening or lengthening) are also
present. A small number of verbs exhibit supple-
tion in the past tense.

4 Data Preparation

4.1 Data Format

Similar to previous years, training and develop-
ment sets contain triples consisting of a lemma,
a target form, and morphosyntactic descriptions
(MSDs, or morphological tags).3 Test sets only
contain two fields, i.e., target forms are omitted.
All data follows UTF-8 encoding.
3Each MSD is a set of features separated by semicolons.

4.2 Conversion and Canonicalization

A significant amount of data for this task was
extracted from corresponding (language-specific)
grammars. In order to allow cross-lingual com-
parison, we manually converted their features
(tags) into the UniMorph format (Sylak-Glassman,
2016). We then canonicalized the converted lan-
guage data4 to make sure all tags are consistently
ordered and no category (e.g., “Number”) is as-
signed two tags (e.g., singular and plural).5

4.3 Splitting

We use only noun, verb, and adjective forms to
construct training, development, and evaluation
sets. We de-duplicate annotations such that there
are no multiple examples of exact lemma-form-
tag matches. To create splits, we randomly sam-
ple 70%, 10%, and 20% for train, development,
and test, respectively. We cap the training set size
to 100k examples for each language; where lan-
guages exceed this (e.g., Finnish), we subsample
to this point, balancing lemmas such that all forms
for a given lemma are either included or discarded.
Some languages such as Zarma (dje), Tajik (tgk),
Lingala (lin), Ludian* (lud), Māori (mao), Sotho
(sot), Võro (vro), Anglo-Norman (xno), and Zulu
(zul) contain less than 400 training samples and are
extremely low-resource.6 Tab. 6 and Tab. 7 in the
Appendix provide the number of samples for ev-
ery language in each split, the number of samples
per lemma, and statistics on inconsistencies in the
data.

5 Baseline Systems

The organizers provided two types of pre-trained
baselines. Their use was optional.

5.1 Non-neural

The first baseline was a non-neural system that had
been used as a baseline in earlier shared tasks on
morphological reinflection (Cotterell et al., 2017,
2018). The system first heuristically extracts
lemma-to-form transformations; it assumes that
these transformations are suffix- or prefix-based.
4Using the UniMorph schema canonicalization script
https://github.com/unimorph/um-
canonicalize

5Conversion schemes and canonicalization scripts
are available at https://github.com/
sigmorphon2020/task0-data

6We also note that Ludian contained inconsistencies in data
due to merge of various dialects.
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A simple majority classifier is used to apply the
most frequent suitable transformation to an input
lemma, given the morphological tag, yielding the
output form. See Cotterell et al. (2017) for further
details.

5.2 Neural

Neural baselines were based on a neural transducer
(Wu and Cotterell, 2019), which is essentially a
hard monotonic attention model (mono-*). The
second baseline is a transformer (Vaswani et al.,
2017) adopted for character-level tasks that cur-
rently holds the state-of-the-art on the 2017 SIG-
MORPHON shared task data (Wu et al., 2020,
trm-*). Both models take the lemma and mor-
phological tags as input and output the target in-
flection. The baseline is further expanded to in-
clude the data augmentation technique used by
Anastasopoulos and Neubig (2019, -aug-) (con-
ceptually similar to the one proposed by Silfver-
berg et al. (2017)). Relying on a simple character-
level alignment between lemma and form, this
technique replaces shared substrings of length >
3 with random characters from the language’s al-
phabet, producing hallucinated lemma–tag–form
triples. Both neural baselines were trained in
mono- (*-single) and multilingual (shared pa-
rameters among the same family,*-shared) set-
tings.

6 Competing Systems

As Tab. 3 shows, 10 teams submitted 22 systems
in total, out of which 19 were neural. Some teams
such as ETH Zurich and UIUC built their mod-
els on top of the proposed baselines. In partic-
ular, ETH Zurich enriched each of the (multi-
lingual) neural baseline models with exact decod-
ing strategy that uses Dijkstra’s search algorithm.
UIUC enriched the transformer model with syn-
chronous bidirectional decoding technique (Zhou
et al., 2019) in order to condition the prediction
of an affix character on its environment from both
sides. (The authors demonstrate positive effects
in Oto-Manguean, Turkic, and some Austronesian
languages.)
A few teams further improved models that

were among top performers in previous shared
tasks. IMS and Flexica re-used the hard mono-
tonic attention model from (Aharoni and Goldberg,
2017). IMS developed an ensemble of two models
(with left-to-right and right-to-left generation or-

der) with a genetic algorithm for ensemble search
(Haque et al., 2016) and iteratively provided hal-
lucinated data. Flexica submitted two neural sys-
tems. The first model (flexica-02-1) was
multilingual (family-wise) hard monotonic atten-
tionmodel with improved alignment strategy. This
model is further improved (flexica-03-1)
by introducing a data hallucination technique
which is based on phonotactic modelling of
extremely low-resource languages (Shcherbakov
et al., 2016). LTI focused on their earlier model
(Anastasopoulos and Neubig, 2019), a neural
multi-source encoder–decoder with two-step at-
tention architecture, training it with hallucinated
data, cross-lingual transfer, and romanization of
scripts to improve performance on low-resource
languages. DeepSpin reimplemented gated sparse
two-headed attention model from Peters and Mar-
tins (2019) and trained it on all languages at
once (massively multilingual). The team exper-
imented with two modifications of the softmax
function: sparsemax (Martins and Astudillo, 2016,
deepspin-02-1) and 1.5-entmax (Peters et al.,
2019, deepspin-01-1).

Many teams based their models on the
transformer architecture. NYU-CUBoulder
experimented with a vanilla transformer model
(NYU-CUBoulder-04-0), a pointer-generator
transformer that allows for a copy mechanism
(NYU-CUBoulder-02-0), and ensembles
of three (NYU-CUBoulder-01-0) and five
(NYU-CUBoulder-03-0) pointer-generator
transformers. For languages with less than 1,000
training samples, they also generate hallucinated
data. CULing developed an ensemble of three
(monolingual) transformers with identical ar-
chitecture but different input data format. The
first model was trained on the initial data format
(lemma, target tags, target form). For the other
two models the team used the idea of lexeme’s
principal parts (Finkel and Stump, 2007) and aug-
mented the initial input (that only used the lemma
as a source form) with entries corresponding to
other (non-lemma) slots available for the lexeme.
The CMU Tartan team compared performance of
models with transformer-based and LSTM-based
encoders and decoders. The team also compared
monolingual to multilingual training in which they
used several (related and unrelated) high-resource
languages for low-resource language training.

Although the majority of submitted systems
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Team Description System Model Features
Neural Ensemble Multilingual Hallucination

Baseline Wu and Cotterell (2019)

mono-single
mono-aug-single
mono-shared
mono-aug-shared

Wu et al. (2020)

trm-single
trm-aug-single
trm-shared
trm-aug-shared

CMU Tartan Jayarao et al. (2020)

cmu_tartan_00-0
cmu_tartan_00-1
cmu_tartan_01-0
cmu_tartan_01-1
cmu_tartan_02-1

CU7565 Beemer et al. (2020) CU7565-01-0
CU7565-02-0

CULing Liu and Hulden (2020) CULing-01-0

DeepSpin Peters and Martins (2020) deepspin-01-1
deepspin-02-1

ETH Zurich Forster and Meister (2020) ETHZ00-1
ETHZ02-1

Flexica Scherbakov (2020) flexica-01-0
flexica-02-1
flexica-03-1

IMS Yu et al. (2020) IMS-00-0

LTI Murikinati and Anastasopoulos (2020) LTI-00-1

NYU-CUBoulder Singer and Kann (2020)

NYU-CUBoulder-01-0
NYU-CUBoulder-02-0
NYU-CUBoulder-03-0
NYU-CUBoulder-04-0

UIUC Canby et al. (2020) uiuc-01-0

Table 3: The list of systems submitted to the shared task.

were neural, some teams experimented with non-
neural approaches showing that in certain sce-
narios they might surpass neural systems. A
large group of researchers from CU7565 man-
ually developed finite-state grammars for 25
languages (CU7565-01-0). They addition-
ally developed a non-neural learner for all lan-
guages (CU7565-02-0) that uses hierarchi-
cal paradigm clustering (based on similarity of
string transformation rules between inflectional
slots). Another team, Flexica, proposed a
model (flexica-01-0) conceptually similar
to Hulden et al. (2014), although they did not at-
tempt to reconstruct the paradigm itself and treated
transformation rules independently assigning each
of them a score based on its frequency and speci-
ficity as well as diversity of the characters sur-
rounding the pattern.7

7English plural noun formation rule “* → *s” has high di-
versity whereas past tense rule such as “*a* → *oo*” as in
(understand, understood) has low diversity.

7 Evaluation

This year, we instituted a slightly different evalua-
tion regimen than in previous years, which takes
into account the statistical significance of differ-
ences between systems and allows for an informed
comparison across languages and families better
than a simple macro-average.
The process works as follows:

1. For each language, we rank the systems ac-
cording to their accuracy (or Levenshtein dis-
tance). To do so, we use paired bootstrap
resampling (Koehn, 2004)8 to only take sta-
tistically significant differences into account.
That way, any system which is the same (as
assessed via statistical significance) as the
best performing one is also ranked 1st for that
language.

2. For the set of languageswherewewant collec-
tive results (e.g. languages within a linguistic
genus), we aggregate the systems’ ranks and

8We use 10,000 samples with 50% ratio, and p < 0.005.
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Individual Language Rankings Final Ranking
cly ctp czn zpv avg #1 #3 #4 #6
uiuc (1) CULing (1) deepspin (1) NYU-CUB (1) uiuc 1 4

trm-single (1) uiuc (1) uiuc (1) CULing (1) trm-single 1 4
CULing (3) trm-single (1) IMS (1) deepspin (1) CULing 1.5 3 1

deepspin (3) IMS (4) NYU-CUB (1) uiuc (1) deepspin 2.25 2 1 1
NYU-CUB (3) deepspin (4) CULing (1) trm-single (1) NYU-CUB 2.25 2 1 1

IMS (6) NYU-CUB (4) trm-single (1) IMS (1) IMS 3 2 0 1 1

Table 4: Illustration of our ranking method, over the four Zapotecan languages. Note: The final ranking is based
on the actual counts (#1,#2, etc), not on the system’s average rank.

re-rank them based on the amount of times
they ranked 1st, 2nd, 3rd, etc.

Table 4 illustrates an example of this process us-
ing four Zapotecan languages and six systems.

8 Results

This year we had four winning systems
(i.e., ones that outperform the best base-
line): CULing-01-0, deepspin-02-1,
uiuc-01-0, and deepspin-01-1, all
neural. As Tab. 5 shows, they achieve over
90% accuracy. Although CULing-01-0 and
uiuc-01-0 are both monolingual transformers
that do not use any hallucinated data, they follow
different strategies to improve performance. The
strategy proposed by CULing-01-0 of enrich-
ing the input data with extra entries that included
non-lemma forms and their tags as a source form,
enabled their system to be among top performers
on all language families; uiuc-01-0, on the
other hand, did not modify the data but rather
changed the decoder to be bidirectional and
made family-wise fine-tuning of each (mono-
lingual) model. The system is also among the
top performers on all language families except
Iranian. The third team, DeepSpin, trained and
fine-tuned their models on all language data. Both
models are ranked high (although the sparsemax
model, deepspin-02-1, performs better
overall) on most language groups with exception
of Algic. Sparsemax was also found useful by
CMU-Tartan. The neural ensemble model with
data augmentation from IMS team shows superior
performance on languages with smaller data sizes
(under 10,000 samples). LTI and Flexica teams
also observed positive effects of multilingual
training and data hallucination on low-resource
languages. The latter was also found useful in the
ablation study made by NYU-CUBoulder team.
Several teams aimed to address particular research
questions; we will further summarize their results.

System Rank Acc

uiuc-01-0 2.4 90.5
deepspin-02-1 2.9 90.9

BASE: trm-single 2.8 90.1
CULing-01-0 3.2 91.2
deepspin-01-1 3.8 90.5

BASE: trm-aug-single 3.7 90.3
NYU-CUBoulder-04-0 7.1 88.8
NYU-CUBoulder-03-0 8.9 88.8
NYU-CUBoulder-02-0 8.9 88.7

IMS-00-0 10.6 89.2
NYU-CUBoulder-01-0 9.6 88.6
BASE: trm-shared 10.3 85.9

BASE: mono-aug-single 7.5 88.8
cmu_tartan_00-0 8.7 87.1

BASE: mono-single 7.9 85.8
cmu_tartan_01-1 9.0 87.1

BASE: trm-aug-shared 12.5 86.5
BASE: mono-shared 10.8 86.0
cmu_tartan_00-1 9.4 86.5

LTI-00-1 12.0 86.6
BASE: mono-aug-shared 12.8 86.8

cmu_tartan_02-1 10.6 86.1
cmu_tartan_01-0 10.9 86.6
flexica-03-1 16.7 79.6
ETHZ-00-1 20.1 75.6

*CU7565-01-0 24.1 90.7
flexica-02-1 17.1 78.5

*CU7565-02-0 19.2 83.6
ETHZ-02-1 17.0 80.9
flexica-01-0 24.4 70.8

Oracle (Baselines) 96.1
Oracle (Submissions) 97.7

Oracle (All) 97.9

Table 5: Aggregate results on all languages. Bolded
results are the ones which beat the best baseline. ∗ and
italics denote systems that did not submit outputs in all
languages (their accuracy is a partial average).
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Figure 2: Accuracy by language averaged across all the final submitted systems with their standard deviations.
Language families are demarcated by color, with accuracy on development languages (top), and generalization
languages (bottom).

Is developing morphological grammars manu-
ally worthwhile? This was the main question
asked by CU7565 who manually designed finite-
state grammars for 25 languages. Paradigms of
some languages were relatively easy to describe
but neural networks also performed quite well on
them even with a limited amount of data. For low-
resource languages such as Ingrian and Tagalog the
grammars demonstrate superior performance but
this comes at the expense of a significant amount
of person-hours.

What is the best training strategy for low-
resource languages? Teams that generated
hallucinated data highlighted its utility for low-
resource languages. Augmenting the data with
tuples where lemmas are replaced with non-
lemma forms and their tags is another technique
that was found useful. In addition, multilingual
training and ensembles yield extra gain in terms
of accuracy.

Are the systems complementary? To address
this question, we evaluate oracle scores for
baseline systems, submitted systems, and all of
them together. Typically, as Tables 8–21 in the
Appendix demonstrate, the baselines and the
submissions are complementary - adding them
together increases the oracle score. Furthermore,
while the full systems tend to dominate the partial

systems (that were designed for a subset of
languages, such as CU7565-01-0), there are a
number of cases where the partial systems find the
solution when the full systems don’t - and these
languages often then get even bigger gains when
combined with the baselines. This even happens
when the accuracy of the baseline is very high -
Finnish has baseline oracle of 99.89; full systems
oracle of 99.91; submission oracle of 99.94 and
complete oracle of 99.96, so an ensemble might
be able to improve on the results. The largest
gaps in oracle systems are observed in Algic,
Oto-Manguean, Sino-Tibetan, Southern Daly,
Tungusic, and Uto-Aztecan families.9

Has morphological inflection become a solved
problem in certain scenarios? The results
shown in Fig. 2 suggest that for some of the de-
velopment language families, such as Austrone-
sian and Niger-Congo, the task was relatively
easy, with most systems achieving high accuracy,
whereas the task was more difficult for Uralic and
Oto-Manguean languages, which showed greater
variability in level of performance across sub-
mitted systems. Languages such as Ludic (lud),
Norwegian Nynorsk (nno), Middle Low German
9Please see the results per language here:
https://docs.google.com/spreadsheets/
d/1ODFRnHuwN-mvGtzXA1sNdCi-jNqZjiE-
i9jRxZCK0kg/edit?usp=sharing
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Figure 3: Difficulty of Nouns: Percentage of test samples falling into each category. The total number of test
samples for each language is outlined on the top of the plot.
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Figure 4: Difficulty of Verbs: Percentage of test samples falling into each category. The total number of test
samples for each language is outlined on the top of the plot.

(gml), Evenki (evn), and O’odham (ood) seem to
be the most challenging languages based on simple
accuracy. For a more fine-grained study, we have
classified test examples into four categories: “very
easy”, “easy”, “hard”, and “very hard”. “Very
easy” examples are ones that all submitted systems
got correct, while “very hard” examples are ones
that no submitted system got correct. “Easy” ex-
amples were predicted correctly for 80% of sys-
tems, and “hard” were only correct in 20% of sys-
tems. Fig. 3, Fig. 4, and Fig. 5 represent per-
centage of noun, verb, and adjective samples that

fall into each category and illustrate that most lan-
guage samples are correctly predicted by major-
ity of the systems. For noun declension, Old En-
glish (ang), Middle Low German (gml), Evenki
(evn), O’odham (ood), Võro (vro) are the most dif-
ficult (some of this difficulty comes from language
data inconsistency, as described in the following
section). For adjective declension, Classic Syriac
presents the highest difficulty (likely due to its lim-
ited data).
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Figure 5: Difficulty of Adjectives: Percentage of test samples falling into each category. The total number of test
samples for each language is outlined on the top of the plot.

9 Error Analysis

In our error analysis we follow the error type tax-
onomy proposed in Gorman et al. (2019). First, we
evaluate systematic errors due to inconsistencies in
the data, followed by an analysis of whether having
seen the language or its family improved accuracy.
We then proceed with an overview of accuracy for
each of the language families. For a select number
of families, we provide a more detailed analysis of
the error patterns.
Tab. 6 and Tab. 7 provide the number of samples

in the training, development, and test sets, percent-
age of inconsistent entries (the same lemma–tag
pair has multiple infected forms) in them, percent-
age of contradicting entries (same lemma–tag pair
occurring in train and development or test sets but
assigned to different inflected forms), and percent-
age of entries in the development or test sets con-
taining a lemma observed in the training set. The
train, development and test sets contain 2%, 0.3%,
and 0.6% inconsistent entries, respectively. Azer-
baijani (aze), Old English (ang), Cree (cre), Danish
(dan), Middle Low German (gml), Kannada (kan),
Norwegian Bokmål (nob), Chichimec (pei), and
Veps (vep) had the highest rates of inconsistency.
These languages also exhibit the highest percent-
age of contradicting entries. The inconsistencies
in some Finno-Ugric languages (such as Veps and
Ludic) are due to dialectal variations.
The overall accuracy of system and language

pairings appeared to improve with an increase in

the size of the dataset (Fig. 6; see also Fig. 7
for accuracy trends by language family and Fig. 8
for accuracy trends by system). Overall, the vari-
ance was considerable regardless of whether the
language family or even the language itself had
been observed during the Development Phase. A
linear mixed-effects regression was used to assess
variation in accuracy using fixed effects of lan-
guage category, the size of the training dataset (log
count), and their interactions, as well as random
intercepts for system and language family accu-
racy.10 Language category was sum-coded with
three levels: development language–development
family, surprise language–development family, or
surprise language–surprise family.
A significant effect of dataset size was observed,

such that a one unit increase in log count corre-
sponded to a 2% increase in accuracy (β = 0.019,
p < 0.001). Language category type also signifi-
cantly influenced accuracy: both development lan-
guages and surprise languages from development
families were less accurate on average (βdev−dev =
-0.145, βsur−dev = -0.167, each p < 0.001). These
main effects were, however, significantly modu-
lated by interactions with dataset size: on top of
the main effect of dataset size, accuracy for devel-
opment languages increased an additional ≈ 1.7%
(βdev−dev×size = 0.017, p < 0.001) and accuracy
for surprise languages from development families
10Accuracy should ideally be assessed at the trial level using
a logistic regression as opposed to a linear regression. By-
trial accuracy was however not available at analysis time.
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increased an additional ≈ 2.9% (βsur−dev×size =
0.029, p < 0.001).

Afro-Asiatic: This family was represented by
three languages. Mean accuracy across systems
was above average at 91.7%. Relative to other fam-
ilies, variance in accuracy was low, but neverthe-
less ranged from 41.1% to 99.0%.

Algic: This family was represented by one lan-
guage, Cree. Mean accuracy across systems was
below average at 65.1%. Relative to other fami-
lies, variance in accuracy was low, ranging from
41.5% to 73%. All systems appeared to struggle
with the choice of preverbal auxiliary. Some aux-
iliaries were overloaded: ‘kitta’ could refer to fu-
ture, imperfective, or imperative. The morpho-
logical features for mood and tense were also fre-
quently combined, such as SBJV+OPT (subjunc-
tive plus optative mood). While the paradigms
were very large, there were very few lemmas (28
impersonal verbs and 14 transitive verbs), which
may have contributed to the lower accuracy. Inter-
estingly, the inflections could largely be generated
by rules.11

Austronesian: This family was represented by
five languages. Mean accuracy across systemswas
around average at 80.5%. Relative to other fami-
lies, variance in accuracy was high, with accuracy
ranging from 39.5% to 100%. One may notice a
discrepancy among the difficulty in processing dif-
ferent Austronesian languages. For instance, we
see a difference of over 10% in the baseline perfor-
mance of Cebuano (84%) andHiligaynon (96%).12
This could come from the fact that Cebuano only
has partial reduplication while Hiligaynon has full
reduplication. Furthermore, the prefix choice for
Cebuano is more irregular, making it more diffi-
cult to predict the correct conjugation of the verb.

Dravidian: This family was represented by two
languages: Kannada and Telugu. Mean accu-
racy across systems was around average at 82.2%.
Relative to other families, variance in accuracy
was high: system accuracy ranged from 44.6% to

11Minor issues with the encoding of diacritics were identified,
and will be corrected for release.

12We also note that some Hiligaynon entries contained multi-
ple lemma forms (“bati/batian/pamatian”) for a single entry.
We decided to leave it since we could not find any more
information on which of the lemmas should be selected as
the main. A similar issue was observed in Chichicapan Za-
potec.

96.0%. Accuracy for Telugu was systematically
higher than accuracy for Kannada.

Indo-European: This family was represented
by 29 languages and four main branches. Mean ac-
curacy across systems was slightly above average
at 86.9%. Relative to other families, variance in
accuracy was very high: system accuracy ranged
from 0.02% to 100%. For Indo-Aryan, mean ac-
curacy was high (96.0%) with low variance; for
Germanic, mean accuracy was slightly below aver-
age (79.0%) but with very high variance (ranging
from 0.02% to 99.5%), for Romance, mean accu-
racy was high (93.4%) but also had a high variance
(ranging from 23.5% to 99.8%), and for Iranian,
mean accuracy was high (89.2%), but again with
a high variance (ranging from 25.0% to 100%).
Languages from the Germanic branch of the Indo-
European family were included in the Develop-
ment Phase.

Niger–Congo: This family was represented by
ten languages. Mean accuracy across systems was
very good at 96.4%. Relative to other families,
variance in accuracy was low, with accuracy rang-
ing from 62.8% to 100%. Most languages in this
family are considered low resource, and the re-
sources used for data gathering may have been bi-
ased towards the languages’ regular forms, as such
this high accuracy may not be representative of the
“easiness” of the task in this family. Languages
from the Niger–Congo family was included in the
Development Phase.

Oto-Manguean: This family was represented
by nine languages. Mean accuracy across systems
was slightly below average at 78.5%. Relative
to other families, variance in accuracy was high,
with accuracy ranging from 18.7% to 99.1%. Lan-
guages from the Oto-Manguean family were in-
cluded in the Development Phase.

Sino-Tibetan: This family was represented by
one language, Bodic. Mean accuracy across sys-
tems was average at 82.1%, and variance across
systems was also very low. Accuracy ranged from
67.9% to 85.1%. The results are similar to those
in Di et al. (2019) where majority of errors relate
to allomorphy and impossible combinations of Ti-
betan unit components.

Siouan: This family was represented by one lan-
guage, Dakota. Mean accuracy across systemswas
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above average at 89.4%, and variance across sys-
tems was also low, despite the range from 0% to
95.7%. Dakota presented variable prefixing and in-
fixing of person morphemes, along some complex-
ities related to fortition processes. Determining the
factor(s) that governed variation in affix position
was difficult from a linguist’s perspective, though
many systems were largely successful. Success
varied in the choice of the first or second person
singular allomorphs which had increasing degrees
of consonant strengthening (e.g., /wa/, /ma/, /mi/
/bde/, /bdu/ for the first person singular and /ya/,
/na/, /ni/, /de/, or /du/ for the second person singu-
lar). In some cases, these fortition processes were
overapplied, and in some cases, entirely missed.

Songhay: This family was represented by one
language, Zarma. Mean accuracy across systems
was above average at 88.6%, and variance across
systems was relatively high. Accuracy ranged
from 0% to 100%.

Southern Daly: This family was represented by
one language, Murrinh-Patha. Mean accuracy
across systems was below average at 73.2%, and
variance across systems was relatively high. Ac-
curacy ranged from 21.2% to 91.9%.

Tungusic: This family was represented by one
language, Evenki. The overall accuracy was the
lowest across families. Mean accuracy was 53.8%
with very low variance across systems. Accuracy
ranged from 43.5% to 59.0%. The low accuracy
is due to several factors. Firstly and primarily,
the dataset was created from oral speech samples

in various dialects of the language. The Evenki
language is known to have rich dialectal variation.
Moreover, there was little attempt at any standard-
ization in the oral speech transcription. These pe-
culiarities led to a high number of errors. For in-
stance, some of the systems synthesized a wrong
plural form for a noun ending in /-n/. Depending
on the dialect, it can be /-r/ or /-l/, and there is a
trend to have /-hVl/ for borrowed nouns. Deduc-
ing such a rule as well as the fact that the noun is
a loanword is a hard task. Other suffixes may also
have variable forms (such as /-kVllu/ vs /-kVldu/
depending on the dialect for the 2PL imperative.
Some verbs have irregular past tense forms depend-
ing on the dialect and the meaning of the verb (e.
g. /o:-/ ’to make’ and ’to become’). Next, vari-
ous dialects exhibit various vowel and consonant
changes in suffixes. For example, some dialects
(but not all of them) change /w/ to /b/ after /l/, and
the systems sometimes synthesized a wrong form.
The vowel harmony is complex: not all suffixes
obey it, and it is also dialect-dependent. Some
suffixes have variants (e. g., /-sin/ and /-s/ for
SEMEL (semelfactive)), and the choice between
themmight be hard to understand. Finally, some of
themistakes are due to themarkup scheme scarcity.
For example, various past tense forms are all anno-
tated as PST, or there are several comitative suf-
fixes all annotated as COM. Moreover, some fea-
tures are present in the word form but they receive
no annotation at all. It is worth mentioning that
some of the predictions could theoretically be pos-
sible. To sum up, the Evenki case presents the chal-
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lenges of oral non-standardized speech.

Turkic: This family was represented by nine lan-
guages. Mean accuracy across systems was rel-
atively high at 93%, and relative to other fami-
lies, variance across systems was low. Accuracy
ranged from 51.5% to 100%. Accuracy was lower
for Azerbaijani and Turkmen, which after closer
inspection revealed some slight contamination in
the ‘gold’ files. There was very marginal varia-
tion in the accuracy for these languages across sys-
tems. Besides these two, accuracies were predom-
inantly above 98%. A few systems struggled with
the choice and inflection of the postverbal auxil-
iary in various languages (e.g., Kyrgyz, Kazakh,
and Uzbek).

Uralic: This family was represented by 16 lan-
guages. Mean accuracy across systems was aver-
age at 81.5%, but the variance across systems and
languages was very high. Accuracy ranged from
0% to 99.8%. Languages from the Uralic family
were included in the Development Phase.

Uto-Aztecan: This family was represented by
one language, O’odham. Mean accuracy across
systems was slightly below average at 76.4%, but
the variance across systems and languages was
fairly low. Accuracy ranged from 54.8% to 82.5%.
The systems with higher accuracy may have bene-
fited from better recall of suppletive forms relative
to lower accuracy systems.

10 Conclusion

This years’s shared task on morphological rein-
flection focused on building models that could
generalize across an extremely typologically di-
verse set of languages, many from understudied
language families and with limited available text
resources. As in previous years, neural models
performed well, even in relatively low-resource
cases. Submissions were able to make produc-
tive use of multilingual training to take advantage
of commonalities across languages in the dataset.
Data augmentation techniques such as hallucina-
tion helped fill in the gaps and allowed networks
to generalize to unseen inputs. These techniques,
combined with architecture tweaks like sparse-
max, resulted in excellent overall performance on
many languages (over 90% accuracy on average).
However, the task’s focus on typological diver-
sity revealed that some morphology types and lan-
guage families (Tungusic, Oto-Manguean, South-

ern Daly) remain a challenge for even the best sys-
tems. These families are extremely low-resource,
represented in this dataset by few or a single lan-
guage. Thismakes cross-linguistic transfer of simi-
larities bymultilanguage training less viable. They
may also have morphological properties and rules
(e.g., Evenki is agglutinating with many possible
forms for each lemma) that are particularly diffi-
cult for machine learners to induce automatically
from sparse data. For some languages (Ingrian,
Tajik, Tagalog, Zarma, and Lingala), optimal per-
formance was only achieved in this shared task by
hand-encoding linguist knowledge in finite state
grammars. It is up to future research to imbuemod-
els with the right kinds of linguistic inductive bi-
ases to overcome these challenges.
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A Language data statistics

Lang Total Inconsistency (%) Contradiction (%) In Vocabulary (%)

Train Dev Test Train Dev Test Dev Test Dev Test

aka 2793 380 763 0.0 0.0 0.0 0.0 0.0 24.7 12.5
ang 29270 4122 8197 11.8 1.8 3.4 21.6 21.9 35.1 21.3
ast 5096 728 1457 0.0 0.0 0.0 0.0 0.0 23.9 12.4
aze 5602 801 1601 11.9 1.9 4.0 22.3 20.9 31.5 20.2
azg 8482 1188 2396 0.8 0.0 0.0 1.3 1.1 26.9 13.8
bak 8517 1217 2434 0.0 0.0 0.0 0.0 0.0 59.8 40.1
ben 2816 402 805 0.0 0.0 0.0 0.0 0.0 29.9 16.0
bod 3428 466 936 1.0 0.2 0.3 2.4 1.9 80.0 73.4
cat 51944 7421 14842 0.0 0.0 0.0 0.0 0.0 20.8 10.4
ceb 420 58 111 1.0 0.0 0.0 0.0 2.7 72.4 62.2
cly 3301 471 944 0.0 0.0 0.0 0.0 0.0 37.4 19.3
cpa 5298 727 1431 3.4 0.6 0.8 6.6 4.3 60.2 39.8
cre 4571 584 1174 18.5 2.1 4.9 29.8 29.6 5.5 2.7
crh 5215 745 1490 0.0 0.0 0.0 0.0 0.0 77.4 60.7
ctp 2397 313 598 15.9 1.6 3.0 22.0 21.7 52.7 34.1
czn 1088 154 305 0.2 0.0 0.0 1.3 0.0 86.4 74.8
dak 2636 376 750 0.0 0.0 0.0 0.0 0.0 75.5 55.7
dan 17852 2550 5101 16.5 2.5 5.0 34.5 32.9 71.4 51.8
deu 99405 14201 28402 0.0 0.0 0.0 0.0 0.0 55.8 37.8
dje 56 9 16 0.0 0.0 0.0 0.0 0.0 100.0 87.5
eng 80865 11553 23105 1.1 0.2 0.4 2.1 1.9 80.3 66.2
est 26728 3820 7637 2.7 0.4 0.8 6.1 5.1 22.4 11.6
evn 5413 774 1547 9.6 2.8 4.3 8.9 10.0 38.9 32.5
fas 25225 3603 7208 0.0 0.0 0.0 0.0 0.0 7.6 3.8
fin 99403 14201 28401 0.0 0.0 0.0 0.0 0.0 32.6 17.2
frm 24612 3516 7033 0.0 0.0 0.0 0.0 0.0 17.1 8.6
frr 1902 224 477 4.0 0.0 1.7 9.8 6.1 22.8 10.7
fur 5408 772 1546 0.0 0.0 0.0 0.0 0.0 21.6 10.9
gaa 607 79 169 0.0 0.0 0.0 0.0 0.0 74.7 47.3
glg 24087 3441 6882 0.0 0.0 0.0 0.0 0.0 14.1 7.1
gmh 496 71 141 1.2 0.0 0.0 5.6 2.8 38.0 20.6
gml 890 127 255 17.3 3.1 5.5 22.8 27.8 39.4 20.4
gsw 1345 192 385 0.0 0.0 0.0 0.0 0.0 55.7 35.6
hil 859 116 238 0.0 0.0 0.0 0.0 0.0 59.5 36.6
hin 36300 5186 10372 0.0 0.0 0.0 0.0 0.0 5.0 2.5
isl 53841 7690 15384 1.0 0.1 0.3 1.9 2.0 48.8 29.5
izh 763 112 224 0.0 0.0 0.0 0.0 0.0 42.9 22.3
kan 3670 524 1049 13.2 2.7 4.7 18.7 20.7 21.9 14.0
kaz 7852 1063 2113 1.1 0.2 0.4 1.9 1.8 10.6 5.3
kir 3855 547 1089 0.0 0.0 0.0 0.0 0.0 17.9 9.0
kjh 840 120 240 0.0 0.0 0.0 0.0 0.0 50.8 30.4
kon 568 76 156 0.0 0.0 0.0 0.0 0.0 78.9 71.8
kpv 57919 8263 16526 0.0 0.0 0.0 0.0 0.0 48.8 35.0
krl 80216 11225 22290 0.2 0.0 0.0 0.3 0.3 19.7 10.3
lin 159 23 46 0.0 0.0 0.0 0.0 0.0 100.0 73.9
liv 2787 398 802 0.0 0.0 0.0 0.0 0.0 40.7 24.1

Table 6: Number of samples in training, development, test sets, as well as statistics on systematic errors (inconsis-
tency) and percentage of samples with lemmata observed in the training set.
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Lang Total Inconsistency (%) Contradiction (%) In Vocabulary (%)

Train Dev Test Train Dev Test Dev Test Dev Test

lld 5073 725 1450 0.0 0.0 0.0 0.0 0.0 24.3 12.3
lud 294 41 82 7.8 0.0 3.7 9.8 11.0 31.7 20.7
lug 3420 489 977 4.0 0.6 0.8 5.1 7.6 18.2 9.1
mao 145 21 42 0.0 0.0 0.0 0.0 0.0 61.9 81.0
mdf 46362 6633 13255 1.6 0.2 0.5 3.1 3.3 49.0 35.1
mhr 71143 10081 20233 0.3 0.0 0.0 0.4 0.5 48.8 34.3
mlg 447 62 127 0.0 0.0 0.0 0.0 0.0 90.3 74.0
mlt 1233 176 353 0.1 0.0 0.0 0.6 0.0 52.3 30.6
mwf 777 111 222 2.6 0.0 0.9 2.7 4.5 25.2 13.1
myv 74928 10738 21498 1.7 0.3 0.5 3.1 3.1 45.5 32.7
nld 38826 5547 11094 0.0 0.0 0.0 0.0 0.0 58.2 38.4
nno 10101 1443 2887 3.4 0.4 1.0 6.0 6.8 80.0 70.2
nob 13263 1929 3830 10.5 1.8 3.1 18.5 19.7 80.5 70.5
nya 3031 429 853 0.0 0.0 0.0 0.0 0.0 46.4 26.5
olo 43936 6260 12515 1.4 0.3 0.5 3.3 2.9 83.0 70.8
ood 1123 160 314 0.4 0.0 0.0 1.9 1.0 70.0 58.0
orm 1424 203 405 0.2 0.0 0.2 0.5 0.7 41.9 22.7
ote 22962 3231 6437 0.4 0.1 0.1 0.5 0.8 48.4 29.5
otm 21533 3020 5997 0.9 0.1 0.3 1.8 1.7 49.4 29.4
pei 10017 1349 2636 15.8 2.6 4.9 21.5 21.4 9.1 4.7
pus 4861 695 1389 3.9 0.6 1.6 9.9 7.7 34.2 23.0
san 22968 3188 6272 3.1 0.5 0.9 4.5 5.5 26.9 14.6
sme 43877 6273 12527 0.0 0.0 0.0 0.0 0.0 28.2 16.3
sna 1897 246 456 0.0 0.0 0.0 0.0 0.0 31.3 18.0
sot 345 50 99 0.0 0.0 0.0 0.0 0.0 48.0 25.3
swa 3374 469 910 0.0 0.0 0.0 0.0 0.0 20.7 10.5
swe 54888 7840 15683 0.0 0.0 0.0 0.0 0.0 70.6 51.9
syc 1917 275 548 3.5 1.5 0.4 7.6 8.6 47.3 28.1
tel 952 136 273 1.4 0.0 1.1 0.7 2.6 62.5 39.6
tgk 53 8 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tgl 1870 236 478 7.6 1.3 1.0 11.9 10.0 74.2 55.6
tuk 20963 2992 5979 9.5 1.5 3.2 16.8 16.0 16.7 8.3
udm 88774 12665 25333 0.0 0.0 0.0 0.0 0.0 38.1 24.8
uig 5372 750 1476 0.3 0.0 0.0 0.3 0.5 12.0 6.1
urd 8486 1213 2425 0.0 0.0 0.0 0.0 0.0 9.4 6.0
uzb 25199 3596 7191 0.0 0.0 0.0 0.0 0.0 11.9 6.0
vec 12203 1743 3487 0.0 0.0 0.0 0.0 0.0 20.8 10.6
vep 94395 13320 26422 10.9 1.8 3.3 19.3 19.8 25.1 12.9
vot 1003 146 281 0.0 0.0 0.0 0.0 0.0 35.6 19.6
vro 357 51 103 1.1 0.0 0.0 2.0 1.0 70.6 50.5
xno 178 26 51 0.0 0.0 0.0 0.0 0.0 19.2 9.8
xty 2110 299 600 0.1 0.3 0.0 0.3 1.3 78.6 65.8
zpv 805 113 228 0.0 0.0 0.4 2.7 0.9 78.8 78.9
zul 322 42 78 1.9 0.0 0.0 2.4 0.0 83.3 66.7

TOTAL 1574004 223649 446580 2.0 0.3 0.6 3.6 3.6 41.1 27.9

Table 7: Number of samples in training, development, test sets, as well as statistics on systematic errors (inconsis-
tency) and percentage of samples with lemmata observed in the training set.
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B Accuracy trends

Turkic Uralic Uto-Aztecan

Siouan Songhay Southern Daly Tungusic

Indo-European Niger-Congo Oto-Manguean Sino-Tibetan

Afro-Asiatic Algic Austronesian Dravidian
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Figure 7: Accuracy for each system and language by the log size of the dataset, grouped by language family.
Points are color-coded according to language family, and shape-coded according to language type: development
language – development family, surprise language – development family, surprise language – surprise family.
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Figure 8: Accuracy for each language by the log size of the dataset, grouped by submitted system. Points are
color- and shape-coded according to language type: development language – development family, surprise language
– development family, surprise language – surprise family.
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Table 8: Results per Language Family: Afro-Asiatic and Algic

System Rank Acc

uiuc-01-0 1.0 96.4
CULing-01-0 1.0 96.3
deepspin-02-1 3.7 95.2

BASE: trm-single 4.0 95.5
BASE: trm-aug-single 4.0 95.0

deepspin-01-1 4.0 94.7
NYU-CUBoulder-01-0 4.0 94.4
NYU-CUBoulder-02-0 4.0 94.4
NYU-CUBoulder-04-0 9.7 94.3
BASE: mono-single 6.3 92.8
cmu_tartan_00-0 6.3 92.7
cmu_tartan_01-0 9.3 89.6
cmu_tartan_01-1 9.3 89.4
cmu_tartan_02-1 10.0 80.9
ETHZ-00-1 6.7 94.7

BASE: trm-shared 6.7 94.2
BASE: trm-aug-shared 6.7 94.0

IMS-00-0 6.7 93.6
BASE: mono-aug-single 6.7 93.5
NYU-CUBoulder-03-0 12.3 93.7

flexica-02-1 9.3 92.9
ETHZ-02-1 9.3 92.3
flexica-03-1 9.3 92.1

BASE: mono-shared 9.3 91.5
*CU7565-01-0 19.3 93.7

BASE: mono-aug-shared 16.0 89.8
CU7565-02-0 15.0 91.6

cmu_tartan_00-1 17.7 91.7
LTI-00-1 17.7 91.3

flexica-01-1 28.3 73.4

Oracle (Baselines) 98.7
Oracle (Submissions) 99.7

Oracle (All) 99.8
(a) Results on the Afro-Asiatic family (3 languages)

System Rank Acc

CULing-01-0 1.0 73.0
flexica-03-1 1.0 70.4
IMS-00-0 1.0 70.3
uiuc-01-0 1.0 70.3
ETHZ-02-1 1.0 69.4

cmu_tartan_02-1 1.0 69.4
flexica-02-1 1.0 69.4

cmu_tartan_00-1 8.0 69.2
BASE: mono-aug-shared 8.0 68.5
BASE: mono-aug-single 8.0 68.5

ETHZ-00-1 8.0 68.4
BASE: trm-aug-shared 8.0 68.0
BASE: trm-aug-single 8.0 68.0
cmu_tartan_01-1 8.0 68.0

NYU-CUBoulder-01-0 8.0 67.9
BASE: trm-shared 8.0 67.7
BASE: trm-single 8.0 67.7
cmu_tartan_00-0 8.0 67.6
cmu_tartan_01-0 8.0 67.6

BASE: mono-shared 8.0 66.8
BASE: mono-single 8.0 66.8

NYU-CUBoulder-02-0 8.0 66.5
deepspin-02-1 8.0 66.5
deepspin-01-1 24.0 65.1

NYU-CUBoulder-03-0 24.0 64.7
NYU-CUBoulder-04-0 26.0 61.8

CU7565-02-0 27.0 55.5
LTI-00-1 28.0 44.9

flexica-01-1 28.0 41.5
*CU7565-01-0 30.0 0.0

Oracle (Baselines) 86.9
Oracle (Submissions) 98.7

Oracle (All) 98.8
(b) Results on the Algic family (1 language)
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Table 9: Results per Language Family: Austronesian and Dravidian

System Rank Acc

CULing-01-0 1.0 84.4
IMS-00-0 1.6 85.1

NYU-CUBoulder-03-0 1.6 83.6
ETHZ-00-1 1.6 83.4

NYU-CUBoulder-01-0 1.6 82.9
NYU-CUBoulder-04-0 1.6 82.9
BASE: trm-shared 1.6 82.8

NYU-CUBoulder-02-0 1.6 82.7
deepspin-02-1 3.2 82.4

BASE: trm-aug-single 3.2 81.6
*CU7565-01-0 6.8 82.7
uiuc-01-0 5.4 82.3

BASE: trm-single 6.0 81.2
BASE: mono-aug-shared 6.0 82.9

LTI-00-1 6.0 82.0
BASE: mono-aug-single 7.8 81.3

deepspin-01-1 7.6 81.0
BASE: trm-aug-shared 7.6 79.8

flexica-03-1 7.6 79.3
cmu_tartan_00-0 8.2 79.1

BASE: mono-shared 10.4 79.2
BASE: mono-single 10.4 77.6
cmu_tartan_00-1 12.8 80.3
cmu_tartan_02-1 12.8 78.9
cmu_tartan_01-0 12.8 78.6
flexica-02-1 12.8 78.3

cmu_tartan_01-1 12.8 78.2
ETHZ-02-1 12.0 77.4

*CU7565-02-0 22.4 73.7
flexica-01-1 21.2 69.7

Oracle (Baselines) 89.1
Oracle (Submissions) 93.5

Oracle (All) 93.7
(a) Results on the Austronesian family (5 languages)

System Rank Acc

IMS-00-0 1.0 87.6
CULing-01-0 1.0 87.0

BASE: trm-aug-shared 1.0 86.8
cmu_tartan_00-0 1.0 86.3
cmu_tartan_01-1 1.0 86.3

BASE: trm-aug-single 1.0 85.9
BASE: trm-shared 1.0 85.8

ETHZ-02-1 1.0 85.5
cmu_tartan_01-0 5.0 85.7
deepspin-02-1 5.0 85.6
cmu_tartan_02-1 5.0 85.5
BASE: trm-single 5.0 85.4

uiuc-01-0 5.0 85.3
deepspin-01-1 5.0 85.2
LTI-00-1 5.0 85.0
ETHZ-00-1 5.0 84.9

BASE: mono-single 5.0 84.8
BASE: mono-aug-single 5.0 84.1
NYU-CUBoulder-02-0 12.0 82.2
NYU-CUBoulder-01-0 12.0 82.2
NYU-CUBoulder-03-0 12.0 82.1
NYU-CUBoulder-04-0 12.0 81.9

CU7565-02-0 14.5 81.4
flexica-02-1 16.5 83.7

BASE: mono-shared 16.5 83.7
flexica-03-1 16.5 83.0

cmu_tartan_00-1 19.0 62.6
BASE: mono-aug-shared 23.5 79.7

flexica-01-1 28.5 56.9
*CU7565-01-0 30.0 0.0

Oracle (Baselines) 95.9
Oracle (Submissions) 98.2

Oracle (All) 98.6
(b) Results on the Dravidian family (2 languages)
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Table 10: Results per Language Family: Indo-European and Niger-Congo

System Rank Acc

deepspin-02-1 2.3 92.9
uiuc-01-0 3.1 91.6

deepspin-01-1 2.9 92.9
BASE: trm-single 2.9 91.7
CULing-01-0 3.9 93.5

BASE: trm-aug-single 3.4 92.9
NYU-CUBoulder-04-0 7.3 90.7
BASE: trm-shared 12.0 86.9
cmu_tartan_00-1 8.1 88.6

BASE: mono-shared 8.9 90.3
NYU-CUBoulder-03-0 10.0 91.2

cmu_tartan_00-0 8.9 88.5
NYU-CUBoulder-02-0 11.4 90.6
BASE: mono-aug-shared 12.9 90.5
NYU-CUBoulder-01-0 12.4 90.4
BASE: mono-single 8.1 88.0

BASE: mono-aug-single 7.9 91.9
cmu_tartan_01-0 10.5 88.6
cmu_tartan_01-1 9.9 88.5

IMS-00-0 15.9 90.4
cmu_tartan_02-1 10.7 88.4

BASE: trm-aug-shared 15.0 88.6
LTI-00-1 15.8 87.5

CU7565-02-0 20.3 86.3
flexica-03-1 19.4 80.7
ETHZ-02-1 18.1 83.8
ETHZ-00-1 23.5 73.7
flexica-02-1 21.8 77.5

*CU7565-01-0 28.8 91.4
flexica-01-1 26.0 76.7

Oracle (Baselines) 98.0
Oracle (Submissions) 98.8

Oracle (All) 99.1
(a) Results on the Indo-European family (28 languages)

System Rank Acc

IMS-00-0 1.0 98.1
uiuc-01-0 1.0 97.9

NYU-CUBoulder-01-0 1.3 98.1
NYU-CUBoulder-02-0 1.3 98.1

deepspin-02-1 1.3 98.0
NYU-CUBoulder-03-0 1.3 98.0
BASE: mono-aug-single 1.3 97.9

deepspin-01-1 1.3 97.9
NYU-CUBoulder-04-0 1.3 97.8

LTI-00-1 1.3 97.7
BASE: trm-shared 1.3 97.7
BASE: trm-single 1.3 97.7
BASE: mono-single 1.3 97.7
BASE: mono-shared 1.3 97.6
BASE: trm-aug-single 1.3 97.5
BASE: trm-aug-shared 1.3 97.4
BASE: mono-aug-shared 1.3 97.2

*CU7565-01-0 3.9 98.0
CULing-01-0 3.4 97.1
flexica-03-1 3.1 96.9
flexica-02-1 3.1 96.9

cmu_tartan_01-1 3.6 96.4
cmu_tartan_00-0 3.6 96.3
cmu_tartan_01-0 3.6 96.3
CU7565-02-0 6.5 95.6

cmu_tartan_00-1 7.8 95.4
flexica-01-1 9.2 94.2

cmu_tartan_02-1 11.2 94.4
ETHZ-02-1 18.9 91.7
ETHZ-00-1 20.3 89.3

Oracle (Baselines) 99.2
Oracle (Submissions) 99.4

Oracle (All) 99.6
(b) Results on the Niger-Congo family (10 languages)
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Table 11: Results per Language Family: Oto-Manguean and Sino-Tibetan

System Rank Acc

uiuc-01-0 1.0 87.5
BASE: trm-single 2.0 86.2
CULing-01-0 3.1 86.7
deepspin-02-1 3.4 85.4
deepspin-01-1 3.4 85.3

NYU-CUBoulder-04-0 6.4 84.2
BASE: mono-single 7.9 82.4

NYU-CUBoulder-03-0 8.4 83.5
BASE: mono-aug-single 6.1 83.5
BASE: mono-shared 8.2 82.9
NYU-CUBoulder-02-0 9.1 83.5

IMS-00-0 10.3 83.3
LTI-00-1 9.4 82.4

NYU-CUBoulder-01-0 9.4 83.6
BASE: mono-aug-shared 9.8 82.0

cmu_tartan_00-0 13.9 78.5
cmu_tartan_01-1 14.9 78.5
cmu_tartan_02-1 15.2 78.2
BASE: trm-shared 14.5 80.2

BASE: trm-aug-shared 20.3 73.8
flexica-01-1 26.3 47.2

BASE: trm-aug-single 7.4 84.3
cmu_tartan_00-1 14.1 79.0
ETHZ-02-1 14.0 81.4
CU7565-02-0 20.9 75.1

cmu_tartan_01-0 18.3 76.5
*CU7565-01-0 27.8 81.0
ETHZ-00-1 25.4 70.5
flexica-02-1 25.6 67.0
flexica-03-1 26.1 64.2

Oracle (Baselines) 94.1
Oracle (Submissions) 96.2

Oracle (All) 96.7
(a) Results on the Oto-Manguean family (10 languages)

System Rank Acc

deepspin-01-1 1.0 85.1
deepspin-02-1 1.0 85.0
LTI-00-1 1.0 84.7
uiuc-01-0 1.0 84.4

BASE: trm-single 1.0 84.4
BASE: trm-shared 1.0 84.4
CULing-01-0 1.0 84.1
ETHZ-02-1 1.0 83.8
flexica-02-1 1.0 83.7

cmu_tartan_01-1 1.0 83.4
BASE: mono-aug-shared 1.0 83.4
BASE: mono-aug-single 1.0 83.4
NYU-CUBoulder-01-0 1.0 83.4

IMS-00-0 1.0 83.3
BASE: trm-aug-single 1.0 83.3
BASE: trm-aug-shared 1.0 83.3
BASE: mono-shared 1.0 83.2
BASE: mono-single 1.0 83.2
cmu_tartan_00-0 1.0 83.1
cmu_tartan_02-1 1.0 83.1
cmu_tartan_00-1 1.0 83.0

NYU-CUBoulder-03-0 22.0 82.8
ETHZ-00-1 22.0 82.8

cmu_tartan_01-0 22.0 82.7
NYU-CUBoulder-02-0 22.0 82.6

flexica-03-1 22.0 82.5
NYU-CUBoulder-04-0 22.0 81.7

flexica-01-1 28.0 70.6
CU7565-02-0 28.0 67.9
*CU7565-01-0 30.0 0.0

Oracle (Baselines) 91.3
Oracle (Submissions) 96.0

Oracle (All) 96.2
(b) Results on the Sino-Tibetan family (1 language)
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Table 12: Results per Language Family: Siouan and Songhay

System Rank Acc

NYU-CUBoulder-01-0 1.0 95.7
BASE: trm-single 1.0 95.6
CULing-01-0 1.0 95.6

BASE: trm-shared 1.0 95.6
ETHZ-00-1 1.0 95.5
uiuc-01-0 1.0 94.9

deepspin-01-1 1.0 94.8
NYU-CUBoulder-02-0 1.0 94.8
NYU-CUBoulder-03-0 1.0 94.7

deepspin-02-1 1.0 94.5
BASE: mono-aug-shared 1.0 94.4
BASE: mono-aug-single 1.0 94.4
NYU-CUBoulder-04-0 1.0 94.3

ETHZ-02-1 14.0 93.3
BASE: mono-single 14.0 92.9
BASE: mono-shared 14.0 92.9
BASE: trm-aug-single 14.0 92.5
BASE: trm-aug-shared 14.0 92.5

flexica-02-1 14.0 91.5
IMS-00-0 14.0 90.9
LTI-00-1 21.0 89.7

flexica-03-1 21.0 89.3
cmu_tartan_01-0 23.0 85.7
cmu_tartan_01-1 23.0 85.7
cmu_tartan_02-1 23.0 85.7
cmu_tartan_00-0 23.0 85.5
cmu_tartan_00-1 23.0 85.5
CU7565-02-0 28.0 80.5
flexica-01-1 29.0 58.4

*CU7565-01-0 30.0 0.0

Oracle (Baselines) 97.3
Oracle (Submissions) 98.1

Oracle (All) 98.1
(a) Results on the Siouan family (1 language)

System Rank Acc

BASE: mono-aug-single 1.0 100.0
BASE: trm-aug-single 1.0 100.0

CU7565-02-0 1.0 100.0
CU7565-01-0 1.0 100.0
uiuc-01-0 1.0 100.0

NYU-CUBoulder-02-0 1.0 100.0
NYU-CUBoulder-03-0 1.0 100.0
BASE: mono-aug-shared 1.0 100.0
NYU-CUBoulder-01-0 1.0 100.0

LTI-00-1 1.0 100.0
IMS-00-0 1.0 100.0
flexica-01-1 1.0 100.0
deepspin-02-1 1.0 100.0
deepspin-01-1 1.0 100.0
CULing-01-0 1.0 100.0

cmu_tartan_01-1 1.0 100.0
NYU-CUBoulder-04-0 1.0 100.0
BASE: trm-aug-shared 1.0 100.0

flexica-03-1 1.0 93.8
ETHZ-00-1 1.0 93.8

cmu_tartan_02-1 1.0 93.8
cmu_tartan_01-0 1.0 93.8
cmu_tartan_00-0 1.0 87.5
cmu_tartan_00-1 1.0 87.5
BASE: trm-shared 1.0 87.5
BASE: trm-single 1.0 87.5

flexica-02-1 27.0 0.0
BASE: mono-shared 27.0 0.0
BASE: mono-single 27.0 0.0

ETHZ-02-1 27.0 0.0

Oracle (Baselines) 100.0
Oracle (Submissions) 100.0

Oracle (All) 100.0
(b) Results on the Songhay family/genus (1 language)

30



Table 13: Results per Language Family: Southern Daly and Tungusic

System Rank Acc

CULing-01-0 1.0 91.9
BASE: trm-single 1.0 89.6
BASE: trm-shared 1.0 89.6

ETHZ-00-1 1.0 88.7
uiuc-01-0 1.0 87.8

BASE: trm-aug-single 1.0 86.9
BASE: trm-aug-shared 1.0 86.9

IMS-00-0 1.0 86.0
deepspin-01-1 9.0 83.8
deepspin-02-1 9.0 83.3
cmu_tartan_01-1 9.0 81.1
cmu_tartan_01-0 9.0 81.1
cmu_tartan_00-0 9.0 80.2
cmu_tartan_00-1 9.0 80.2
ETHZ-02-1 15.0 77.9
CU7565-02-0 15.0 77.5
flexica-03-1 15.0 73.4
flexica-02-1 15.0 72.5
LTI-00-1 15.0 70.3

cmu_tartan_02-1 20.0 67.1
BASE: mono-shared 20.0 60.8
BASE: mono-single 20.0 60.8

NYU-CUBoulder-04-0 20.0 59.5
NYU-CUBoulder-03-0 20.0 59.0
NYU-CUBoulder-02-0 20.0 57.7
NYU-CUBoulder-01-0 20.0 57.7
BASE: mono-aug-single 27.0 44.6
BASE: mono-aug-shared 27.0 44.6

flexica-01-1 29.0 21.2
*CU7565-01-0 30.0 0.0

Oracle (Baselines) 91.4
Oracle (Submissions) 96.4

Oracle (All) 96.4
(a) Results on the Southern Daly family (1 language)

System Rank Acc

deepspin-02-1 1.0 59.0
deepspin-01-1 1.0 58.8
uiuc-01-0 1.0 58.3
IMS-00-0 1.0 58.2

CULing-01-0 1.0 58.0
BASE: trm-aug-single 1.0 57.7
BASE: trm-aug-shared 1.0 57.7

ETHZ-00-1 1.0 57.2
BASE: trm-single 1.0 57.1
cmu_tartan_01-0 1.0 57.1
BASE: trm-shared 1.0 57.1
cmu_tartan_00-0 12.0 56.8
cmu_tartan_01-1 12.0 56.5
cmu_tartan_00-1 12.0 55.9

LTI-00-1 12.0 55.0
cmu_tartan_02-1 16.0 54.1

BASE: mono-single 16.0 54.0
BASE: mono-shared 16.0 54.0

ETHZ-02-1 16.0 53.6
BASE: mono-aug-single 16.0 53.5
BASE: mono-aug-shared 16.0 53.5

flexica-02-1 16.0 53.1
flexica-03-1 16.0 52.7

NYU-CUBoulder-01-0 24.0 50.0
NYU-CUBoulder-03-0 24.0 48.8
NYU-CUBoulder-02-0 24.0 48.6
NYU-CUBoulder-04-0 24.0 48.2

flexica-01-1 28.0 46.5
CU7565-02-0 29.0 43.5
*CU7565-01-0 30.0 0.0

Oracle (Baselines) 67.7
Oracle (Submissions) 75.9

Oracle (All) 76.3
(b) Results on the Tungusic family (1 language)
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Table 14: Results per Language Family: Turkic and Uralic

System Rank Acc

BASE: trm-single 1.0 91.8
BASE: trm-aug-single 1.0 91.8

uiuc-01-0 1.8 92.0
CULing-01-0 3.5 91.9
deepspin-02-1 6.7 91.3
deepspin-01-1 6.7 91.1

NYU-CUBoulder-04-0 5.5 90.4
BASE: mono-single 5.1 90.9

NYU-CUBoulder-02-0 6.8 90.6
NYU-CUBoulder-03-0 6.8 90.5

cmu_tartan_01-1 7.2 91.0
cmu_tartan_00-1 6.6 90.8

BASE: mono-aug-single 7.3 90.7
BASE: trm-shared 7.7 91.3
cmu_tartan_02-1 7.4 90.8

NYU-CUBoulder-01-0 8.9 90.5
BASE: trm-aug-shared 9.3 91.1

cmu_tartan_00-0 9.7 90.9
cmu_tartan_01-0 11.8 90.7
ETHZ-00-1 16.6 88.9
IMS-00-0 11.2 91.0

BASE: mono-shared 15.1 88.9
flexica-02-1 13.1 89.7
LTI-00-1 17.1 83.3

flexica-03-1 17.0 88.6
BASE: mono-aug-shared 19.5 86.3

CU7565-02-0 21.6 85.9
ETHZ-02-1 17.5 88.6

*CU7565-01-0 29.1 96.4
flexica-01-1 28.9 72.4

Oracle (Baselines) 95.8
Oracle (Submissions) 97.4

Oracle (All) 97.5
(a) Results on the Turkic family (10 languages)

System Rank Acc

deepspin-02-1 1.8 90.7
deepspin-01-1 3.1 89.7
uiuc-01-0 2.8 88.2

CULing-01-0 3.9 88.9
BASE: trm-single 3.8 88.1

BASE: trm-aug-single 4.3 88.5
NYU-CUBoulder-04-0 10.6 86.8
NYU-CUBoulder-02-0 13.4 86.4
NYU-CUBoulder-03-0 13.4 86.0

IMS-00-0 14.8 86.1
NYU-CUBoulder-01-0 15.4 85.9

cmu_tartan_00-1 7.7 85.8
cmu_tartan_02-1 9.8 84.8

LTI-00-1 12.3 86.7
cmu_tartan_01-1 7.6 86.0
cmu_tartan_00-0 8.7 86.2

BASE: trm-aug-shared 18.8 82.6
*CU7565-02-0 22.2 79.4
*CU7565-01-0 28.2 92.9

BASE: mono-single 10.8 83.0
cmu_tartan_01-0 10.6 84.8

BASE: mono-shared 17.6 81.1
BASE: mono-aug-shared 19.4 81.9

BASE: trm-shared 19.5 76.8
ETHZ-02-1 22.6 67.9

BASE: mono-aug-single 11.4 85.9
flexica-02-1 19.5 70.7
flexica-03-1 20.5 67.8
flexica-01-1 26.8 66.0
ETHZ-00-1 28.3 54.9

Oracle (Baselines) 95.5
Oracle (Submissions) 96.8

Oracle (All) 97.2
(b) Results on the Uralic family (16 languages)
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Table 15: Results per Language Family (Uto-Aztecan) and Semitic Genus (Afro-Asiatic Family)

System Rank Acc

uiuc-01-0 1.0 82.5
NYU-CUBoulder-01-0 1.0 82.2
NYU-CUBoulder-02-0 1.0 81.8
NYU-CUBoulder-03-0 1.0 81.5

IMS-00-0 1.0 81.5
BASE: trm-single 1.0 80.9
CULing-01-0 1.0 80.9

BASE: trm-shared 1.0 80.9
deepspin-02-1 1.0 80.6

NYU-CUBoulder-04-0 1.0 79.6
ETHZ-00-1 1.0 79.3
LTI-00-1 1.0 79.0

deepspin-01-1 1.0 79.0
BASE: trm-aug-single 14.0 78.0
BASE: trm-aug-shared 14.0 78.0

flexica-02-1 14.0 77.7
BASE: mono-aug-single 14.0 77.4
BASE: mono-aug-shared 14.0 77.4

cmu_tartan_00-0 14.0 76.1
cmu_tartan_00-1 14.0 76.1
cmu_tartan_01-0 14.0 75.8
cmu_tartan_01-1 14.0 75.8

BASE: mono-shared 14.0 75.8
BASE: mono-single 14.0 75.8

flexica-03-1 14.0 75.5
ETHZ-02-1 14.0 74.5

cmu_tartan_02-1 14.0 74.2
CU7565-01-0 28.0 71.0
CU7565-02-0 29.0 62.4
flexica-01-1 30.0 54.8

Oracle (Baselines) 87.2
Oracle (Submissions) 92.0

Oracle (All) 92.3
(a) Results on the Uto-Aztecan family (1 language)

System Rank Acc

uiuc-01-0 1.0 95.6
CULing-01-0 1.0 94.9
deepspin-02-1 5.0 93.3

BASE: trm-single 5.5 93.9
BASE: trm-aug-single 5.5 93.1

deepspin-01-1 5.5 92.5
NYU-CUBoulder-01-0 5.5 92.4
NYU-CUBoulder-02-0 5.5 92.3
NYU-CUBoulder-04-0 14.0 92.0
BASE: mono-aug-shared 9.0 91.3
BASE: mono-single 9.0 90.2
cmu_tartan_00-0 9.0 90.0
cmu_tartan_01-1 13.5 85.4
cmu_tartan_01-0 13.5 85.2
cmu_tartan_02-1 14.5 72.3
ETHZ-00-1 9.5 92.5

BASE: trm-aug-shared 9.5 91.8
BASE: trm-shared 9.5 91.7

IMS-00-0 9.5 91.7
BASE: mono-aug-single 9.5 90.9

CU7565-02-0 9.5 90.6
NYU-CUBoulder-03-0 18.0 91.2

LTI-00-1 13.5 90.1
flexica-02-1 13.5 90.1
ETHZ-02-1 13.5 89.5
flexica-03-1 13.5 89.2

cmu_tartan_00-1 13.5 89.0
BASE: mono-shared 13.5 88.5

*CU7565-01-0 28.5 88.3
flexica-01-1 28.0 63.9

Oracle (Baselines) 98.4
Oracle (Submissions) 99.6

Oracle (All) 99.7
(b) Results on the Semitic genus (2 languages)
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Table 16: Results per Language Genus (in Indo-European family)

System Rank Acc

deepspin-02-1 3.4 87.1
deepspin-01-1 4.6 87.0
uiuc-01-0 3.5 87.4

BASE: trm-single 3.1 87.5
CULing-01-0 3.5 88.3

BASE: trm-aug-single 4.9 87.4
IMS-00-0 15.1 83.1

BASE: mono-single 5.3 86.3
BASE: mono-aug-single 6.8 86.3
NYU-CUBoulder-04-0 10.2 85.2
NYU-CUBoulder-02-0 13.1 83.3
NYU-CUBoulder-03-0 12.0 84.4

LTI-00-1 11.1 84.3
cmu_tartan_00-1 9.8 79.5

NYU-CUBoulder-01-0 14.5 83.0
BASE: mono-aug-shared 13.2 84.4

cmu_tartan_01-0 11.1 78.9
cmu_tartan_01-1 11.1 78.8
cmu_tartan_00-0 10.8 79.3
BASE: trm-shared 19.5 77.7

BASE: trm-aug-shared 19.5 79.1
BASE: mono-shared 11.7 83.7
cmu_tartan_02-1 13.2 78.5
CU7565-02-0 19.4 78.6
ETHZ-02-1 18.9 76.4
flexica-01-1 26.2 66.6
flexica-03-1 25.5 66.5
flexica-02-1 25.9 64.2
ETHZ-00-1 27.1 60.1

*CU7565-01-0 30.0 0.0

Oracle (Baselines) 97.0
Oracle (Submissions) 98.4

Oracle (All) 98.9
(a) Results on the Germanic genus (13 languages)

System Rank Acc

uiuc-01-0 1.0 98.2
deepspin-02-1 1.5 98.1
deepspin-01-1 1.5 98.0

BASE: trm-single 1.5 97.9
BASE: trm-aug-single 1.5 97.8
BASE: trm-shared 2.8 97.9
CULing-01-0 7.5 98.0

BASE: mono-single 6.0 97.6
NYU-CUBoulder-04-0 5.0 97.7

cmu_tartan_02-1 7.8 97.4
cmu_tartan_00-1 7.0 97.4

BASE: mono-shared 7.0 97.3
cmu_tartan_01-1 7.8 97.3
cmu_tartan_00-0 8.8 97.1

NYU-CUBoulder-03-0 8.5 97.4
NYU-CUBoulder-02-0 9.2 97.4
NYU-CUBoulder-01-0 9.2 97.3
BASE: trm-aug-shared 11.0 97.7
BASE: mono-aug-single 9.5 97.2

flexica-03-1 9.5 97.1
flexica-02-1 11.0 96.8
ETHZ-02-1 11.5 97.4
ETHZ-00-1 13.8 96.4

BASE: mono-aug-shared 15.8 94.2
cmu_tartan_01-0 17.2 96.9

IMS-00-0 17.0 96.6
CU7565-02-0 19.8 94.8
LTI-00-1 19.8 81.5

*CU7565-01-0 29.0 89.0
flexica-01-1 28.8 88.1

Oracle (Baselines) 99.2
Oracle (Submissions) 99.6

Oracle (All) 99.7
(b) Results on the Indic genus (4 languages)
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Table 17: Results per Language Genus (in Indo-European family)

System Rank Acc

CULing-01-0 1.0 95.3
deepspin-01-1 2.0 94.6
deepspin-02-1 2.0 94.6

BASE: trm-aug-shared 2.0 94.5
BASE: trm-aug-single 2.0 94.5
BASE: trm-shared 2.0 86.2
cmu_tartan_02-1 4.3 94.0

BASE: mono-aug-single 4.3 93.8
BASE: mono-shared 4.3 92.0
NYU-CUBoulder-03-0 4.3 91.8

cmu_tartan_00-1 4.3 91.8
ETHZ-02-1 4.3 91.8

NYU-CUBoulder-04-0 4.3 83.7
uiuc-01-0 9.3 82.5

BASE: trm-single 9.3 82.2
IMS-00-0 9.3 94.3
ETHZ-00-1 10.3 81.7

cmu_tartan_01-0 10.0 94.0
cmu_tartan_01-1 10.0 93.8
cmu_tartan_00-0 13.0 91.9

NYU-CUBoulder-02-0 10.0 91.8
flexica-03-1 11.7 87.2

BASE: mono-single 14.0 62.7
*CU7565-01-0 20.3 93.8

BASE: mono-aug-shared 14.7 93.3
NYU-CUBoulder-01-0 14.7 91.4

CU7565-02-0 17.7 90.9
LTI-00-1 18.3 86.2

flexica-01-1 19.3 77.5
flexica-02-1 20.0 70.6

Oracle (Baselines) 97.3
Oracle (Submissions) 97.5

Oracle (All) 97.7
(a) Results on the Iranian genus (3 languages)

System Rank Acc

deepspin-02-1 1.0 99.3
BASE: trm-single 1.0 99.2
deepspin-01-1 1.0 99.1
uiuc-01-0 1.0 98.7

BASE: trm-aug-single 2.5 98.7
CULing-01-0 3.8 99.1

cmu_tartan_00-0 4.4 98.0
BASE: mono-shared 7.1 97.0
NYU-CUBoulder-04-0 4.9 98.8

cmu_tartan_01-0 6.4 98.2
BASE: trm-shared 8.0 96.6

BASE: mono-aug-shared 10.4 97.6
cmu_tartan_00-1 7.4 97.9
cmu_tartan_01-1 9.0 98.1

NYU-CUBoulder-03-0 9.8 98.9
NYU-CUBoulder-01-0 9.8 98.6
NYU-CUBoulder-02-0 10.2 98.5
BASE: mono-aug-single 10.2 97.5
BASE: mono-single 11.5 95.5
cmu_tartan_02-1 10.5 97.8

BASE: trm-aug-shared 14.5 97.2
flexica-03-1 17.2 93.1
IMS-00-0 19.0 97.6
LTI-00-1 20.4 96.3

CU7565-02-0 23.1 92.9
flexica-02-1 21.2 92.0
flexica-01-1 26.9 87.1
ETHZ-02-1 25.1 86.1
ETHZ-00-1 27.5 81.4

*CU7565-01-0 30.0 0.0

Oracle (Baselines) 99.4
Oracle (Submissions) 99.7

Oracle (All) 99.7
(b) Results on the Romance genus (8 languages)
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Table 18: Results per Language Genus (in Niger-Congo family)

System Rank Acc

uiuc-01-0 1.0 97.7
IMS-00-0 1.0 97.6

CULing-01-0 1.0 96.9
NYU-CUBoulder-01-0 1.4 97.9
NYU-CUBoulder-02-0 1.4 97.9
NYU-CUBoulder-03-0 1.4 97.9

deepspin-02-1 1.4 97.6
BASE: mono-aug-single 1.4 97.5

BASE: trm-single 1.4 97.4
deepspin-01-1 1.4 97.3

NYU-CUBoulder-04-0 1.4 97.3
LTI-00-1 1.4 97.3

BASE: trm-shared 1.4 97.2
BASE: mono-single 1.4 97.1
BASE: trm-aug-single 1.4 97.0
BASE: mono-shared 1.4 97.0
BASE: trm-aug-shared 1.4 96.7
BASE: mono-aug-shared 1.4 96.6

*CU7565-01-0 4.6 97.4
flexica-02-1 3.6 96.2
flexica-03-1 3.6 96.2
CU7565-02-0 4.2 95.8

cmu_tartan_01-1 4.2 95.6
cmu_tartan_01-0 4.2 95.5
cmu_tartan_00-0 4.2 95.5
cmu_tartan_00-1 6.5 94.9
flexica-01-1 7.9 93.4

cmu_tartan_02-1 13.8 93.3
ETHZ-02-1 16.9 92.0
ETHZ-00-1 18.2 89.6

Oracle (Baselines) 98.9
Oracle (Submissions) 99.3

Oracle (All) 99.5
(a) Results on the Bantoid genus (8 languages)

System Rank Acc

BASE: mono-shared 1.0 100.0
BASE: mono-single 1.0 100.0

CU7565-01-0 1.0 100.0
IMS-00-0 1.0 100.0

deepspin-02-1 1.0 100.0
deepspin-01-1 1.0 100.0
flexica-03-1 1.0 99.9

BASE: trm-shared 1.0 99.9
BASE: mono-aug-single 1.0 99.9

cmu_tartan_00-0 1.0 99.9
BASE: trm-aug-shared 1.0 99.9
BASE: trm-aug-single 1.0 99.7
cmu_tartan_01-1 1.0 99.7

BASE: mono-aug-shared 1.0 99.6
NYU-CUBoulder-04-0 1.0 99.6

LTI-00-1 1.0 99.5
flexica-02-1 1.0 99.3

cmu_tartan_01-0 1.0 99.3
BASE: trm-single 1.0 98.8

NYU-CUBoulder-01-0 1.0 98.8
NYU-CUBoulder-02-0 1.0 98.8
NYU-CUBoulder-03-0 1.0 98.7

cmu_tartan_02-1 1.0 98.7
uiuc-01-0 1.0 98.5

CULing-01-0 13.0 98.0
cmu_tartan_00-1 13.0 97.7
flexica-01-1 14.5 97.4
CU7565-02-0 15.5 94.9
ETHZ-02-1 27.0 90.4
ETHZ-00-1 28.5 87.9

Oracle (Baselines) 100.0
Oracle (Submissions) 100.0

Oracle (All) 100.0
(b) Results on the Kwa genus (2 languages)
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Table 19: Results per Language Genus (in Oto-Manguean Family)

System Rank Acc

CULing-01-0 1.0 93.9
uiuc-01-0 1.0 93.5

BASE: trm-single 1.0 92.8
deepspin-01-1 2.5 93.1

NYU-CUBoulder-04-0 2.5 93.1
deepspin-02-1 2.5 92.6

NYU-CUBoulder-03-0 2.5 92.5
NYU-CUBoulder-02-0 6.0 92.3
BASE: mono-single 6.0 92.1

NYU-CUBoulder-01-0 6.0 92.0
BASE: mono-aug-single 6.0 91.6
BASE: trm-aug-single 6.0 91.4

IMS-00-0 10.5 91.4
BASE: mono-aug-shared 10.5 90.0
BASE: mono-shared 10.5 89.9

LTI-00-1 13.0 89.6
cmu_tartan_00-1 13.0 87.9
ETHZ-02-1 15.5 89.7

BASE: trm-shared 15.5 89.5
cmu_tartan_02-1 18.0 87.3
cmu_tartan_00-0 18.0 87.1
cmu_tartan_01-1 20.5 86.7
cmu_tartan_01-0 18.0 86.3

BASE: trm-aug-shared 21.0 84.2
ETHZ-00-1 22.0 82.7

*CU7565-01-0 28.0 81.7
CU7565-02-0 26.5 76.3
flexica-02-1 26.5 69.2
flexica-03-1 28.0 66.1
flexica-01-1 29.5 40.9

Oracle (Baselines) 96.4
Oracle (Submissions) 97.1

Oracle (All) 97.4
(a) Results on the Amuzgo-Mixtecan genus (2 languages)

System Rank Acc

uiuc-01-0 1.0 81.1
CULing-01-0 1.5 80.3

BASE: trm-single 3.5 78.9
deepspin-02-1 2.2 78.7
deepspin-01-1 2.2 78.3

NYU-CUBoulder-04-0 2.2 77.2
IMS-00-0 3.8 78.0

NYU-CUBoulder-02-0 3.8 77.1
NYU-CUBoulder-03-0 3.8 77.0

LTI-00-1 6.8 73.9
NYU-CUBoulder-01-0 4.8 77.5
BASE: mono-aug-single 8.2 73.8
BASE: mono-aug-shared 9.2 72.9

cmu_tartan_01-1 12.0 69.2
cmu_tartan_00-0 13.0 68.5
cmu_tartan_02-1 13.0 68.5

BASE: trm-aug-shared 15.2 65.9
BASE: mono-shared 11.2 73.5

flexica-01-1 21.8 51.0
BASE: trm-aug-single 9.2 75.7

ETHZ-02-1 15.0 71.7
CU7565-02-0 16.5 68.5

BASE: trm-shared 15.2 71.0
BASE: mono-single 15.2 70.4
cmu_tartan_00-1 16.5 68.9
cmu_tartan_01-0 17.5 66.5
*CU7565-01-0 26.2 75.7
ETHZ-00-1 26.2 60.5
flexica-02-1 27.0 54.3
flexica-03-1 28.2 49.0

Oracle (Baselines) 89.9
Oracle (Submissions) 93.7

Oracle (All) 94.3
(b) Results on the Zapotecan genus (4 languages)
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Table 20: Results per Language Genus (in Oto-Manguean and Uralic Families)

System Rank Acc

BASE: mono-shared 1.0 98.6
uiuc-01-0 1.0 98.6

deepspin-02-1 1.0 98.5
BASE: trm-single 1.0 98.4
BASE: mono-single 1.0 98.4

BASE: mono-aug-single 1.0 98.4
deepspin-01-1 1.0 98.4

BASE: mono-aug-shared 8.0 98.2
BASE: trm-aug-single 8.0 98.1

CULing-01-0 9.5 97.7
LTI-00-1 11.5 97.2

cmu_tartan_01-1 12.0 96.2
cmu_tartan_00-1 12.0 96.8
cmu_tartan_00-0 12.0 96.7

NYU-CUBoulder-04-0 13.5 96.5
cmu_tartan_02-1 14.0 96.3
ETHZ-02-1 15.5 95.9

BASE: trm-shared 16.5 94.2
NYU-CUBoulder-03-0 18.5 94.1
NYU-CUBoulder-02-0 18.5 94.1
NYU-CUBoulder-01-0 20.0 93.7

flexica-03-1 21.0 93.1
flexica-02-1 22.5 93.1

cmu_tartan_01-0 20.5 91.9
CU7565-02-0 25.0 91.1
IMS-00-0 24.5 91.0

*CU7565-01-0 28.5 90.9
BASE: trm-aug-shared 25.5 87.3

ETHZ-00-1 27.5 85.3
flexica-01-1 29.5 64.2

Oracle (Baselines) 99.7
Oracle (Submissions) 99.9

Oracle (All) 99.9
(a) Results on the Otomian genus (2 languages)

System Rank Acc

deepspin-02-1 2.2 87.4
uiuc-01-0 2.6 83.5

deepspin-01-1 3.8 85.8
BASE: trm-aug-single 4.0 84.1
BASE: trm-single 4.3 83.4
CULing-01-0 5.2 84.6

NYU-CUBoulder-04-0 7.0 83.0
NYU-CUBoulder-02-0 10.0 82.8
NYU-CUBoulder-03-0 9.8 82.2

IMS-00-0 12.3 82.2
NYU-CUBoulder-01-0 12.0 82.4

cmu_tartan_00-1 8.3 80.0
cmu_tartan_02-1 8.3 80.2

LTI-00-1 12.3 81.9
cmu_tartan_01-1 8.0 80.3
cmu_tartan_00-0 9.4 80.8

BASE: trm-aug-shared 18.9 76.9
CU7565-02-0 20.3 74.0
*CU7565-01-0 27.1 92.9

BASE: mono-single 12.6 75.5
cmu_tartan_01-0 11.7 78.6

BASE: mono-shared 15.8 74.8
BASE: mono-aug-shared 16.9 77.4

BASE: trm-shared 21.2 67.3
ETHZ-02-1 20.6 61.0

BASE: mono-aug-single 11.2 80.7
flexica-02-1 21.2 57.3
flexica-03-1 23.0 52.5
flexica-01-1 26.6 56.1
ETHZ-00-1 28.2 45.7

Oracle (Baselines) 93.9
Oracle (Submissions) 95.8

Oracle (All) 96.3
(b) Results on the Finnic genus (10 languages)
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Table 21: Results per Language Genus (in Uralic Family)

System Rank Acc

deepspin-01-1 1.0 97.9
deepspin-02-1 1.0 97.9
CULing-01-0 2.0 97.8

BASE: trm-single 3.0 97.7
cmu_tartan_00-1 5.0 97.4

uiuc-01-0 5.0 97.6
BASE: trm-aug-single 5.0 97.6
cmu_tartan_00-0 6.0 97.4
cmu_tartan_01-1 6.0 97.3
cmu_tartan_02-1 12.5 95.6
cmu_tartan_01-0 9.0 97.1

BASE: mono-single 9.5 97.0
BASE: mono-aug-single 11.0 96.7
NYU-CUBoulder-04-0 14.0 95.6

LTI-00-1 13.5 96.7
BASE: trm-shared 14.5 95.7

BASE: trm-aug-shared 17.0 95.6
flexica-02-1 18.5 95.0

NYU-CUBoulder-02-0 18.5 94.8
IMS-00-0 19.0 94.8

NYU-CUBoulder-03-0 18.5 94.8
NYU-CUBoulder-01-0 18.5 94.7

flexica-03-1 19.0 94.6
BASE: mono-shared 21.0 94.5

CU7565-02-0 23.5 93.3
BASE: mono-aug-shared 26.0 91.5

flexica-01-1 27.0 88.7
ETHZ-02-1 28.0 79.4
ETHZ-00-1 29.0 73.4

*CU7565-01-0 30.0 0.0

Oracle (Baselines) 98.6
Oracle (Submissions) 99.0

Oracle (All) 99.2
(a) Results on the Permic genus (2 languages)

System Rank Acc

deepspin-02-1 1.0 94.0
CULing-01-0 1.0 93.9

BASE: trm-single 1.0 93.9
uiuc-01-0 1.0 93.8

BASE: trm-aug-single 3.5 93.7
deepspin-01-1 3.5 93.6
cmu_tartan_02-1 6.5 93.3
cmu_tartan_00-1 6.5 93.2
cmu_tartan_01-1 6.5 93.2
cmu_tartan_01-0 6.5 93.2
cmu_tartan_00-0 6.5 93.2

BASE: mono-single 9.5 93.0
LTI-00-1 9.5 92.8

BASE: trm-shared 13.5 92.0
BASE: mono-aug-single 14.5 92.3
BASE: trm-aug-shared 15.0 91.9

IMS-00-0 17.0 91.5
NYU-CUBoulder-04-0 18.5 90.8

flexica-03-1 18.5 90.5
flexica-02-1 18.5 90.5

NYU-CUBoulder-03-0 19.5 90.2
NYU-CUBoulder-02-0 19.5 90.2
NYU-CUBoulder-01-0 23.5 89.5
BASE: mono-shared 21.5 88.9

BASE: mono-aug-shared 24.5 87.2
CU7565-02-0 25.5 85.2
flexica-01-1 27.0 82.1
ETHZ-02-1 28.0 73.7
ETHZ-00-1 28.5 67.9

*CU7565-01-0 30.0 0.0

Oracle (Baselines) 97.0
Oracle (Submissions) 97.6

Oracle (All) 98.0
(b) Results on the Mordvin genus (2 languages)
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Abstract
We describe the design and findings of the
SIGMORPHON 2020 shared task on multilin-
gual grapheme-to-phoneme conversion. Par-
ticipants were asked to submit systems which
consume a sequence of graphemes then emit
output a sequence of phonemes representing
the pronunciation of that grapheme sequence
in one of fifteen languages. Nine teams sub-
mitted a total of 23 systems, at best achiev-
ing an 18% relative reduction in word error
rate (macro-averaged over languages), versus
strong neural sequence-to-sequence baselines.
To facilitate error analysis, we publicly release
the complete outputs for all systems—a first
for the SIGMORPHON workshop.

1 Introduction
Speech technologies such as automatic speech
recognition and text-to-speech synthesis require
mappings between written words and their pronun-
ciations. Even recent attempts to do away with ex-
plicit pronunciation models via “end-to-end” sys-
tems (e.g., Watts et al. 2013, Chan et al. 2016,
Sotelo et al. 2017, Chiu et al. 2018, Pino et al. 2019,
McCarthy et al. 2020) must induce an implicit
mapping of this sort. For open-vocabulary ap-
plications, these mappings must generalize to un-
seen words, and so must be expressed as mappings
between sequences of graphemes—i.e., glyphs—
and phonemes or phones—i.e., sounds.1
For some languages, this mapping is suffi-

ciently consistent that a literate, linguistically-
sophisticated speaker can simply enumerate the
necessary rules; this sequence of rules can then

1We note that the term phoneme is a well-defined ob-
ject in linguistic theory, and that referring to the elements of
transcriptions as phonemesmakes strong ontological commit-
mentswhichmay not be appropriate for a given pronunciation
dictionary (cf. Lee et al. 2020, fn. 4). Therefore, in what fol-
lowswe use the term phone, in a pre-theoretical sense, to refer
to transcriptions symbols.

be compiled into a finite-state transducer (e.g.,
Sproat 1996, Black et al. 1998). However, rule-
based systems require linguistic expertise to de-
velop and maintain, and may be brittle or inac-
curate. Therefore, modern speech engines usu-
ally treat grapheme-to-phoneme conversion as a
machine learning problem, either using generative
models expressed as weighted finite-state trans-
ducers (e.g., Taylor 2005, Bisani and Ney 2008,
Wu et al. 2014, Novak et al. 2016) or discrimi-
native models based on conditional random fields
(Lehnen et al. 2013), recurrent neural networks
(e.g., Rao et al. 2015, Yao and Zweig 2015, van
Esch et al. 2016, Lee et al. 2020) or transformers
(Yolchuyeva et al. 2019).
While the grapheme-to-phoneme conversion

(or G2P) task is crucial to speech technology,
the vast majority of published research focuses
on English or a few other highly-resourced, glob-
ally hegemonic languages for which free pronun-
ciation dictionaries are available. One excep-
tion, a recent study by van Esch et al. (2016),
compares naïve rule-based systems and neural
network-based sequence-to-sequence models for
20 languages; unfortunately, the data used in this
study is proprietary. Like many other types of lan-
guage resources, pronunciation dictionaries are ex-
pensive to create and maintain, and until recently,
free high-quality dictionaries were only available
for a small number of languages.
This limitation to a handful of languages is

unfortunate because, as we discuss below, writ-
ing systems are almost as diverse as languages
themselves. Therefore, we present a multilingual
grapheme-to-phoneme conversion task with data
sets, evaluation metrics, and strong baselines. In
this we are aided by the recent release ofWikiPron
(Lee et al. 2020), a freely available collection of
pronunciation dictionaries. The resulting task, the
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first of its kind, included data from fifteen lan-
guages and scripts, and received 23 submissions
from nine teams.

2 Data

Fifteen language/script pairs were chosen to cover
a wide variety of script types. Ten of the scripts
are alphabetic systems known to descend from
Phoenician (and ultimately from Egyptian hiero-
glyphs); of these, seven are variants of the Latin
script. Two others, the Armenian aybuben and the
Georgian mkhedruli, are alphabetic scripts of un-
known origin, but may ultimately be modeled on
Greek (Sanjian 1996). The devanāgarī script used
to write Hindi, is an alphasyllabary, in which most
glyphs—known traditionally as akṣara—denote
consonant and consonant-vowel sequences. Vow-
els (or their absence) are primarily indicated with
diacritics. It too is thought to ultimately descend
from Phoenician. Hiragana, one of several scripts
used to write Japanese, is a syllabary, in which
most glyphs denote entire syllables The glyphs
themselves are derived from Chinese characters.
Like hiragana, the Korean hangul script is also a
syllabary It may have been have been inspired by
‘phags-pa, a Tibetan alphabet which is itself a dis-
tant cousin of devanāgarī (Ledyard 1966).
It is important to note that languages—and the

scripts used to write them—differ enormously in
their affordances for grapheme-to-phoneme con-
version. Writing systems are, at their core, lin-
guistic analyses, albeit sometimes quite naïve, and
(as argued in DeFrancis 1989) explicitly encode
details of the phonological and phonetic structure
of the language they are used to write. Still, the
exact details of these mappings can vary greatly
between even closely related languages and/or
scripts. Whereas related languages may retain tell-
tale grammatical features across millennia, dozens
of languages have abruptly switched from one
script to another in just the last century, usually
in response to political—rather than linguistic—
concerns. It is thus unsurprising that Bjerva and
Augenstein (2018) find grapheme embeddings in-
duced by training G2P systems are poorly corre-
lated with gross phonological typology, and exper-
iments with “polyglot” G2P models (e.g., Peters
et al. 2017) have produced equivocal results.
While we did not pay particular attention to

language families when selecting language fam-
ily, we note that nine of the languages are Indo-

European (though no two are closely related) and
none of the remaining six—Adyghe, Georgian,
Hungarian, Japanese, Korean, and Vietnamese—
are known to be genetically related to each other.

3 Methods

The primary data for the shared task is derived
from WikiPron (Lee et al. 2020), a massively
multilingual resource of grapheme–phoneme pairs
extracted from Wiktionary, an online multilin-
gual dictionary. Depending on language and
script, these pronunciations may be manually en-
tered by human volunteers—usually working from
language-specific pronunciation guidelines—or
generated using server-side scripting routines;
some languages (e.g., Bulgarian and French) use
a mixture of the two approaches. WikiPron is
configured to apply case-folding where appropri-
ate. It removes stress and syllable boundary mark-
ers and segments pronunciation strings—encoded
in the International Phonetic Alphabet—using the
segments library (Moran and Cysouw 2018).
For this task, words with multiple

pronunciations—both homographs and free
pronunciation variants—were excluded, since
pronunciations for such words are often selected
by a rather different procedure: they are chosen
from a small, predetermined set of possible
pronunciations using classifiers conditioned on
local context (e.g., Gorman et al. 2018).
Training and development data for ten

languages—the “development” languages—was
released at the start of the task; equivalent data
for the five “surprise” languages was released
one week before the start the evaluation phase.
Table 1 provides sample training data pairs for the
development and surprise languages.
As there is considerable variation in the num-

ber of available examples for any given language,
each languages’ data was downsampled to 4,500
examples. We regard as a “medium-resource” set-
ting for this task; these data sets are, for instance,
several orders of magnitude smaller than the pro-
prietary G2P data used by van Esch et al. (2016).
Following similar procedures in other shared tasks
(e.g., Cotterell et al. 2017), words were sampled
according to their frequency in the largest avail-
able Wortschatz (Goldhahn et al. 2012) corpus for
that language. These frequencies were smoothed
by adding a 0.3 pseudo-count to the frequency of
all WikiPron entries. Wortschatz frequency data
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Language ISO 639-2 Example training data pair
Armenian arm մեծաքանակ m ɛ t͡ s ɑ kʰ ɑ n ɑ k
Bulgarian bul североизток s ɛ v ɛ r o i s t o k
French fre hébergement e b ɛ ʁ ʒ ə m ɑ̃
Georgian geo ფორმიანი pʰ ɔ r m ɪ ɑ n ɪ
Modern Greek gre καθισμένες k a θ i z m e n e s
Hindi hin कैलकुलेटर k ɛː l k ʊ l eː ʈ ə ɾ
Hungarian hun csendőrök t͡ ʃ ɛ n d øː r ø k
Icelandic hin þýskaland θ i s k a l a n t
Korean kor 말레이시아 m a̠ ɭ ɭ e̞ i ɕʰ i a̠
Lithuanian lit galinčiais ɡ aː lʲ ɪ nʲ tʲ ʃʲ ɛ j s

Adyghe ady бзыукъолэн b z ə w qʷ a l a n
Dutch dut aanduiding aː n d œ y̯ d ɪ ŋ
Japanese hiragana jpn どちらさま d o̞ t͡ ɕ i ɾ a̠ s a̠ m a̠
Romanian rum bineînțeles b i n e ɨ n t s e l e s
Vietnamese vie duyên phận z w i ə n ˧˧ f ə n ˧˨ ʔ

Table 1: Languages, language codes, and example training data pairs for the shared task.

was not available for Adyghe, so uniform sam-
pling was used for this language.
The downsampled data was then randomly split

into training (80%; 3,600 examples), development
(10%; 450 examples), and testing (10%; 450 exam-
ples) shards. For some languages, Wiktionary con-
tains pronunciations for both lemmas (i.e., head-
words, citations forms) and inflection variants; for
others, pronunciations are only available for lem-
mas. We hypothesized that cases where one inflec-
tional variant of a lemma is present in the train-
ing data and another in the test data—as might
occur if the data was split totally at random—
would make the overall task somewhat easier. To
forestall this possibility, the splitting procedure
was constrained so that all inflectional variants of
any given lemma—according to the UniMorph 2
(Kirov et al. 2018) paradigm tables, also extracted
from Wiktionary—are limited to a single shard.
For example, since the French word acteur ‘actor’
occurs in the training shard, so must its plural form
acteurs. This additional constraint was applied
to all languages but Japanese and Vietnamese, for
which no UniMorph data was available. We note
thatWiktionary does not generally provide pronun-
ciations for inflectional variants in Japanese, and
that Vietnamese is a highly isolating language with
no discernable system of inflection (Noyer 1998),
so this is unlikely to have introduced bias.

4 Evaluation
The primary metric for this task was word error
rate (WER); we also report phone error rate (PER).
WER This is the percentage of words for which
the hypothesized transcription sequence is not
identical to the gold reference transcription; lower
WER indicates better performance. Following
common practice in speech research, we multiply
theWER by 100 and display it as a percentage. We
choose this as the primary metric for the shared
task because we hypothesize that any G2P error,
no matter how small, will result in a substantial
degradation in subjective quality for downstream
speech applications.
PER This is a more forgiving measure measur-
ing the normalized distance (i.e., in number of in-
sertions, deletions, and substitutions) between the
predicted and reference transcriptions. It is com-
puted by summing the minimum edit distance—
computed with the Wagner and Fischer (1974)
algorithm—between prediction and reference tran-
scriptions, and dividing by the sum of the refer-
ence transcription lengths. That is,

PER := 100×
∑n

i edits(p, r)∑n
i |r|

where p is the predicted pronunciation sequence,
r is the reference sequence, and edits(p, r) is the
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Levenshtein distance between the two. Once
again, we multiply it by 100, though strictly speak-
ing it is not a true percentage because it can hypo-
thetically exceed 100. As with WER, lower PER
indicates better performance.
Participants were provided with two evalua-

tion scripts: one which computes the two metrics
for a single language, and another which macro-
averages the metrics across all languages.

5 Baselines
Three baselines were made available at the start
of the task. To aid reproducibility, participants
were also provided with a Conda “environment”,
a schematic that allows users to reconstruct the ex-
act software environment used to train and eval-
uate the baselines. Several submissions made use
of the baselines for data augmentation or ensemble
construction. Wemake these baseline implementa-
tions available under the task1/baselines sub-
directory of the shared task repository.2

Pair n-gram model The first baseline consists
of a pair n-gram model, which be can thought of
as a finite-state approximation of a hiddenMarkov
model with states representing graphemes and
emissions representing output phones. The model
is quite similar to the Phonetisaurus toolkit (No-
vak et al. 2016), but here is implemented using
the OpenGrm toolkit (Roark et al. 2012, Gorman
2016); see Lee et al. 2020 for a full description.
The sole hyperparameter for this model, Markov
model order, is tuned separately for each language
using the development set.

Encoder-decoder LSTM The second baseline
is a neural network sequence-to-sequence model
consisting of a single-layer bidirectional LSTM
encoder and a single-layer unidirectional LSTM
decoder connected using an attention mechanism
(Luong et al. 2015). It is implemented using the
fairseq library (Ott et al. 2019). LSTM-based
encoder-decoder models have been claimed to out-
perform pair n-gramG2Pmodels, both inmonolin-
gual (e.g., Rao et al. 2015, Yao and Zweig 2015)
and multilingual (e.g., van Esch et al. 2016, Lee
et al. 2020) evaluations, though these prior studies
use substantially more training data than is avail-
able in this task. During training, we perform
4,000 updates to minimize label-smoothed cross-
entropy (Szegedy et al. 2016) with a smoothing

2https://github.com/sigmorphon/2020

rate of .1. We use the Adam optimizer (Kingma
and Ba 2015) with a learning rate of α = .001 and
weight decay coefficients of β = (.9, .98), and clip
norms exceeding 1.0. We use the development set
to tune—for each language—batch size (256, 512,
1024), dropout (.1, .2, .3), and the size of the en-
coder and decoder modules. A module is said to
be “small” when it has a 128-dimension embed-
ding layer and a 512-unit hidden layer, and “large”
when it has a 256-dimension embedding layer and
a 1024-unit hidden layer. In both cases, the de-
coder shares a single embedding layer for both in-
puts and outputs. Altogether, this defines a 36-
element hyperparameter grid. During tuning, we
employ a form of early stopping; we save a check-
point every 5 epochs, and then use the checkpoint
that achieves the lowest WER on the development
set. We use a beam of size 5 for decoding.

Encoder-decoder transformer The third base-
line is a transformer, a neural sequence-to-
sequence models that replaces hidden layer re-
currence with layers of multi-head self-attention
(Vaswani et al. 2017). Once again, it is imple-
mented using fairseq. Here the model con-
sists of four encoder layers and four decoder lay-
ers, both with pre-layer normalization, tuned for
character-level tasks (Wu et al. 2020). The hyper-
parameter grid, tuning procedures, and beam size
are the same as for the LSTMmodel above, except
that learning rate is decayed on an inverse square-
root schedule after a 1,000-update linear warm-up
period. While most participants chose to compare
their results to the transformer and not the LSTM
in system description papers, the transformer was
outperformed by the LSTM baseline in most set-
ting with the hyperparameter exploration budget.

6 System descriptions
Below we provide brief descriptions of submis-
sions to the shared task.

CLUZH The Institute of Computational Lin-
guistics at the University of Zurich submitted a sin-
gle system (Makarov and Clematide 2020) extend-
ing earlier work (Makarov and Clematide 2018)
on imitation learning-based transducers that out-
put a sequence of edit actions rather than a target
string itself. To adapt to the G2P task, where input
(grapheme) and output (phone) vocabularies are
largely disjoint, they add a substitution action. The
costs of each edit action are drawn from aweighted
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finite state transducer (WFST). The authors sug-
gest that external lexical information such as part
of speech, etymology (borrowing particularly) and
morphological segmentation would improve sys-
tems. During preprocessing, they decompose Ko-
rean hangul characters into their constituent jamo,
each corresponding roughly to a single phoneme.

CU One team from the University of Colorado
Boulder (Prabhu and Kann 2020) ensembled sev-
eral transformer models created with different ran-
dom seeds using majority voting. They also exper-
iment with a form ofmulti-task learning: they train
a “bidirectional” model to do both grapheme-to-
phoneme and phoneme-to-grapheme prediction.

CUZ A second team from the University of
Colorado Boulder (Ryan and Hulden 2020) uses
a “slice-and-shuffle” data augmentation strategy.
First, they perform character-level one-to-one
alignment between graphemes and phonemes.
Then they concatenate frequent subsequence pairs
to each other to create nonce training examples.
Their submission is an LSTM model with a bidi-
rectional encoder trained on this augmented data.
While they also developed transformer models,
these did not finish training in time for submission.
Results for their transformer system, not reported
here, are included in their system description.

DeepSPIN Researchers at the Instituto Superior
Técnico and Unbabel produced four submissions
(Peters and Martins 2020) based on sparse at-
tention models. Each submission consists of a
single multilingual neural model in which sepa-
rate learned “language embeddings” are concate-
nated to all encoder and decoder states, rather
than prepending a language-identification token
to the input sequence. Their submissions either
use LSTM- or transformer-based encoder-decoder
sequence-to-sequence models with different val-
ues of a hyperparameter enforcing sparsity in the
final layer (Peters et al. 2019). Like CLUZH, they
preprocess Korean hangul characters, decompos-
ing them into constituent jamo, each correspond-
ing roughly to a single phoneme.

IMS A single submission from the Institut für
Maschinelle Sprachverarbeitung at the University
of Stuttgart (Yu et al. 2020) uses self-training
(Yarowsky 1995) and ensembles of the baseline
models. The components of the ensemble are
selected using a genetic algorithm. They report

that their data augmentation does not affect per-
formance substantially, except in a simulated low-
resource setting with 200 training examples. They
romanize Japanese and Korean texts as a prepro-
cessing step, and they use external word frequency
lists.

NSU The Novosibirsk State University team did
not provide a system description.

UA The submissions from the University of Al-
berta (Hauer et al. 2020) either use a non-neural
discriminative string transduction model (DTLM;
Nicolai et al. 2018), or tranformers. They lever-
age both grapheme-to-phoneme and phoneme-to-
grapheme models to filter candidates for data aug-
mentation, enforcing a cyclic consistency con-
straint. They further show strong performance in
a simulated low-resource scenario with 100 train-
ing examples. They note that the DTLM system
is much faster to train than transformer models.
Their six submissions vary the amount of train-
ing data and use either DTLM, a transformer, or
a transformer with data augmentation.

UBCNLP The University of British Columbia
submitted two systems (Vesik et al. 2020). One
is a multilingual model akin to Peters et al.
(2017), in which a language-identification token
is prepended to the input sequence. They also en-
semble multiple checkpoints. Their second sub-
mission adds self-training on Wikipedia text; they
report that this data augmentation strategy does not
improve scores.

UZH For all three of their submissions, the team
from the Department of Informatics at the Univer-
sity of Zurich (ElSaadany and Suter 2020) used
a single set of encoder-decoder parameters shared
across all languages. UZH-1 is a large transformer
model with large embedding, hidden layers, and
batches, with a high dropout probability. UZH-
2 augments this model with WikiPron data for
six other languages. UZH-3 is an ensemble of
the previous two models which selects from the
predictions of the two component models using
whichever model’s prediction has a higher poste-
rior probability. The ensemble outperformed the
component models for most languages. During
preprocessing they also decomposeKorean hangul
characters into their constituent jamo; they report
this results in a 46% relative word error reduction.
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7 Results
We now review baseline and submission results.

7.1 Baseline results
Baseline results are shown in Table 2. The
encoder-decoder LSTM (Lee et al. 2020) per-
formed best for nine out of fifteen languages; the
transformer was the strongest for four languages,
and for the remaining two—Modern Greek and
Hungarian—there was a virtual tie between the
two neural network baselines. The pair n-gram
model was outperformed by the neural baselines
on all languages, and by 10 or more points WER
in Bulgarian, Georgian, and Korean. This suggest
that this model is no longer competitive with pow-
erful discriminative neural methods, at least in this
medium-resource G2P task.
While this task was not designed explicitly

to compare LSTM and transformer sequence-to-
sequence models, it does suggest an advantage for
LSTM models. However, we speculate that ad-
ditional training data, or a more generous hyper-
parameter tuning budget, might favor transformer
models. Indeed, anticipating the results below, the
one team that directly compared transformer and
LSTMsystems, DeepSPIN, achieved the third best
submission overall using a transformer.
We also note that for four languages, the base-

line system that achieves the best WER does not
achieve the best PER, though the two metrics pro-
duce the same one-best ranking for the remaining
eleven languages.

7.2 Submission results
Table 3 shows, for each language, the system or
systems that achieved the best WER, as well as
the best baselineWER. For all fifteen languages, at
least one team outperformed the baselines, some-
times quite substantially. Six of the nine teams
achieved the best WER on at least one language.
More detailed per-language, per-submission re-
sults are available online.3
Table 4 gives the macro-averaged WER and

PER for the three baselines, and for the best over-
all submission from each team. As expected, the
strongest baseline is the LSTM model. Across all
submissions, the IMS team achieves both the low-
est average WER, a 3% absolute (18% relative)

3https://docs.google.com/spreadsheets/d/
1g0HyGeVzFrNt2pvNuu8L1voFFQY-0CwjTxGA3VXXNGI/
edit?usp=sharing

word error reduction over the LSTM baseline, and
the lowest overall PER, a 1% absolute (31% rela-
tive) phone error reduction over the LSTM base-
line. The CLUZH and DeepSPIN-3 submissions
achieve second and third place, respectively; the
CU, UCBNLP, and UZH teams also submitted sys-
tems that outperform the LSTM baseline’s WER.

8 Discussion

When this task was initially proposed, there was
some concern that the submissions—if not the
baselines themselves—would easily achieve per-
fect or near-perfect performance on some lan-
guages. This was not the case. Even on the “easi-
est” language, the best submission has .89%WER,
and for three languages, no submission achieves
an error rate below 20%.
At the same time, we observe a large range of er-

ror rates across languages. It is tempting to spec-
ulate that word and/or phone error rates actually
represent differences in difficulty. Insofar as this
is correct, we can begin to ask what makes a lan-
guage “hard to pronounce”, much like howMielke
et al. (2019) ask what makes a language “hard to
language-model”.
One thing that may make a language hard to

pronounce is data sparsity. Consider the case of
Korean, which has by far the highest baseline er-
ror rate of all fifteen languages. Three features
of Korean and of hangul conspire to make this
task particularly challenging. First, hangul is a syl-
labary, and therefore necessarily has a much larger
graphemic inventory than an alphabet or alphasyl-
labary. A whopping 889 unique hangul charac-
ters appear across the 4,500 words used for this
task.4 Secondly, hangul is a relatively deep or ab-
stract orthography (in the sense of Rogers 2005);
it operates at a roughly-morphophonemic level
whereas Lithuanian and Hungarian, for example,
are is roughly phonemic. Third, Korean has many
phonological processes that operate across sylla-
ble boundaries. Since the effect of these processes
is not indicated by the highly abstract, morpho-
phonemic orthography, they can only be learned
by observing the targeted syllable bigrams dur-
ing training. Lee et al. (2020) perform a man-
ual error analysis of a Korean G2P system similar

4Few syllabaries are so large. For instance, there are only
79 unique hiragana symbols in the Japanese data, but this rel-
ative size difference is not surprising given that Korean has a
more permissive syllable structure than Japanese.
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Pair n-gram LSTM Transformer
WER PER WER PER WER PER

arm 18.00 3.90 14.67 3.49 14.22 3.29
bul 41.33 9.05 31.11 5.94 34.00 7.89
fre 13.56 3.12 6.22 1.32 6.89 1.72
geo 37.78 6.48 26.44 5.14 28.00 5.43
gre 21.78 4.05 18.89 3.30 18.89 3.06
hin 12.67 2.82 6.67 1.47 9.56 2.40
hun 6.67 1.51 5.33 1.18 5.33 1.28
ice 17.56 3.62 10.00 2.36 10.22 2.21
kor 52.22 15.88 46.89 16.78 43.78 17.50
lit 23.11 4.43 19.11 3.55 20.67 3.65

ady 32.00 7.56 28.00 6.53 28.44 6.49
dut 23.78 3.97 16.44 2.94 15.78 2.89
jap 9.56 2.07 7.56 1.79 7.33 1.86
rum 11.56 3.55 10.67 2.53 12.00 2.62
vie 8.44 1.79 4.67 1.52 7.56 2.27

Table 2: Results for the three baseline systems.

to the LSTM baseline and observe errors caused
by underapplication of these coda-onset cluster
rules. It is unsurprising then that several submis-
sions achieved substantial gains by either roman-
izing hangul or decomposing it into its constituent
jamo during preprocessing, since both techniques
reduce the size of the input vocabulary.
The results suggest that G2P technologies are

not yet language-agnostic (in the sense of Ben-
der 2009). However, some caution is in order
here: inter-language differences in word error rate
may also reflect inconsistencies in the WikiPron
data itself. During the task, participants reported
apparent transcription inconsistencies in the Bul-
garian, Georgian, and Lithuanian Wiktionary data.
If these inconsistencies are due to overly-narrow
allophonic transcriptions, one might suspect that
they can be learned by sufficiently sophisticated
sequence-to-sequence models. However, if they
represent free variation, inconsistent application
of the transcription guidelines, or even typograph-
ical errors, they inflate error rates and increase the
risk of overfitting. In response to this, we have
begun development of quality assurance software
for WikiPron, including a phone-based whitelist-
ing approach. We anticipate that manual er-
ror analysis will reveal errors in the Wiktionary
data, similar to the large number of test data er-

rors identified by Gorman et al. (2019) for the
2017 CoNLL–SIGMORPHON morphological in-
flection task. To encourage this sort of error analy-
sis, for the first time in the history of the SIGMOR-
PHON workshop, we publicly release the predic-
tions made by all 23 submissions.5 Finally, we
plan to apply large-scale consistency-enforcing ed-
its upstream, i.e., to Wiktionary itself.
While the baselines are somewhat naïve and

lack the sophisticated data augmentation and en-
sembling techniques used by the top submissions,
we were pleasantly surprised by the substantial
reductions in error achieved by the participating
teams. As mentioned above, the best submis-
sions handily outperforms the baselines for all lan-
guages. Interestingly, this is true for the most
challenging languages—like Korean, where the
best submission achieves a 45% relative word er-
ror reduction over the baseline—but also for Viet-
namese, the language with the lowest baseline
WER; there, the best submission achieves an im-
pressive 81% relative word error reduction.
As mentioned above, top submissions make

use of techniques such as preprocessing, data
augmentation, ensembling, multi-task learning
(e.g., phoneme-to-grapheme conversion), and self-

5https://drive.google.com/drive/folders/
1kdawyeI17iGC0jlY_2dZQpK75hpShY_H?usp=sharing
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Best baseline Best submission
arm 14.22 transformer 12.22 CLUZH
bul 31.11 LSTM 22.22 IMS
fre 6.22 LSTM 5.11 DeepSPIN-3
geo 26.44 LSTM 24.89 IMS
gre 18.89 LSTM, transformer 14.44 CU-2, CUZ
hin 6.67 LSTM 5.11 CLUZH, IMS
hun 5.33 LSTM, transformer 4.00 CLUZH
ice 10.00 LSTM 9.11 CLUZH, UBCNLP-2
kor 43.78 transformer 24.00 DeepSPIN-1, DeepSPIN-2
lit 19.11 LSTM 18.67 CLUZH

ady 28.00 LSTM 24.67 DeepSPIN-4
dut 16.44 transformer 13.56 IMS
jap 7.33 transformer 4.89 DeepSPIN-4
rum 10.67 LSTM 9.78 DeepSPIN-3
vie 4.67 LSTM 0.89 DeepSPIN-2

Table 3: The best baseline(s) and submission(s) WERs for each language.

WER PER
Pair n-gram 22.00 4.92
LSTM 16.84 3.99
Transformer 17.51 4.30

CLUZH 14.13 2.82
CU-1 14.52 3.24
CUZ 20.87 5.23
DeepSPIN-3 14.15 2.92
IMS 13.81 2.76
NSU-1 63.56 20.76
UA-2 17.47 4.26
UBCNLP-1 14.99 3.30
UZH-3 16.34 3.27

Table 4: Macro-averaged results for the baselines and
the best submission from each team.

training. These techniques are commonly used
in shared tasks and are essentially task-agnostic.
However, we were surprised that few teams
made use of task-specific resources such as the
PHOIBLE phonemic inventories and feature spec-
ifications (Moran andMcCloy 2019) or rule-based
G2P systems like Epitran (Mortensen et al. 2018).
Nor do any of the submissions make use of
morphological analyzers or lexicons, which were
found to be helpful in earlier work (e.g., Coker
et al. 1990, Demberg et al. 2007). We speculate

that such resources might further improve perfor-
mance. Finally we note that submissions make use
of unsupervised tokenization techniques such as
byte-pair encoding (Schuster and Nakajima 2012).
Finally, we note that several participants ex-

pressed interest in a low-resource version of
this challenge, and two teams simulated a low-
resource setting. We leave the design of a low-
resource task for future work.

9 Conclusion
SIGMORPHON, under whose auspices this task
was conducted, was once known as SIGPHON
and was primarily focused on computational pho-
netics and phonology. The shared task on
multilingual grapheme-to-phoneme conversion, a
uniquely phonological problem, thus represents
something of a return to the roots of this special
interest group. In this task, nine teams submitted
23G2P systems for fifteen languages and achieved
substantial improvements over the provided base-
lines. The results suggest many directions for im-
proving G2P systems and the pronunciation dictio-
naries used to train them.
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Abstract

In this paper, we describe the findings of the
SIGMORPHON 2020 shared task on unsu-
pervised morphological paradigm completion
(SIGMORPHON 2020 Task 2), a novel task
in the field of inflectional morphology. Partici-
pants were asked to submit systems which take
raw text and a list of lemmas as input, and out-
put all inflected forms, i.e., the entire morpho-
logical paradigm, of each lemma. In order to
simulate a realistic use case, we first released
data for 5 development languages. However,
systems were officially evaluated on 9 surprise
languages, which were only revealed a few
days before the submission deadline. We pro-
vided a modular baseline system, which is a
pipeline of 4 components. 3 teams submitted
a total of 7 systems, but, surprisingly, none
of the submitted systems was able to improve
over the baseline on average over all 9 test lan-
guages. Only on 3 languages did a submitted
system obtain the best results. This shows that
unsupervised morphological paradigm com-
pletion is still largely unsolved. We present
an analysis here, so that this shared task will
ground further research on the topic.

1 Introduction

In morphologically rich languages, words inflect:
grammatical information like person, number,
tense, and case are incorporated into the word it-
self, rather than expressed via function words. Not
all languages mark the same properties: German
nouns, for instance, have more inflected forms than
their English counterparts.

When acquiring a language, humans usually
learn to inflect words without explicit instruction.
Thus, most native speakers are capable of gen-
erating inflected forms even of artificial lemmas
(Berko, 1958). However, models that can gener-
ate paradigms without explicit morphological train-

∗Equal contribution.

lemman

guess1 guess2

guess3 guess4

guess5 guess6

lemma2

guess1 guess2

guess3 guess4

guess5 guess6

...

lemma1

guess1 guess2

guess3 guess4

guess5 guess6

lemma1

lemma2

lemman

Figure 1: The task of unsupervised morphological
paradigm completion (Jin et al., 2020) consists of gen-
erating complete inflectional paradigms for given lem-
mas, with the only additional available information be-
ing a corpus without annotations.

ing have not yet been developed. We anticipate
that such systems will be extremely useful, as they
will open the possibility of rapid development of
first-pass inflectional paradigms in a large set of
languages. These can be utilized both in se for
generation and as a starting point for elicitation
(Sylak-Glassman et al., 2016), thus aiding the de-
velopment of low-resource human language tech-
nologies (Christianson et al., 2018).

In this paper, we present the SIGMORPHON
2020 shared task on unsupervised morphological
paradigm completion (SIGMORPHON 2020 Task
2). We asked participants to produce systems that
can learn to inflect in an unsupervised fashion:
given a small corpus (the Bible) together with a
list of lemmas for each language, systems for the
shared task should output all corresponding in-
flected forms. In their output, systems had to mark
which forms expressed the same morphosyntactic
features, e.g., demonstrate knowledge of the fact
that walks is to walk as listens is to listen, despite
not recognizing the morphological features explic-

51

https://doi.org/10.18653/v1/P17


itly. We show a visualization of our shared task
setup in Figure 1.

Unsupervised morphological paradigm comple-
tion requires solving multiple subproblems either
explicitly or implicitly. First, a system needs to
figure out which words in the corpus belong to the
same paradigm. This can, for instance, be done
via string similarity: walks is similar to walk, but
less so to listen. Second, it needs to figure out
the shape of the paradigm. This requires detecting
which forms of different lemmas express the same
morphosyntactic features, even if they are not con-
structed from their respective lemmas in the exact
same way. Third, a system needs to generate all
forms not attested in the provided corpus. Using
the collected inflected forms as training data, this
can be reduced to the supervised morphological
inflection task (Cotterell et al., 2016).

This year’s submitted systems can be split
into two categories: those that built on the
baseline (Retrieval+X) and those that did not
(Segment+Conquer). The baseline system is set
up as a pipeline which performs the following
steps: edit tree retrieval, additional lemma retrieval,
paradigm size discovery, and inflection generation
(Jin et al., 2020). As it is highly modular, we pro-
vided two versions that employ different inflection
models.1 All systems built on the baseline substi-
tuted the morphological inflection component.

No system outperformed the baseline overall.
However, two Retrieval+X models slightly im-
proved over the baseline on three individual lan-
guages. We conclude that the task of unsupervised
morphological paradigm completion is still an open
challenge, and we hope that this shared task will
inspire future research in this area.

2 Task and Evaluation

2.1 Unsupervised Morphological Paradigm
Completion

Informal description. The task of unsupervised
morphological paradigm completion mimics a set-
ting where the only resources available in a lan-
guage are a corpus and a short list of dictionary
forms, i.e., lemmas. The latter could, for instance,
be obtained via basic word-to-word translation.
The goal is to generate all inflected forms of the
given lemmas.

1In this report, we use the words baseline and baselines
interchangeably.

For an English example, assume the following
lemma list to be given:

walk

listen

With the help of raw text, systems should then
produce an output like this:

walk walk 1

walk walks 2

walk walked 3

walk walking 4

walk walked 5 (1)

listen listens 2

listen listened 5

listen listened 3

listen listening 4

listen listen 1

The numbers serve as unique identifiers for
paradigm slots: in above example, ”4” corresponds
to the present participle. The inflections walking
and talking therefore belong to the same paradigm
slot. For the task, participants are not provided any
knowledge of the grammatical content of the slots.

Formal definition. We denote the paradigm π(`)
of a lemma ` as

π(`) =
〈
f(`,~tγ)

〉
γ∈Γ(`)

, (2)

with f : Σ∗ × T → Σ∗ being a function that
maps a lemma and a vector of morphological fea-
tures ~tγ ∈ T expressed by paradigm slot γ to the
corresponding inflected form. Γ(`) is the set of
slots in lemma `’s paradigm.

We then formally describe the task of unsuper-
vised morphological paradigm completion as fol-
lows. Given a corpus D = w1, . . . , w|D| together
with a list L = {`j} of |L| lemmas belonging to
the same part of speech,2 unsupervised morpho-
logical paradigm completion consists of generating
the paradigms {π(`)} of all lemmas ` ∈ L.

Remarks. It is impossible for unsupervised sys-
tems to predict the names of the features expressed
by paradigm slots, an arbitrary decision made by
human annotators. This is why, for the shared task,

2This edition of the shared task was only concerned with
verbs, though we are considering extending the task to other
parts of speech in the future.
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we asked systems to mark which forms belong to
the same slot by numbering them, e.g., to predict
that walked is the form for slot 3, while listens
corresponds to slot 2.

2.2 Macro-averaged Best-Match Accuracy

The official evaluation metric was macro-averaged
best-match accuracy (BMAcc; Jin et al., 2020).

In contrast to supervised morphological inflec-
tion (Cotterell et al., 2016), our task cannot be
evaluated with word-level accuracy. For the former,
one can compare the prediction for each lemma and
morphological feature vector to the ground truth.
However, for unsupervised paradigm completion,
this requires a mapping from predicted slots to the
gold standard’s paradigm slots.

BMAcc, thus, first computes the word-level ac-
curacy each predicted slot would obtain against
each true slot. It then constructs a complete bipar-
tite graph, with those accuracies as edge weights.
This enables computing of the maximum-weight
full matching with the algorithm of Karp (1980).
BMAcc then corresponds to the sum of all accura-
cies for the best matching, divided by the maximum
of the number of gold and predicted slots.

BMAcc penalizes systems for predicting a
wrong number of paradigm slots. However, detect-
ing the correct number of identical slots – some-
thing we encounter in some languages due to syn-
cretism – is extremely challenging. Thus, we merge
slots with identical forms for all lemmas in both the
predictions and the ground truth before evaluating.

Example. Assume our gold standard is (1) (the
complete, 5-slot English paradigms for the verbs
walk and listen) and a system outputs the following,
including an error in the fourth row:

walk walks 1

walk walking 2

listen listens 1

listen listenen 2

First, we merge slots 3 and 5 in the gold standard,
since they are identical for both lemmas. Ignoring
slot 5, we then compute the BMAcc as follows.
Slot 1 yields an accuracy of 100% as compared to
gold slot 2, and 0% otherwise. Similarly, slot 2
reaches an accuracy of 50% for gold slot 4, and 0%
otherwise. Additionally, given the best mapping of
those two slots, we obtain 0% accuracy for gold

slots 1 and 3. Thus, the BMAcc is

BMAcc =
1 + 0.5 + 0 + 0

4
= 0.375 (3)

3 Shared Task Data

3.1 Provided Resources
We provided data for 5 development and 9 test lan-
guages. The development languages were available
for system development and hyperparameter tun-
ing, while the test languages were released shortly
before the shared task deadline. For the test lan-
guages, no ground truth data was available before
system submission. This setup emulated a real-
world scenario with the goal to create a system for
languages about which we have no information.

For the raw text corpora, we leveraged the JHU
Bible Corpus (McCarthy et al., 2020). This re-
source covers 1600 languages, which will enable
future work to quickly produce systems for a large
set of languages. Additionally, using the Bible
allowed for a fair comparison of models across lan-
guages without potential confounds such as domain
mismatch. 7 of the languages have only the New
Testament available (approximately 8k sentences),
and 7 have both the New and Old Testaments (ap-
proximately 31k sentences).

All morphological information was taken from
UniMorph (Sylak-Glassman et al., 2015; Kirov
et al., 2018), a resource which contains paradigms
for more than 100 languages. However, this infor-
mation was only accessible to the participants for
the development languages. UniMorph paradigms
were further used internally for evaluation on the
test languages—this data was then released after
the conclusion of the shared task.

3.2 Languages
During the development phase of the shared task,
we released 5 languages to allow participants to in-
vestigate various design decisions: Maltese (MLT),
Persian (FAS), Portuguese (POR), Russian (RUS),
and Swedish (SWE). These languages are typologi-
cally and genetically varied, representing a number
of verbal inflectional phenomena. Swedish and Por-
tuguese are typical of Western European languages,
and mostly exhibit fusional, suffixing verbal inflec-
tion. Russian, as an exemplar of Slavic languages,
is still mostly suffixing, but does observe regu-
lar ablaut, and has considerable phonologically-
conditioned allomorphy. Maltese is a Semitic lan-
guage with a heavy Romance influence, and verbs
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MLT FAS POR RUS SWE

1 # Tokens in corpus 193257 227584 828861 727630 871707
2 # Types in corpus 16017 11877 31446 46202 25913
3 # Lemmas 20 100 100 100 100
4 # Lemmas in corpus 10 22 50 50 50
5 # Inflections 640 13600 7600 1600 1100
6 # Inflections in corpus 252 545 1037 306 276
7 Paradigm size 16 136 76 16 11
8 Paradigm size (merged) 15 132 59 16 11

Table 1: Dataset statistics: development languages. # Inflections=number of inflected forms in the gold file,
token-based; # Inflections in corpus=number of inflections from the gold file which can be found in the corpus,
token-based; Paradigm size=number of different morphological feature vectors in the dataset for the language;
Paradigm size (merged)=paradigm size, but counting slots with all forms being identical only once.

EUS BUL ENG FIN DEU KAN NAV SPA TUR

1 # Tokens in corpus 195459 801657 236465 685699 826119 193213 104631 251581 616418
2 # Types in corpus 18367 37048 7144 54635 22584 28561 18799 9755 59458
3 # Lemmas 20 100 100 100 100 20 100 100 100
4 # Lemmas in corpus 4 50 50 50 50 10 9 50 50
5 # Inflections 10446 5600 500 14100 2900 2612 3000 7000 12000
6 # Inflections in corpus 97 915 127 497 631 1040 54 630 986
7 Paradigm size 1659 56 5 141 29 85 30 70 120
8 Paradigm size (merged) 1658 54 5 141 20 59 30 70 120

Table 2: Dataset statistics: test languages. # Inflections=number of inflected forms in the gold file, token-based;
# Inflections in corpus=number of inflections from the gold file which can be found in the corpus, token-based;
Paradigm size=number of different morphological feature vectors in the dataset for the language; Paradigm size
(merged)=paradigm size, but counting slots with all forms being identical only once.

combine templatic and suffixing inflection. Per-
sian is mostly suffixing, but does allow for verbal
inflectional prefixation, such as negation and mark-
ing subjunctive mood. Since the development lan-
guages were used for system tuning, their scores
did not count towards the final ranking.

After a suitable period for system develop-
ment and tuning, we released nine test languages:
Basque (EUS), Bulgarian (BUL), English (ENG),
Finnish (FIN), German (DEU), Kannada (KAN),
Navajo (NAV), Spanish (SPA), and Turkish (TUR).
Although these languages observe many features
common to the development languages, such as fu-
sional inflection, suffixation, and ablaut, they also
cover inflectional categories absent in the develop-
ment languages. Navajo, unlike any of the devel-
opment languages, is strongly prefixing. Basque,
Finnish, and Turkish are largely agglutinative, with
long, complex affix chains that are difficult to iden-
tify through longest suffix matching. Furthermore,
Finnish and Turkish feature vowel harmony and
consonant gradation, which both require a method
to identify allomorphs correctly to be able to merge
different variants of the same paradigm slot.

3.3 Statistics

Statistics of the resources provided for all lan-
guages are shown in Table 1 for the development
languages and in Table 2 for the test languages.

The token count (line 1) and, thus, the size of the
provided Bible corpora, differs between 104,631
(Kannada) and 871,707 (Swedish). This number
depends both on the typology of a language and
on the completeness of the provided Bible trans-
lation. The number of types (line 2) is between
7,144 (English) and 59,458 (Turkish). It is strongly
influenced by how morphologically rich a language
is, i.e., how large the paradigms are, which is of-
ten approximated with the type–token ratio. The
verbal paradigm size is listed in line 7: English
has with a size of 5 the smallest paradigms, and,
correspondingly, the lowest type count. Turkish,
which has the highest number of types, in contrast,
has large paradigms (120). The last line serves as
an indicator of syncretism: subtracting line 8 from
line 7 results in the number of paradigm slots that
have been merged as a language evolved to use
identical forms for different inflectional categories.

Lines 3 and 4 show the number of lemmas in
the lemma lists for all languages, as well as the
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Institution Systems Rank Description Paper

KU-CST KU-CST-1 7 Agirrezabal and Wedekind (2020)
KU-CST KU-CST-2 6 Agirrezabal and Wedekind (2020)

IMS-CUBoulder IMS-CUBoulder-1 5 Mager and Kann (2020)
IMS-CUBoulder IMS-CUBoulder-2 1 Mager and Kann (2020)

NYU-CUBoulder NYU-CUBoulder-1 4 Singer and Kann (2020)
NYU-CUBoulder NYU-CUBoulder-2 2 Singer and Kann (2020)
NYU-CUBoulder NYU-CUBoulder-3 3 Singer and Kann (2020)

Table 3: All submitted systems by institution, together with a reference to their description paper. The rank is
relative to all other submitted systems and does not take the baselines into account.
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Figure 2: Our baseline system: the retrieval component bootstraps lemma–form–slot triplets, which are then used
by the generation component to generate unobserved inflections in the paradigm of each input lemma.

number of lemmas which can be found in the cor-
pus. For the majority of languages, 100 lemmas
are provided, out of which 50 appear in the Bible.
Exceptions are Maltese (20, 10), Persian (100, 22),
Basque (20, 4), Kannada (20, 10), and Navajo (100,
9). These are due to limited UniMorph coverage.

In line 5, we list the number of total inflections,
counting each one in the case of identical forms,
i.e., this corresponds to the number of lines in our
gold inflection file. English, due to its small verbal
paradigm size, has only 500 inflections in our data.
Conversely, Finnish has with 14,100 the largest
number of inflections. Line 6 describes how many
of the forms from line 5 appear in the corpus. As
before, all forms are counted, even if they are iden-
tical. For all languages, a large majority of forms
cannot be found in the corpus. This makes the task
of unsupervised morphological paradigm comple-
tion with our provided data a challenging one.

4 Systems

In this section, we first review the baseline before
describing the submitted systems. An additional
overview of the submissions is shown in Table 3.

4.1 Baseline

We compared all submissions to the baseline sys-
tem of Jin et al. (2020), graphically summarized
in Figure 2. It is a pipeline system, which con-
sists of 4 separate modules, which, in turn, can be
grouped into two major components: retrieval and
generation. The retrieval component discovers and
returns inflected forms – and, less importantly, ad-
ditional lemmas – from the provided Bible corpus.
The generation component produces new inflected
forms which cannot be found in the raw text.

The retrieval component performs three steps:
First, it extracts the most common edit trees
(Chrupała, 2008), i.e., it detects regularities with
regards to word formation, based on the lemma
list. If, for instance, both walk and listen are the
lemmas provided and both walked and listened are
encountered in the corpus, the system notes that
appending -ed is a common transformation, which
might correspond to an inflectional strategy.

Second, it retrieves new lemmas, with the goal
to gather additional evidence for our collected edit
trees. If, for instance, it has already identified the
suffix -ed as an inflectional marker, finding both
pray and prayed in the Bible is an indication that
pray might be a lemma. New lemmas can then, in
turn, be used to detect new regularities, e.g., in the

55



case that listen and listens as well as pray and prays
are attested in the corpus, but walks is not. Due to
their complementary nature, components one and
two can, as a unit, be applied iteratively to bootstrap
a larger list of lemmas and transformations. For the
baseline, we apply each of them only once.

Finally, the baseline’s retrieval component pre-
dicts the paradigm size by analyzing which edit
trees might be representing the same inflection. For
instance, the suffixes -d and -ed both represent the
past tense in English. The output of the retrieval
component is a list of inflected forms with their
lemmas, annotated with a paradigm slot number.

The generation component receives this out-
put and prepares the data to train an inflectional
generator. First, identified inflections are divided
into a training and development split, and miss-
ing paradigm slots are identified. The generator
is trained on the discovered inflections, and new
forms are predicted for each missing slot.

We used two morphological inflection systems
for the two variants of our baseline: the non-neural
baseline from Cotterell et al. (2017) and the model
proposed by Makarov and Clematide (2018). Both
are highly suitable for the low-resource setting.

4.2 Submitted Systems: Retrieval+X

We now describe the first category of shared task
submissions: Retrieval+X. Systems in this cate-
gory leverage the retrieval component of the base-
line, while substituting the morphological inflec-
tion component with a custom inflection system.

The IMS–CUBoulder team relied on LSTM
(Hochreiter and Schmidhuber, 1997) sequence-to-
sequence models for inflection. In IMS-CUB-1, the
generation component is based on the architecture
by Bahdanau et al. (2015), but with fewer param-
eters, as suggested by Kann and Schütze (2016).
This model – as well as all other inflection compo-
nents used for systems in this category – receives
the sequence of the lemma’s characters and the
paradigm slot number as input and produces a se-
quence of output characters.

Their second system, IMS-CUB-2, uses an
LSTM pointer-generator network (See et al., 2017)
instead. This architecture has originally been pro-
posed for low-resource morphological inflection by
Sharma et al. (2018).

The NYU–CUBoulder team also substituted
the baseline’s generation component. Their mor-
phological inflection models are ensembles of dif-

ferent combinations of transformer sequence-to-
sequence models (Vaswani et al., 2017) and pointer-
generator transformers, a model they introduced
for the task.
NYU-CUB-1 is an ensemble of 6 pointer-

generator transformers, while NYU-CUB-2 is an en-
semble of 6 vanilla transformers. Their last system,
NYU-CUB-3, is an ensemble of all 12 models.

4.3 Submitted Systems: Segment+Conquer

The KU–CST team did not modify the baseline
directly, but, nevertheless, was heavily inspired
by it. Their system first employs a character-
segmentation algorithm to identify stem–suffix
splits in both the provided lemma list and the cor-
pus, thus identifying potential suffix-replacement
rules. Next, k-means is used to cluster the extracted
suffixes into allomorphic groups. These suffixes
are then concatenated with the most frequent stems
obtained from the lemma list, and scored by a lan-
guage model, in order to arrive at plausible inflec-
tional candidates. This approach is KU-CST-2.

However, KU-CST-2 often produces very small
inflectional paradigms; unsurprisingly, given that
the provided corpora are small as well, and, thus,
any particular lemma is only inflected in limited
ways – if at all. Therefore, KU-CST-1 expands the
lemma list with a logistic-regression classifier that
identifies novel verbs to be added.

5 Results and Analysis

5.1 Results on Development Languages

To encourage reproducibility, we first report the
performance of all systems on the development
languages in the upper part of Table 4. Although
participants were not evaluated on these languages,
the results provide insight and enable future re-
searchers to benchmark their progress, while main-
taining the held-out status of the test languages.

5.2 Official Shared Task Results

We show the official test results in the lower part of
Table 4. Baseline-2 obtained the highest BMAcc
on average, followed in order by Baseline-1,
IMS-CUB-2, and NU-CUB-2. Overall, systems
built on top of the baseline, i.e., systems from Re-
trieval+X, performed better than systems from Seg-
ment+Conquer: the best Segment+Conquer sys-
tem only reached 4.66% BMAcc on average. This
shows the effectiveness of the baseline. However,
it also shows that we still have substantial room
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Baseline KU-CST IMS-CUB NYU-CUB
1 2 1 2 1 2 1 2 3

MLT 9.12 (17) 20.00 (17) 0.22 (254) 1.30 (2) 14.41 (17) 17.35 (17) 15.29 (17) 15.59 (17) 15.88 (17)
FAS 6.67 (31) 6.54 (31) 1.55 (11) 0.74 (2) 2.52 (31) 2.70 (31) 2.76 (31) 2.73 (31) 2.74 (31)
POR 40.39 (34) 39.56 (34) 1.09(1104) 12.75 (70) 38.69 (34) 39.17 (34) 39.93 (34) 39.95 (34) 40.07 (34)
RUS 40.68 (19) 41.68 (19) 0.35 (387) 7.06 (10) 38.63 (19) 41.11 (19) 39.26 (19) 40.00 (19) 39.74 (19)
SWE 45.07 (15) 40.93 (15) 0.93 (588) 22.82 (17) 37.60 (15) 39.93 (15) 39.80 (15) 39.93 (15) 40.13 (15)

avg. 28.39 29.74 0.83 8.93 26.37 28.05 27.41 27.64 27.71

EUS 0.06 (30) 0.06 (27) 0.02 (30) 0.01 (2) 0.04 (30) 0.06 (30) 0.05 (30) 0.05 (30) 0.07 (30)
BUL 28.30 (35) 31.69 (34) 2.99 (138) 4.15 (13) 27.22 (35) 32.11 (35) 27.69 (35) 28.94 (35) 27.89 (35)
ENG 65.60 (4) 66.20 (4) 3.53 (51) 17.29 (7) 47.80 (4) 61.00 (4) 50.20 (4) 52.80 (4) 51.20 (4)
FIN 5.33 (21) 5.50 (21) 0.39(1169) 2.08 (108) 4.90 (21) 5.38 (21) 5.36 (21) 5.47 (21) 5.35 (21)
DEU 28.35 (9) 29.00 (9) 0.70 (425) 4.98 (40) 24.60 (9) 28.35 (9) 27.30 (9) 27.35 (9) 27.35 (9)
KAN 15.49 (172) 15.12 (172) 4.27 (44) 1.69 (1) 10.50 (172) 15.65 (172) 11.10 (172) 11.16 (172) 11.10 (172)
NAV 3.23 (3) 3.27 (3) 0.13 (38) 0.20 (2) 0.33 (3) 1.17 (3) 0.40 (3) 0.43 (3) 0.43 (3)
SPA 22.96 (29) 23.67 (29) 3.52 (225) 10.84 (40) 19.50 (29) 22.34 (29) 20.39 (29) 20.56 (29) 20.30 (29)
TUR 14.21 (104) 15.53 (104) 0.11(1772) 0.71 (502) 13.54 (104) 14.73 (104) 14.88 (104) 15.39 (104) 15.13 (104)

avg. 20.39 21.12 1.74 4.66 16.49 20.09 17.49 18.02 17.65

Table 4: BMAcc in percentages and the number of predicted paradigm slots after merging for all submitted systems
and the baselines on all development (top) and test languages (bottom). Best scores are in bold.

for improvement on unsupervised morphological
paradigm completion.

Looking at individual languages, Baseline-2
performed best for all languages except for EUS,
where NYU-CUB-3 obtained the highest BMAcc,
and BUL and KAN, where IMS-CUB-2 was best.

5.3 Analysis: Seen and Unseen Lemmas

We further look separately at the results for lemmas
which appear in the corpus and those that do not.
While seeing a lemma in context might help some
systems, we additionally assume that inflections of
attested lemmas are also more likely to appear in
the corpus. Thus, we expect the performance for
seen lemmas to be higher on average.

Examining the performance with respect to ob-
served inflected forms might give cleaner results.
However, we instead perform this analysis on a
per-lemma basis, since the lemmas are part of a
system’s input, while the inflected forms are not.

Table 5 shows the performance of all systems
for seen and unseen lemmas. Surprisingly, both
versions of the baseline show similar BMAcc for
both settings with a maximum difference of 0.12%
on average. However, the baseline is the only sys-
tem that performs equally well for unseen lemmas;
IMS-CUB-1 observes the largest difference, with an
absolute drop of 7.85% BMAcc when generating
the paradigms of unseen lemmas. Investigating the
cause for IMS-CUB-1’s low BMAcc, we manually
inspected the English output files, and found that,
for unseen lemmas, many generations are nonsensi-

cal (e.g., demoates as an inflected form of demodu-
late). This does not happen in the case of seen lem-
mas. A similar effect has been found by Kann and
Schütze (2018), who concluded that this might be
caused by the LSTM sequence-to-sequence model
not having seen similar character sequences dur-
ing training. The fact that IMS-CUB-2, which uses
another inflection model, performs better for un-
seen lemmas confirms this suspicion. Thus, ad-
ditional training of the inflection component of
IMS-CUB-1 on words from the corpus might im-
prove generation. Conversely, the baseline – which
benefits from inflection models specifically catered
to low-resource settings – is better suited to in-
flecting unseen lemmas. Overall, we conclude that
there is little evidence that the difficulty of the task
increases for unseen lemmas. Rather, inflection
systems need to compensate for the low contextual
variety in their training data.

6 Where from and Where to?

6.1 Previous Work
Prior to this shared task, most research on unsuper-
vised systems for morphology was concerned with
developing approaches to segment words into mor-
phemes, i.e., their smallest meaning-bearing units
(Goldsmith, 2001; Creutz, 2003; Creutz and La-
gus, 2007; Snyder and Barzilay, 2008; Goldwater
et al., 2009; Kurimo et al., 2010; Kudo and Richard-
son, 2018). These methods were built around the
observation that inflectional morphemes are very
common across word types, and leveraged probabil-
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Baseline KU-CST IMS-CUB NYU-CUB
1 2 1 2 1 2 1 2 3

EUS 0.11 (30) 0.11 (19) 0.03 (30) 0.03 (2) 0.11 (28) 0.19 (30) 0.11 (30) 0.11 (30) 0.11 (30)
BUL 25.48 (35) 28.93 (34) 5.62 (138) 6.33 (13) 27.85 (35) 29.70 (34) 29.30 (35) 29.78 (35) 29.52 (35)
ENG 70.80 (4) 71.20 (4) 3.02 (51) 18.86 (7) 69.60 (4) 70.40 (4) 69.20 (4) 70.00 (4) 70.00 (4)
FIN 6.17 (21) 6.38 (21) 0.70(1169) 3.60 (108) 6.11 (21) 6.65 (21) 6.55 (21) 6.58 (21) 6.57 (21)
DEU 26.70 (9) 27.00 (9) 1.14 (425) 8.75 (40) 27.40 (9) 27.30 (9) 27.50 (9) 27.60 (9) 27.40 (9)
KAN 16.35 (171) 15.61 (172) 6.61 (44) 1.69 (1) 13.99 (172) 16.49 (172) 14.63 (172) 14.68 (172) 14.63 (172)
NAV 2.96 (3) 2.96 (3) 1.46 (38) 2.22 (2) 2.96 (3) 2.96 (3) 2.96 (3) 2.96 (3) 2.96 (3)
SPA 20.97 (29) 21.60 (29) 4.43 (225) 16.37 (40) 20.40 (29) 21.14 (29) 21.17 (29) 21.09 (29) 21.14 (29)
TUR 14.68 (104) 16.38 (104) 0.23(1772) 1.42 (502) 16.98 (104) 18.02 (104) 18.30 (104) 18.70 (104) 18.50 (104)

avg. 20.47 21.13 2.58 6.59 20.60 21.43 21.08 21.28 21.20

EUS 0.06 (30) 0.06 (30) 0.03 (30) 0.00 (2) 0.03 (30) 0.04 (30) 0.05 (30) 0.05 (30) 0.07 (30)
BUL 31.11 (35) 34.44 (34) 0.83 (138) 2.04 (13) 26.59 (35) 34.52 (35) 26.07 (35) 28.11 (35) 26.26 (35)
ENG 60.40 (4) 61.20 (4) 4.12 (51) 15.71 (7) 26.00 (4) 51.60 (4) 31.20 (4) 35.60 (4) 32.40 (4)
FIN 4.52 (21) 4.62 (21) 0.12(1169) 0.98 (108) 3.69 (21) 4.11 (21) 4.17 (21) 4.37 (21) 4.13 (21)
DEU 30.84 (9) 32.63 (9) 0.55 (425) 3.05 (40) 22.95 (9) 30.95 (9) 28.74 (9) 28.63 (9) 28.95 (9)
KAN 14.64 (172) 14.55 (172) 1.88 (24) 1.69 (1) 6.72 (172) 14.72 (172) 7.27 (172) 7.33 (172) 7.28 (172)
NAV 3.26 (3) 3.30 (3) 0.00 (38) 0.00 (2) 0.07 (3) 0.99 (3) 0.15 (3) 0.18 (3) 0.18 (3)
SPA 24.94 (29) 25.74 (29) 3.86 (225) 8.94 (40) 18.60 (29) 23.54 (29) 19.60 (29) 20.03 (29) 19.46 (29)
TUR 13.73 (104) 14.70 (104) 0.00(1757) 0.00 (500) 10.12 (104) 11.47 (104) 11.48 (104) 12.08 (104) 11.77 (104)

avg. 20.39 21.25 1.27 3.60 12.75 19.10 14.30 15.15 14.50

Table 5: BMAcc in percentages and the number of predicted paradigm slots after merging for all submitted systems
and the baselines on all test languages; listed separately for lemmas which appear in the corpus (top) and lemmas
which do not (bottom). Best scores are in bold.

ity estimates such as maximum likelihood (MLE)
or maximum a posteriori (MAP) estimations to
determine segmentation points, or minimum de-
scription length (MDL)-based approaches. How-
ever, they tended to make assumptions regarding
how morphemes are combined, and worked best
for purely concatenative morphology. Furthermore,
these methods had no productive method of han-
dling allomorphy—morphemic variance was sim-
ply treated as separate morphemes.

The task of unsupervised morphological
paradigm completion concerns more than just seg-
mentation: besides capturing how morphology is
reflected in the word form, it also requires correctly
clustering transformations into paradigm slots and,
finally, generation of unobserved forms.

While Xu et al. (2018) did discover something
similar to paradigms, those paradigms were a
means to a segmentation end and the shape or
size of the paradigms was not a subject of their
research. Moon et al. (2009) similarly uses seg-
mentation and clustering of affixes to group words
into conflation sets, groups of morphologically re-
lated words, in an unsupervised way. Their work
assumes prefixing and suffixing morphology. In a
more task-driven line of research, Soricut and Och
(2015) develop an approach to learn morphological
transformation rules from observing how consis-

tently word embeddings change between related
word forms, with the goal of providing useful word
embeddings for unseen words.

Our task further differs from traditional
paradigm completion (e.g., Dreyer and Eisner,
2011; Ahlberg et al., 2015) in that no seed
paradigms are observed. Thus, no information is
being provided regarding the paradigm size, inflec-
tional features, or relationships between lemmas
and inflected forms. Other recent work (Nicolai
and Yarowsky, 2019; Nicolai et al., 2020) learned
fine-grained morphosyntactic tools from the Bible,
though they leveraged supervision projected from
higher-resource languages (Yarowsky et al., 2001;
Täckström et al., 2013).

Past shared tasks. This task extends a tradition
of SIGMORPHON shared tasks concentrating on
inflectional morphology.

The first such task (Cotterell et al., 2016) en-
couraged participants to create inflectional tools
in a typologically diverse group of 10 languages.
The task was fully-supervised, requiring systems
to learn inflectional morphology from a large anno-
tated database. This task is similar to human learn-
ers needing to generate inflections of previously
unencountered word forms, after having studied
thousands of other types.

The second task (Cotterell et al., 2017) extended
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the first task from 10 to 52 languages and started
to encourage the development of tools for the low-
resource setting. While the first shared task ap-
proximated an adult learner with experience with
thousands of word forms, low-resource inflection
was closer to the language learner that has only
studied a small number of inflections—however,
it was closer to L2 learning than L1, as it still
required training sets with lemma–inflection–slot
triplets. The 2017 edition of the shared task also
introduced a paradigm-completion subtask: partici-
pants were given partially observed paradigms and
asked to generate missing forms, based on com-
plete paradigms observed during training. This
could be described as the supervised version of
our unsupervised task, and notably did not require
participants to identify inflected forms from raw
text—a crucial step in L1 learning.

The third year of the shared task (Cotterell et al.,
2018) saw a further extension to more than 100
languages and another step away from supervised
learning, in the form of a contextual prediction task.
This task stripped away inflectional annotations, re-
quiring participants to generate an inflection solely
utilizing a provided lemma and sentential cues.
This task further imitated language learners, but
extended beyond morphological learning to mor-
phosyntactic incorporation. Furthermore, remov-
ing the requirement of an inflectional feature vector
more closely approximated the generation step in
our task. However, it was still supervised in that
participants were provided with lemma–inflection
pairs in context during training. We, in contrast,
made no assumption of the existence of such pairs.

Finally, the fourth iteration of the task (Mc-
Carthy et al., 2019) again concentrated on less-
supervised inflection. Cross-lingual training al-
lowed low-resource inflectors to leverage informa-
tion from high-resource languages, while a con-
textual analysis task flipped the previous year’s
contextual task on its head—tagging a sentence
with inflectional information. This process is very
similar to the retrieval portion of our task. We ex-
tended this effort to not only identify the paradigm
slot of particular word, but to combine learned in-
formation from each class to extend and complete
existing paradigms. Furthermore, we lifted the
requirement of named inflectional features, more
closely approximating the problem as approached
by L1 language learners.

6.2 Future Shared Tasks
Future editions of the shared task could extend this
year’s Task 2 to a larger variety of languages or
parts of speech. Another possible direction is to
focus on derivational morphology instead of or in
addition to inflectional morphology. We are also
considering merging Task 2 with the traditional
morphological inflection task: participants could
then choose to work on the overall task or on either
of the retrieval or generation subproblem.

Finally, we are looking into extending the shared
task to use speech data as input. This is closer to
how L1 learners acquire morphological knowledge,
and, while this could make the task harder in some
aspects, it could make it easier in others.

7 Conclusion

We presented the findings of the SIGMORPHON
2020 shared task on unsupervised morphological
paradigm completion (SIGMORPHON 2020 Task
2), in which participants were asked to generate
paradigms without explicit supervision.

Surprisingly, no team was able to outperform the
provided baseline, a pipeline system, on average
over all test languages. Even though 2 submitted
systems were better on 3 individual languages, this
highlights that the task is still an open challenge for
the NLP community. We argue that it is an impor-
tant one: systems obtaining high performance will
be able to aid the development of human language
technologies for low-resource languages.

All teams that participated in the shared task
devised modular approaches. Thus, it will be easy
to include improved components in the future as,
for instance, systems for morphological inflection
improve. We released all data, the baseline, the
evaluation script, and the system outputs in the
official repository,3 in the hope that this shared
task will lay the foundation for future research on
unsupervised morphological paradigm completion.
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Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
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Abstract

This paper presents DeepSPIN’s submissions
to Tasks 0 and 1 of the SIGMORPHON 2020
Shared Task. For both tasks, we present
multilingual models, training jointly on data
in all languages. We perform no language-
specific hyperparameter tuning – each of our
submissions uses the same model for all lan-
guages. Our basic architecture is the sparse
sequence-to-sequence model with entmax at-
tention and loss, which allows our models to
learn sparse, local alignments while still being
trainable with gradient-based techniques. For
Task 1, we achieve strong performance with
both RNN- and transformer-based sparse mod-
els. For Task 0, we extend our RNN-based
model to a multi-encoder set-up in which sep-
arate modules encode the lemma and inflec-
tion sequences. Despite our models’ lack of
language-specific tuning, they tie for first in
Task 0 and place third in Task 1.

1 Introduction

Character transduction tasks such as grapheme-to-
phoneme conversion (g2p) and morphological in-
flection are important in many practical real-world
applications. However, it is often difficult to train
models for these tasks with deep learning tech-
niques, due to the scarcity of labeled data for most
of the world’s languages. In these circumstances,
it is common to use a non-neural method with a
stronger inductive bias (Novak et al., 2016) or to
generate synthetic data that hopefully ameliorates
the data scarcity problem. We find both of these
choices unsatisfying. First, older non-neural tech-
niques have a higher floor but also a lower ceiling –
previous SIGMORPHON shared tasks have shown
that neural methods outpace them in the presence
of even moderate quantities of data (Cotterell et al.,
2017). Second, although data augmentation has
proven helpful for morphological inflection (Anas-

tasopoulos and Neubig, 2019), any data augmenta-
tion procedure makes implicit assumptions about
language structure: techniques that work for West-
ern languages may fail when confronted with redu-
plication, vowel harmony, or non-concatenative
morphology. The kinds of languages for which la-
beled data are scarce are precisely the languages for
which NLP practitioners’ assumptions are most sus-
pect. Therefore, our submissions to this shared task
make use of a third alternative: multilingual train-
ing. Similarly to hallucinated data, multilingual
training improves results in low resource settings
by acting as a regularizer. However, the models
it yields are more versatile, as they are capable of
good performance on several languages at the same
time. We show that our technique is competitive
with state-of-the-art monolingually trained models
regardless of training data size for both g2p and
morphological inflection. This is despite our ap-
proach having a significant disadvantage from a
tuning perspective – while conventional monolin-
gual models can tune their hyperparameters sepa-
rately for each language, we use exactly the same
model for each language within a submission.

Our contributions are as follows:

• We reimplement gated sparse two-headed at-
tention (Peters and Martins, 2019) and apply
it to a massively multilingual setting. We sub-
mit versions of this model using 1.5-entmax
(Peters et al., 2019) and sparsemax (Martins
and Astudillo, 2016) as softmax alternatives.
We tie for first place in Task 0 (Vylomova
et al., 2020). Among the winners, ours are the
only multilingual models.

• We show that sparse seq2seq techniques, pre-
viously used for morphological inflection and
machine translation (Peters et al., 2019), are
also effective for multilingual g2p. We make
four submissions to Task 1 (Gorman et al.,
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2020), which differ based on their choice of
softmax replacement (1.5-entmax or sparse-
max) and their architecture (RNN or trans-
former). Our strongest models finish third in
word error rate (WER) and second in phoneme
error rate (PER). Our submissions record the
top result on at least one metric for 7 out of
15 languages, including 4 out of 5 surprise
languages.

2 Models

The common theme of the models we submit is
their use of sparse functions for attention weights
and output distributions, in place of the better-
known softmax (Bridle, 1990). Sparse functions
have the following motivations:

• Sparse attention has previously shown success
on morphological inflection (Peters and Mar-
tins, 2019). It allows the decoder to attend to a
small number of source positions at each time
step, unlike the dense softmax. While hard
attention has previously performed well for
character transduction (Aharoni and Goldberg,
2017; Makarov et al., 2017; Wu et al., 2018;
Wu and Cotterell, 2019), it usually requires an
elaborate and slow training procedure. On the
other hand, sparse attention does not require
any training techniques beyond those used for
standard seq2seq models.

• Sparse output distributions allow probability
mass to be concentrated in a small number
of hypotheses. In practice, this happens fre-
quently for morphological inflection (Peters
et al., 2019), sometimes making beam search
exact.

2.1 Entmax and its loss
Our tool for achieving sparsity is the entmax acti-
vation function (Peters et al., 2019), which is pa-
rameterized by a scalar α ≥ 1 and maps a vector
z ∈ Rn onto the n–dimensional probability sim-
plex4n := {p ∈ Rn : p ≥ 0,1>p = 1}:

α-entmax(z) := argmax
p∈4n

p>z + Hα(p), (1)

where

Hα(p) :=

{
1

α(α−1)
∑

j

(
pj − pαj

)
, α 6= 1,

−∑j pj log pj , α = 1
(2)

is the Tsallis α-entropy (Tsallis, 1988). For pur-
poses of the shared task, the key point is that α
controls the sparsity of the distribution. α = 1 re-
covers softmax, while any value greater than 1 can
result in a sparse probability distribution. Sparse-
max (Martins and Astudillo, 2016) is equivalent to
entmax with α = 2.

An important note about models with sparse out-
put layers is that they cannot be trained with cross
entropy loss, as the cross entropy loss becomes in-
finite when the model assigns zero probability to
the gold label. Fortunately, for each value α, there
is a corresponding loss function, which is given by

Lα(y,z) := (p? − ey)
>z + Hα(p

?), (3)

where p? := α-entmax(z). This is an instance of
a Fenchel-Young loss (Blondel et al., 2020).

2.2 Task 0 Architecture

For morphological inflection, we use an RNN-
based two-encoder model with gated attention (Pe-
ters and Martins, 2019). In this model, two separate
bidirectional LSTMs (Graves and Schmidhuber,
2005) encode the lemma character sequence and
the set of inflectional tags. A unidirectional LSTM
(Hochreiter and Schmidhuber, 1997) decoder then
generates the target sequence. The decoder is sim-
ilar to a conventional RNN decoder with input
feeding, except that separate attention mechanisms
compute context vectors independently for each
encoder. A gate function then interpolates the two
context vectors. Like Peters and Martins (2019),
we use a sparse gate, which allows the model to
completely ignore one encoder or the other at each
time step. Each individual attention head uses bi-
linear attention (Luong et al., 2015).

2.3 Task 1 Architecture

We experiment with both RNN-based (Bahdanau
et al., 2015) and transformer-based (Vaswani et al.,
2017) models for g2p. As in Task 0, our RNNs use
input feeding and bilinear attention.

2.4 Handling Multilinguality

Multilingual NLP tasks are intrinsically more dif-
ficult than their monolingual counterparts, as the
correct way to process a sample depends on what
sample the language is in. A simple approach to
multilingual NLP is to append a token to each in-
put sequence identifying the language of the sam-
ple; this has proven effective for both g2p (Peters
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et al., 2017) and morphological inflection (Peters
et al., 2019), and is similar to techniques for multi-
lingual neural machine translation (Johnson et al.,
2017). However, this technique has drawbacks: it
forces the true characters and the language token to
“compete” for attention, and it requires the learned
language embedding to have the same size as the
character embeddings.

Therefore, we use the alternative technique of
concatenating a language embedding to the encoder
and decoder input at each time step. Within an ex-
ample, the language embedding is the same across
all time steps. We do not tie language embeddings
between the encoder (or encoders) and decoder,
allowing each model to learn different language
representations for different purposes.

3 Experiments

3.1 Preprocessing

Task 0 We used character-level tokenization for
lemma and inflected forms. Each inflectional tag
was treated as a separate token.

Task 1 Prior to training, we decomposed com-
pound characters in the grapheme sequences in
all languages. For most languages, this simply
amounts to splitting diacritics and their base char-
acters into separate tokens. For Korean, however,
it makes a major difference due to the unique struc-
ture of the Hangul alphabet. Individual letters in
Hangul, called jamo, are composed into blocks rep-
resenting syllables. Modern Hangul contains 40
jamo, but the number of possible syllables licensed
by Korean phonotactics is much larger. Conse-
quently, a naı̈ve tokenization of the Korean training
data gives a vocabulary size of 834 types, of which
more than 30% occur only once. We suspect that
the lack of jamo tokenization is the reason for the
baselines’ poor performance on Korean.

3.2 Experimental Set-up

We ran experiments with three sparse seq2seq ar-
chitectures: RNNs for inflection, RNNs for g2p,
and transformers for g2p. For entmax, we used
two α values: 1.5 and 2 (i.e. sparsemax). We used
the same α value in both the attention mechanism
and loss function. Combining the architectures and
entmax functions gives six model configurations.
For each, we trained three1 model runs with the

1Due to time constraints, the TRANSFORMER-
SPARSEMAX ensemble used only two models.

Hyperparameters RNN Transformer

Embedding size 108 236
Language embedding size 20 20
Hidden size 512 256
Positionwise feedforward size - 1024
Layers (all enc. and dec.) 2 4
Dropout 0.3 0.3
Batch size 128 words 1600 char.

Table 1: Hyperparameters for all models.

Model Acc. ↑ Lev. Dist. ↓
INFLECTION-ENTMAX-1.5 90.5 0.217
INFLECTION-SPARSEMAX 90.9 0.211

Baseline (Wu et al., 2020) 90.6 0.215

Table 2: Macro-averaged test results for Task 0.

same hyperparameters. At test time, we ensembled
the models by averaging their probabilities.

3.3 Training

We implemented our models with JoeyNMT
(Kreutzer et al., 2019).2 Our hyperparameters are
shown in Table 1. Each model was trained with
early stopping for a maximum of 100 epochs. We
used greedy decoding at validation time, saving
the model if it had the best character error rate so
far. We used the Adam optimizer (Kingma and Ba,
2015). For RNNs, we set the initial learning rate
to 0.001, reducing it by half whenever the model
failed to improve for two consecutive validations.
Validation was performed every 10,000 steps for
Task 0 and every 500 steps for Task 1. Transform-
ers were trained with a linear learning rate warm up
for 4,000 steps, after which the learning rate was
decayed by an inverse square root schedule.

3.4 Results

At test time, we decoded with a beam size of 5.
Task 0 results are shown in Table 2 and Task 1 re-
sults are in Table 3. For Task 0, our sparsemax
model outperforms a very strong baseline, with
entmax not far behind. For Task 1, all of our mod-
els outperform all three baselines. In both tasks,
the baselines were trained monolingually, so they
were able to use language-specific hyperparameter
tuning that is unavailable for multilingual models.

2Our code and configuration files are available at https:
//github.com/deep-spin/sigmorphon-seq2seq.
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Model WER ↓ PER ↓
RNN-ENTMAX-1.5 14.47 2.85
RNN-SPARSEMAX 14.19 2.78
TRANSFORMER-ENTMAX-1.5 14.15 2.92
TRANSFORMER-SPARSEMAX 14.53 2.92

FST Baseline 22.00 4.92
RNN Baseline 16.84 3.99
Transformer Baseline 17.51 4.30

Table 3: Macro-averaged test results for Task 1.
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Figure 1: Single-language development set accuracies
for INFLECTION-SPARSEMAX.

4 Analysis

Next we consider a few questions that multilingual
models raise.

4.1 How much data does inflection need?

All other things being equal, we expect the perfor-
mance of a model to improve as the amount of train-
ing data is increased. And indeed, this is generally
the case, as Figure 1 shows that accuracy is usually
above 90% for languages with more than 10,000
training samples. However, there is much more
diversity of performance at smaller training sizes.
Per-family development set results are shown in Ta-
ble 4. While families like Niger-Congo record very
strong results with modest resources, Germanic
and Uralic struggle despite their large training sets.
It is likely that certain morphological patterns are
easier to learn than others, but we hesitate to make
strong statements. Often results are very different
between closely related languages, such as Danish
(68.20% on dev) and Swedish (99.20%). More re-
search is needed to identify other factors besides
morphological typology that influence results.

#languages Train size Acc.
Family (avg.)

Afro-Asiatic 3 1524.67 94.90
Algic 1 4571.00 71.23
Australian 1 777.00 75.68
Austronesian 5 748.20 79.96
Dravidian 2 2311.00 88.78
Germanic 13 30995.69 87.30
Indo-Aryan 4 17642.50 98.37
Iranian 3 10046.33 96.49
Niger-Congo 10 1651.60 97.32
Nilo-Saharan 1 56.00 100.00
Oto-Manguean 10 7799.30 83.45
Romance 8 16075.12 98.15
Sino-Tibetan 1 3428.00 84.76
Siouan 1 2636.00 89.89
Tungusic 1 5413.00 59.43
Turkic 9 9268.33 94.76
Uralic 16 45805.31 89.21
Uto-Aztecan 1 1123.00 83.75

Table 4: Task 0 dev accuracy by language family for
INFLECTION-SPARSEMAX.

4.2 Crosslingual Character Embeddings

Learning good word representations has been
a prominent subject in NLP for several years
(Mikolov et al., 2013; Peters et al., 2018). Al-
though many models operate at the character level,
relatively little attention has been paid to the char-
acter embeddings themselves. Characters lack se-
mantic meaning, so character embeddings learned
for “semantic” tasks are unlikely to learn any
particular structure. However, Figure 2 shows
that multilingual g2p may be useful for learn-
ing phonologically grounded character represen-
tations: graphemes from different scripts cluster
together if they represent similar phonemes. We
suspect that the multilingual training with phono-
logical supervision is a necessary ingredient for this
to work – characters from different scripts are never
mixed within a single sample, so the grapheme con-
texts in which they occur are completely disjoint.

This idea differs from work on phoneme em-
beddings (Silfverberg et al., 2018; Sofroniev and
Çöltekin, 2018) in that the focus is explicitly on
the graphemes. Grapheme embeddings learned for
phonological tasks may prove useful for translit-
eration, or for processing informally romanized
text (Irvine et al., 2012) jointly with data from the
official orthography.

5 Related Work

Multi-encoder models Several previous works
have considered ways to integrate information from
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Figure 2: t-SNE projection (Maaten and Hinton, 2008) of the grapheme embeddings learned by TRANSFORMER-
1.5. For improved readability, we include only Cyrillic, Greek, and Latin graphemes. Graphemes that tend to
represent similar phonemes are clustered together.

multiple sources in a neural seq2seq model. Al-
though initially proposed as a way to leverage mul-
tiparallel data in machine translation (Zoph and
Knight, 2016), it has also been used for handling
multimodal data, and Ács (2018) applied it to mor-
phological inflection: our architecture is essentially
a sparsified version of this model. Past works have
also considered the effect of different strategies
for merging the attention from the various encoders
(Libovickỳ and Helcl, 2017; Libovickỳ et al., 2018).
This is worth exploring for morphological inflec-
tion, as Peters and Martins (2019) showed that the
behavior of the attention gating mechanism varies
between language families. The optimal strategy is
probably different for different languages.

Phonemes and multilinguality Multilingual
methods have previously been used for low re-
source g2p in conjunction with both non-neural
(Deri and Knight, 2016) and neural (Peters et al.,
2017; Route et al., 2019) architectures. Our model
is essentially identical to Peters et al. (2017)’s,
but with a different mechanism for identifying
the language, inspired by a technique for learning
language embeddings from multilingual language
modeling (Östling and Tiedemann, 2017). A nat-
ural connection is to work that makes use of typo-
logical information in multilingual NLP (Tsvetkov
et al., 2016). However, care needs to be taken when
applying this to g2p: Bjerva and Augenstein (2018)

showed that language representations learned from
multilingual g2p generally do not encode typologi-
cal features because orthographic similarity does
not correlate with typological similarity.

6 Conclusion

We showed that massively multilingual models are
competitive with the individually-tuned state of
the art for morphological inflection and g2p. We
presented the first result applying entmax-based
sparse attention and losses to g2p, showing that it
performed with both RNN and transformer models.
We release our code to facilitate further research.
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Abstract

We present an iterative data augmentation
framework, which trains and searches for
an optimal ensemble and simultaneously
annotates new training data in a self-training
style. We apply this framework on two SIG-
MORPHON 2020 shared tasks: grapheme-
to-phoneme conversion and morphological
inflection. With very simple base models in
the ensemble, we rank the first and the fourth
in these two tasks. We show in the analysis
that our system works especially well on low-
resource languages. The system is available at
https://www.ims.uni-stuttgart.de/

en/institute/team/Yu-00010/.

1 Introduction

The vast majority of languages in the world have
very few annotated dataset available for training
natural language processing models, if at all. Deal-
ing with the low-resource languages has sparked
much interest in the NLP community (Garrette
et al., 2013; Agić et al., 2016; Zoph et al., 2016).

When annotation is difficult to obtain, data aug-
mentation is a common practice to increase training
data size with reasonable quality to feed to pow-
erful models (Ragni et al., 2014; Bergmanis et al.,
2017; Silfverberg et al., 2017). For example, the
data hallucination method by Anastasopoulos and
Neubig (2019) automatically creates non-existing
“words” to augment morphological inflection data,
which alleviates the label bias problem in the gen-
eration model. However, the data created by such
method can only help regularize the model, but
cannot be viewed as valid words of a language.

Orthogonal to the data augmentation approach,
another commonly used method to boost model
performance without changing the architecture is
ensembling, i.e., by training several models of the
same kind and selecting the output by majority
voting. It has been shown that a key to the success

of ensembling is the diversity of the base models
(Surdeanu and Manning, 2010), since models with
different inductive biases are less likely to make
the same mistake.

In this work, we pursue a combination of both
directions, by developing a framework to search
for the optimal ensemble and simultaneously an-
notate unlabeled data. The proposed method is an
iterative process, which uses an ensemble of hetero-
geneous models to select and annotate unlabeled
data based on the agreement of the ensemble, and
use the annotated data to train new models, which
are in turn potential members of the new ensem-
ble. The ensemble is a subset of all trained models
that maximizes the accuracy on the development
set, and we use a genetic algorithm to find such
combination of models.

This approach can be viewed as a type of self-
training (Yarowsky, 1995; Clark et al., 2003), but
instead of using the confidence of one model, we
use the agreement of many models to annotate new
data. The key difference is that the model diversity
in the ensemble can alleviate the confirmation bias
of typical self-training approaches.

We apply the framework on two of the SIGMOR-
PHON 2020 Shared Tasks: grapheme-to-phoneme
conversion (Gorman et al., 2020) and morphologi-
cal inflection (Vylomova et al., 2020). Our system
rank the first in the former and the fourth in the
latter.

While analyzing the contribution of each compo-
nent of our framework, we found that the data aug-
mentation method does not significantly improve
the results for languages with medium or large train-
ing data in the shared tasks, i.e., the advantage of
our system mainly comes from the massive ensem-
ble of a variety of base models. However, when
we simulate the low-resource scenario or consider
only the low-resource languages, the benefit of data
augmentation becomes prominent.
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2 Ensemble Self-Training Framework

2.1 General Workflow
In this section we describe the details of our frame-
work. It is largely agnostic to the type of supervised
learning task, while in this work we apply it on two
sequence generation tasks: morphological inflec-
tion and grapheme-to-phoneme conversion. The
required component includes one or more types of
base models and large amount of unlabeled data.
Ideally, the base models should be simple and fast
to train with reasonable performance, and as di-
verse as possible, i.e., models with different archi-
tectures are better than the same architecture with
different random seeds.

The workflow is described in Algorithm 1. Ini-
tially, we have the original training data L0, unla-
beled data U , and several base model types T 1...k.
In each iteration n, there are two major steps: (1)
ensemble training and (2) data augmentation. In the
ensemble training step, we train each base model
type on the current training data Ln to obtain the
models m1...k

n , and add them into the model pool
(line 4-8). We then search for an optimal subset of
the models from the pool as the current ensemble,
based on its performance on the development set
(line 9). In the data augmentation step, we sample
a batch of unlabeled data (line 10), then use the
ensemble to predict and select a subset of the in-
stances based on the agreement among the models
(line 11). The selected data are then aggregated
into the training set for later iterations (line 12-13).

2.2 Ensemble Search
Simply using all the models as the ensemble would
be not only slow but also inaccurate, since too many
inferior models might even mislead the ensemble,
therefore searching for the optimal combination is
needed. However, an exact search is not feasible,
since the number of combinations grows exponen-
tially. We use the genetic algorithm for heteroge-
neous ensemble search largely following Haque
et al. (2016). In the preliminary experiments, the
genetic algorithm consistently finds better ensem-
bles than random sampling or using all models.

We use a binary encoding such as 0100101011
to represent an ensemble combination (denoted as
an individual in genetic algorithms), where each
bit encodes whether to use one particular model.

As we aim to maximizing the prediction accu-
racy of the ensemble, we define the fitness score of
an individual as the accuracy on the development

Algorithm 1 Ensemble Self-Training (EST)
1: function EST(L, U , T )

Require: labeled data L
Require: unlabeled data U
Require: tools T

2: Initial data L0 = L
3: Model pool M = ∅
4: for n : 0...N do
5: for tk ∈ T do
6: mk

n = TRAIN(tk, Ln)
7: M =M ∪ {mk

n}
8: end for
9: E = SEARCHENSEMBLE(M)

10: Sample u ∼ U
11: l = SELECTDATA(E, u)
12: Ln+1 = AGGREGATEDATA(Ln, l)
13: U = U − l
14: end for
15: return E, Lk

16: end function

set by the ensemble represented by the individual.
Initially, we generate 100 random individuals

into a pool, which is maintained at the size of 100.
Whenever a new individual enters the pool, the
individual with the lowest fitness score will be re-
moved.

Each new individual is created through three
steps: parent selection, crossover, and mutation.
Both parents are selected in a tournament style, in
which we sample 10 individuals from the pool, and
take the one with the highest fitness score. In the
crossover process, we take each bit randomly from
one parent with a rate of 60%, and 40% from the
other. In the mutation process, we flip each bit of
the child with a probability of 1%. To ensure the
efficiency of the ensemble, we also limit the num-
ber of models in the combination to 20: if a newly
evolved combination exceeds 20 models, we ran-
domly reduce the number to 20 before evaluating
the fitness.

In each search, we evolve 100,000 individuals,
and return the one with the highest fitness score.
Since the data size is relatively small, the ensemble
search procedure typically only takes a few sec-
onds.

2.3 Data Selection and Aggregation

In each iteration, we use the current optimal en-
semble to predict a batch of new data, and select a
subset as additional data to train models in the next
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iteration.
There are various heuristics to select new data,

with two major principles to consider: (1) one
should prefer the instances with higher agreement
among the models, since they are more likely to be
correct; (2) instances with unanimous agreement
might be too trivial and does not provide much new
information to train the models.

To strike a balance between the two considera-
tions, we first rank the data by the agreement, but
only take at most half of the instances with unani-
mous agreement as new annotated data. Concretely,
we sample 20,000 instances to predict, and use at
most 3,600 instances as new data if their predic-
tions have over 80% agreement, among which, at
most 1,800 instances have 100% agreement. Note
that we chose the data size of 3,600 because it is
the training data size in the grapheme-to-phoneme
conversion task, and we used the same setting for
the morphological inflection task without tuning.

There are also different ways to aggregate the
new data. One could simply accumulate all the
selected data, resulting in much larger training data
in the later iterations, which might slow down the
training process and dilute the original data too
much. Alternatively, one could append only the se-
lected data from the current iteration to the original
data, which might limit the potential of the models.

Again, we took the middle path, in which we
keep half of all additional data from the previous it-
eration together with the selected data in the current
iteration. For example, there are 3600 additional in-
stances produced in iteration 0, 3600/2 + 3600 =
5400 in iteration 1, 5400/2 + 3600 = 6300 in
iteration 2, and the size eventually converges to
3600× 2 = 7200.

3 Grapheme-to-Phoneme Conversion

3.1 Task and Data

We first apply our framework on the grapheme-to-
phoneme conversion task (Gorman et al., 2020),
which includes 15 languages from the WikiPron
project (Lee et al., 2020) with a diverse typolog-
ical spectrum: Armenian (arm), Bulgarian (bul),
French (fre), Georgian (geo), Hindi (hin), Hungar-
ian (hun), Icelandic (ice), Korean (kor), Lithuanian
(lit), Modern Greek (gre), Adyghe (ady), Dutch
(dut), Japanese hiragana (jpn), Romanian (rum),
and Vietnamese (vie).

As preprocessing, we romanize the scripts of

Japanese and Korean,12 which show improvements
in preliminary experiments. The reason is that the
Japanese Hiragana and Korean Hangul characters
are both syllabic, in which one grapheme typically
corresponds to multiple phonemes, and by roman-
izing them (1) the alphabet size is reduced, and (2)
the length ratio of the source and target sequences
are much closer to 1:1, which empirically improve
the quality of the alignment.

As unlabeled data, we use word frequency lists,3

which are mostly extracted from OpenSubtitles (Li-
son and Tiedemann, 2016). For the two languages
we did not find in OpenSubtitles, Adyghe is ob-
tained from the corpus by Arkhangelskiy and Lan-
der (2016),4 and Georgian is obtained from several
text corpora.56

Since the word lists are automatically extracted
from various sources with different methods and
quality, we filter them by the alphabet of the train-
ing set of each language, and keep at most 100,000
most frequent words.

3.2 Models

As the framework desires the models to be as di-
verse as possible to maximize its benefit, we em-
ploy four different types of base models with dif-
ferent inductive biases.

The first type is the Finite-State-Transducer
(FST) baseline by Lee et al. (2020), based on the
pair n-gram model (Novak et al., 2016).

The other three types are all variants of Seq2Seq
models, where we use the same BiLSTM encoder
to encode the input grapheme sequence. The first
one is a vanilla Seq2Seq model with attention
(attn), similar to Luong et al. (2015), where the
decoder applies attention on the encoded input and
use the attended input vector to predict the output
phonemes.

The second one is a hard monotonic attention
model (mono), similar to Aharoni and Goldberg
(2017), where the decoder uses a pointer to select
the input vector to make a prediction: either produc-

1https://pypi.org/project/pykakasi/
2https://pypi.org/project/

hangul-romanize/
3https://github.com/hermitdave/

FrequencyWords/
4https://github.com/timarkh/

uniparser-grammar-adyghe
5https://github.com/akalongman/

geo-words
6Georgian is actually in OpenSubtitles, but we accidentally

missed it because of a confusion with the language code.
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ing a phoneme, or moving the pointer to the next
position. The monotonic alignment of the input
and output is obtained with the Chinese Restaurant
Process following Sudoh et al. (2013), which is pro-
vided in the baseline model of the SIGMORPHON
2016 Shared Task (Cotterell et al., 2016).

The third one is essentially a hybrid of hard
monotonic attention model and tagging model
(tag), i.e., for each grapheme we predict a short
sequence of phonemes that is aligned to it. It re-
lies on the same monotonic alignment for training.
This model is different from the previous one in
that it can potentially alleviate the error propaga-
tion problem, since the short sequences are non-
autoregressive and independent of each other, much
like tagging.

For each of the three models, we further cre-
ate a reversed variant, where we reverse the input
sequence and subsequently the output sequence.
On average, the best model types are the tagging
models of both directions.

Since we need to train many base models, we
keep their sizes at a minimal level: the LSTM en-
coder and decoder both have one layer, all dimen-
sions are 128, and no beam search is used. As a
result, each base model has about 0.3M parameters
and takes less than 10 minutes to train on a single
CPU core.

3.3 Experiments

With the ensemble self-training framework, we
train 14 base models at each iteration: FST mod-
els with 3-grams and 7-grams (fst-3, fst-7),
two instances for each direction of the attention
model (attn-l2r, attn-r2l), hard monotonic
model (mono-l2r, mono-r2l), and tagging
model (tag-l2r, tag-r2l).

Table 1 shows the number of iterations when
the optimal ensemble is found and the number of
models it contains, as well as the Word Error Rate
(WER) and Phone Error Rate (PER) on the test set,
in comparison to the Seq2Seq baseline provided by
the organizer. Generally, our system outperforms
the strong baseline in 13 out of 15 languages, and
the gap for Korean is especially large, due to the
romanization in our preprocessing. For three lan-
guages (Hungarian, Japanese, and Lithuanian), the
best ensemble is in the 0-th iteration, which means
the augmented data for them is not helpful at all.

Our ensemble system rank the first in terms of
both WER and PER on the test set, with an average

IMS Seq2Seq
#iter #model WER PER WER PER

ady 4 20 25.33 5.79 28.00 6.53
arm 5 20 12.67 2.94 14.67 3.49
bul 4 10 22.22 4.85 31.11 5.94
dut 2 13 13.56 2.36 16.44 2.94
fre 1 17 6.89 1.60 6.22 1.32
geo 6 20 24.89 4.57 26.44 5.14
gre 1 12 18.67 2.97 18.89 3.30
hin 1 20 5.11 1.20 6.67 1.47
hun 0 5 5.11 1.12 5.33 1.18
ice 5 20 9.33 2.04 10.00 2.36
jpn 0 6 5.33 1.26 7.56 1.79
kor 4 8 26.22 4.38 46.89 16.78
lit 0 5 20.00 3.63 19.11 3.55
rum 1 8 10.22 2.23 10.67 2.53
vie 5 20 1.56 0.48 4.67 1.52

AVG 3 14 13.81 2.76 16.84 3.99

Table 1: Evaluation on the test set of the grapheme-to-
phoneme conversion task, comparing our system with
the best performing seq2seq baseline. The first two
columns are the number of iterations when the best en-
semble is found and the number of base models in the
ensemble.

WER of 13.8 and PER of 2.76. However, a large
ensemble of simple models is not exactly compara-
ble with other single-model systems, and it is thus
difficult to derive a conclusion from the evaluation
alone. We are more interested in understanding
how much of the improvement comes from the en-
semble and its model diversity and how much from
the data augmentation process.

For this purpose, we run our framework in two
additional scenarios. In the first scenario, we
reduce the diversity of the models (denoted as
-diversity), where we only use the base model
tag-l2r and tag-r2l, which performs the best
among others, but keep the same number of models
trained in each iteration as before. In the second
scenario, we do not perform data augmentation (de-
noted as -augmentation), i.e., all models are trained
on the same original training data in each iteration.

Table 2 shows the WER on the development set
of the default scenario and the two experimental
scenarios. For each scenario, we show the average
WER of all models and the WER of the ensemble
from the initial iteration and the best iteration.

We can observe three trends in the table. (1) In
all scenarios, there is a large gap between the aver-
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default -diversity -augment
average ensemble average ensemble average ensemble

init best init best init best init best init best init best

ady 28.9 27.7 22.4 21.6 26.6 27.2 22.9 22.2 28.7 28.1 22.7 20.9
arm 18.8 17.4 13.1 11.3 16.1 15.4 12.2 11.8 18.7 18.1 12.2 10.7
bul 36.8 36.2 25.3 20.0 35.5 35.5 27.6 23.8 37.3 36.1 24.2 18.7
dut 19.5 18.8 11.8 10.4 18.5 18.8 12.2 10.9 19.7 19.6 11.6 9.8
fre 15.1 15.7 6.0 5.6 13.2 13.6 6.7 6.2 15.6 15.2 7.1 5.1
geo 26.9 26.7 20.2 17.8 26.6 25.1 20.7 18.4 27.0 26.8 19.6 16.7
gre 20.1 18.4 13.8 12.7 17.3 16.8 12.7 11.3 19.9 19.8 12.9 11.8
hin 9.7 9.0 4.0 3.6 8.1 6.9 4.2 4.0 9.7 9.3 4.0 3.6
hun 4.5 4.5 2.0 2.0 4.0 3.9 2.4 2.2 4.7 4.7 2.4 2.4
ice 15.3 14.1 6.4 5.6 11.9 11.4 5.6 5.3 14.8 14.6 6.2 5.6
jpn 8.0 8.0 6.0 6.0 7.7 7.7 6.2 6.2 8.0 8.0 5.8 5.8
kor 25.9 23.4 16.2 14.4 20.9 20.7 16.9 16.0 25.9 25.6 16.4 14.2
lit 24.5 24.5 18.4 18.4 22.7 22.7 18.2 18.2 24.4 24.9 18.2 16.7
rum 14.6 13.7 10.2 9.8 12.2 12.2 10.0 9.3 14.4 14.5 9.8 8.7
vie 6.0 5.8 1.1 0.9 5.3 5.3 2.0 2.0 6.0 6.2 1.3 0.7

AVG 18.3 17.6 11.8 10.7 16.4 16.2 12.0 11.2 18.3 18.1 11.6 10.1

Table 2: WER on the development set in the three scenarios (default, reduced diversity, and without data aug-
mentation). In each scenario, we show the average model performance and the ensemble performance in the first
iteration and the best iteration.

age model performance and the ensemble perfor-
mance, which clearly demonstrates the benefit of
the ensemble. (2) In the -diversity scenario, the av-
erage model performance is better than the default
scenario, but the ensemble performance is worse
than the default scenario, which demonstrates the
importance of the model diversity. (3) The aver-
age model performance in the default scenario has
clear improvement as opposed to the random fluctu-
ation in the -augmentation scenario, which means
that the data augmentation can indeed benefit some
individual models. However, to our surprise and
disappointment, the ensemble performance of the
-augmentation scenario is even slightly better than
the default scenario, which casts a shadow over the
data augmentation method in this framework.

As our framework is designed for low-resource
languages, and the data size of 3,600 in the task
is already beyond low-resource, we therefore ex-
periment in a simulated low-resource scenario.7

For each language, we randomly sample 200 in-
stances as the new training data, while ensuring
that all graphemes and phonemes in the training

7Consider the Swadesh list (Swadesh, 1950) with only
100-200 basic concepts/words, which could be thought of as
a typical low-resource scenario. In the WikiPron collection,
more than 20% of the 165 languages have less than 200 words.

data appear at least once.
Table 3 shows the WER of the default and -

augment scenario in the low-resource experiment.
Similar to the previous experiment, the ensemble
greatly reduces errors of individual models. More
importantly, the individual models benefit signifi-
cantly from the augmented data (from 54.2 to 35.5),
and the final ensemble further reduces the error rate
to 25.2. The WER in the default scenario is much
better than the -augment scenario (25.2 vs 29.2),
which means that the data augmentation is indeed
beneficial when the training data is scarce.

4 Morphological Inflection

4.1 Task and Data

We also apply our framework on the morphologi-
cal inflection task (Vylomova et al., 2020), where
the input is a combination of lemmata and mor-
phological tags according to the UniMorph schema
(Sylak-Glassman et al., 2015), and the output is
the inflected word forms. There are 90 languages
with various data sizes, ranging from around 100
to 100,000.

As unlabeled data for the augmentation process,
we simply recombine the lemmata and morphologi-
cal tags of the same category in the training set (i.e.,
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default -augment
average ensemble average ensemble
init best init best init best init best

ady 62.3 41.3 44.4 30.0 63.0 62.1 44.4 37.8
arm 42.6 30.2 28.0 22.9 42.5 41.9 28.9 23.3
bul 68.8 58.0 53.6 48.4 67.4 66.8 53.3 47.3
dut 64.9 37.8 45.6 27.6 64.7 63.2 43.1 32.4
fre 62.0 34.0 34.9 18.9 61.8 61.3 35.1 29.3
geo 40.5 34.4 29.8 26.0 40.6 39.6 30.4 24.7
gre 56.8 37.7 37.3 28.0 57.4 55.8 39.3 31.3
hin 53.8 22.2 32.2 12.7 53.5 52.8 33.8 24.4
hun 42.2 19.7 21.8 12.7 42.8 41.6 21.6 16.7
ice 71.1 51.1 53.8 42.9 73.6 70.4 55.8 49.8
jpn 41.4 16.5 19.8 11.1 42.1 40.4 21.3 15.6
kor 53.4 39.4 36.9 30.4 54.6 53.1 38.2 32.9
lit 66.3 51.8 49.1 38.4 67.4 65.9 48.7 39.8
rum 37.5 24.7 22.9 16.4 38.1 37.1 23.1 18.2
vie 50.3 33.4 23.8 11.1 50.6 49.3 21.6 14.4

AVG 54.2 35.5 35.6 25.2 54.7 53.4 35.9 29.2

Table 3: WER on the development set for the simulated
low-resource experiment in the scenarios with and with-
out data augmentation. In each scenario, we show the
average model performance and the ensemble perfor-
mance in the first iteration and the best iteration.

a verb lemma only combines with all morphologi-
cal tags for verbs), with a maximum size of 100,000
for each language. For many languages, however,
the recombination is as scarce as the original data
since they are from (almost) complete inflection
paradigms of a few lemmata. In total, we obtained
1,422,617 instances, which is slightly smaller than
the training set with 1,574,004 instances. Since
the additional data come directly from the original
training data, we consider it the restricted setting,
where no external data sources or cross-lingual
methods are used.

4.2 Models
Due to our late start in this task, we only imple-
mented two types of base models, paired with left-
to-right and right-to-left generation order. The first
type is a Seq2Seq model with soft attention, very
similar to the one in the grapheme-to-phoneme con-
version task, except that an additional BiLSTM is
used to encode the morphological tags. The second
type is a hard monotonic attention model, also sim-
ilar as before, but instead of using the alignment
with the Chinese Restaurant Process, we use Lev-
enshtein edit scripts to obtain the target sequence,

Model Accuracy

CULing-01-0 0.912
deepspin-02-1 0.909
uiuc-01-0 0.905
IMS-00-0 0.892

mono 0.858
trm 0.901
mono-aug 0.888
trm-aug 0.903

Table 4: Evaluation on the test set of the morphological
inflection task, comparing our system to three winning
systems and four baselines.

since the input and the output share the same al-
phabet. At each step, the model either outputs
a character from the alphabet, or copies the cur-
rently pointed input character, or advances the in-
put pointer to the next position. In total, we train 8
models per iteration, i.e., two models with different
random seeds for each variant. The hyperparam-
eters are largely the same as in the previous task,
and each model has about 0.5M parameters.

4.3 Experiments

Table 4 compares the average test accuracy between
our system (IMS-00-0) and the systems of the win-
ning teams as well as the baselines. The baselines
include a hard monotonic attention model with la-
tent alignment (Wu and Cotterell, 2019) and a care-
fully tuned transformer (Vaswani et al., 2017; Wu
et al., 2020), noted as mono and trm. They are ad-
ditionally trained with augmented data by Anasta-
sopoulos and Neubig (2019), noted as mono-aug
and trm-aug.

On average, our system ranks the fourth among
the participating teams and the third in the re-
stricted setting (without external data source or
cross-lingual methods). It outperforms the hard
monotonic attention baseline, but not the trans-
former baseline. More details on the systems and
their comparisons are described in Vylomova et al.
(2020). Compared to the previous task, we used
fewer base models, in terms of both number and
diversity, which partly explains the relatively lower
ranking.

In this task, the data size ranges across several
magnitude for different languages. We thus analyze
the performance difference of our system against
the two baselines with their own data augmentation
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Figure 1: Performance difference between our system
and the two baselines with data augmentation, with re-
spect to the training data size.

(mono-aug and trm-aug) with respect to the
original training data size, as illustrated in Figure 1.
We removed the trivial cases in which both models
achieved 100% accuracy.

Clearly, our system performs better for lan-
guages with smaller training data size, while losing
to the powerful baseline models when the data size
is large. This again demonstrates the benefit of our
framework for low-resource languages.

We also mark the major language families to see
whether they play a role in the performance differ-
ence, since different inductive biases might work
differently on particular language families. For
example, the right-to-left generation order might
work better on languages with inflectional prefixes.
However, we could not find any convincing pat-
terns regarding language families in the plot, i.e.,
there is not a language family in the data set where
our model always performs better or worse than the
baseline. The only exception is the Austronesian
family, where our system generally outperforms

the baselines, but they all have relatively small data
size, which is a more probable explanation.

Note that our augmentation method is theoreti-
cally orthogonal to the hallucination method (Anas-
tasopoulos and Neubig, 2019), and could be com-
bined to further improve the performance of the
baseline models for low-resource languages.

5 Conclusion

We present an ensemble self-training framework
and apply it on two sequence-to-sequence genera-
tion tasks: grapheme-to-phoneme conversion and
morphological inflection. Our framework includes
an improved self-training method by optimizing
and utilizing the ensemble to obtain more reliable
training data, which shows clear advantage on low-
resource languages. The optimal ensemble search
method with the genetic algorithm easily accom-
modates the inductive biases of different model
architectures for different languages.

As a potential future direction, we could incor-
porate the framework into the scenario of active
learning to reduce annotator workload, i.e., by sug-
gesting plausible predictions to minimize the need
of correction.
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Abstract
This paper describes the CMU-LTI submis-
sion to the SIGMORPHON 2020 Shared Task
0 on typologically diverse morphological in-
flection. The (unrestricted) submission uses
the cross-lingual approach of our last year’s
winning submission (Anastasopoulos and Neu-
big, 2019), but adapted to use specific trans-
fer languages for each test language. Our
system, with fixed non-tuned hyperparameters,
achieved a macro-averaged accuracy of 80.65
ranking 20th among 31 systems, but it was still
tied for best system in 25 of the 90 total lan-
guages.

1 Introduction

Morphological inflection is the process that creates
grammatical forms (typically guided by sentence
structure) of a lexeme/lemma. As a computational
task it is framed as mapping from the lemma and
a set of morphological tags to the desired form,
which simplifies the task by removing the necessity
to infer the form from context. For an example
from Asturian, given the lemma aguar and tags
V;PRS;2;PL;IND, the task is to create the indicative
voice, present tense, 2nd person plural form aguà.

Let X = x1 . . . xN be a character sequence
of the lemma, T = t1 . . . tM a set of morpho-
logical tags, and Y = y1 . . . yK be an inflec-
tion target character sequence. The goal is to
model P (Y | X,T). The problem has been stud-
ied in various settings through the SIGMORPHON

shared tasks (Cotterell et al., 2016, 2017, 2018; Mc-
Carthy et al., 2019), with the 2019 edition focusing
in particularly challenging low-resource scenarios.
The 2020 edition (Vylomova et al., 2020) focused
on generalization of systems across typologically
diverse languages, regardless of data size.

In our submission we built upon our previous
work (Anastasopoulos and Neubig, 2019), utilizing
cross-lingual transfer from related languages, data
hallucination, and a series of training techniques
and regularizers. The defining change was that
we attempted to create language-specific regimes
for each test language, depending on the particular
characteristics of the language, on the data avail-
ability for the particular test language and the avail-
ability of other related language data. As a result,
for some high-resource languages we submitted
systems without cross-lingual transfer, for some
we used a single related high resource language,
and for some we used multiple related languages.
Last, for a few test languages we augmented our
datasets with romanized versions of the training
data, an approach that has shown promising results
in concurrent work (Murikinati et al., 2020).

Our submissions are very competitive in 25 of
the 90 test languages, with performance statistically
significant similar to the best performing system,
but fall behind in many other languages. We sus-
pect that this is due to our not tuning of the system’s
hyperparameters towards higher-resource settings.
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Language Accuracy Language Accuracy Language Accuracy Language Accuracy

aka 99.1 fas 96.2 lld 97.7 sna 100.0
ang 75.4 fin 97.3 lud 53.7 sot 100.0
ast 91.4 frm 98.8 lug 90.6 swa 100.0
aze 78.5 frr 85.5 mao 69.0 swe 95.4
azg 89.0 fur 98.3 mdf 92.7 syc 91.6
bak 97.4 gaa 100.0 mhr 90.8 tel 94.9
ben 98.6 glg 97.4 mlg 100.0 tgk 93.8
bod 84.7 gmh 90.1 mlt 88.7 tgl 64.0
cat 97.5 gml 60.8 mwf 70.3 tuk 85.4
ceb 84.7 gsw 84.9 myv 93.0 udm 97.5
cly 81.0 hil 92.4 nld 97.5 uig 91.9
cpa 83.5 hin 98.4 nno 74.2 urd 36.3
cre 44.9 isl 95.3 nob 75.1 uzb 51.5
crh 97.2 izh 80.8 nya 100.0 vec 98.8
ctp 50.2 kan 75.1 olo 91.5 vep 79.3
czn 81.3 kaz 88.5 ood 79.0 vot 77.2
dak 89.7 kir 88.4 orm 93.6 vro 57.3
dan 72.3 kjh 98.8 ote 97.0 xno 90.2
deu 92.8 kon 98.1 otm 97.4 xty 90.2
dje 100.0 kpv 95.9 pei 71.2 zpv 82.9
eng 96.5 krl 95.0 pus 68.6 zul 89.7
est 93.5 lin 100.0 san 92.6
evn 55.0 liv 93.1 sme 97.9

Table 1: Accuracy of our system on every language. We highlight the languages where our system was statistically
equal to the best system (with p < 0.005).

2 System Description

Our system is the same as the one of Anasta-
sopoulos and Neubig (2019): a neural multi-source
encoder-decoder (which reads in the lemma and
the tag sequences in a disentangled manner using
two separate encoders) with a task-specific atten-
tion mechanism. We skip providing further redun-
dant information and we direct the interested reader
to (Anastasopoulos and Neubig, 2019) for all de-
tails. It is important to note, however, that we did
not tune any model hyperparameters for our sub-
missions (which we suspect contributed to the poor
performance of our system in some languages);
we used the default parameters from the system’s
distribution 1 which are tuned towards extremely
low-resource settings.

Here, we provide an exhaustive list of modifi-
cations to the general pipeline that we devised for
specific languages and language families.

1https://github.com/antonisa/inflection

Data Hallucination for tonal languages The
data hallucination process of Anastasopoulos and
Neubig (2019), inspired by Silfverberg et al. (2017),
samples random characters from the language’s al-
phabet to replace characters in stem-like regions
discovered from the training examples through a
simple alignment-based heuristic.

Tonal languages like Eastern Highland Chatino
(cly), importantly, often denote the syllable’s tone
through superscript diacritics: take the Eastern
Highland Chatino lemma sqwe14 and its second
person singular number habitual mood inflected
form nsqwe20. The data hallucination technique
would identify the substring sqwe as a stem-like
region, and replace its characters with random ones.
A completely random substitution, however, could
lead to the creation of nonsensical syllables, if tone
diacritics are inserted instead of letter characters
e.g. if we hallucinated a s3ae14 lemma for the
above example. Similarly, if a stem-like region
includes a tone diacritic, we would not want to
randomly replace it with non-diacritic characters,
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lest we end up with badly formed syllables without
tone information.

To avoid these issues, we restrict the random sub-
stitutions for Oto-Manguean languages with tone
diacritics, so that we only sample tone diacritics if
we are substituting a tone diacritic (and similarly
for letter characters). We have found this approach
to significantly improve results in previous work
on morphological inflection for Eastern Highland
Chatino (Cruz et al., 2020).

Single-Language Systems for High Resource
Languages For languages with more than 20,000
training examples, we decided to not use cross-
lingual transfer nor data hallucination, as sys-
tems in previous SIGMORPHON shared tasks
achieved very competitive performance on such
high-resource settings without these additions. For
languages with less than 20,000 but more than
10,000 training examples, we used our data halluci-
nation process to create 10,000 additional training
examples to be used for training.

Cross-Lingual Transfer from a Single Lan-
guage For some languages we decided to use a
single, high-resource related language to combine
into our training to perform cross-lingual transfer,
along with data hallucination. We based most these
decisions in previous results (mainly from (Anas-
tasopoulos and Neubig, 2019)), but some where
our semi-arbitrary experimenter’s intuitions. We
provide a complete list of these settings:

• for Middle High German (gmh) we used Ger-
man (deu),
• for Middle Low German (gml) we used Ger-

man (deu) also bypassing data hallucination,
• for Swiss German (gsw) we used German

(deu),
• for North Frisian (frr) we used Dutch (nld),
• for Kannada (kan) we used Telugu (tel),
• for Telugu (tel) we used Kannada (kan),
• for Asturian (ast) we used Galician (glg),
• for Friulian (fur) we used French (fra),
• for Ladin (lad) we used Friulian (fur),
• for Venetian (vec) we used Italian (vec),
• for Anglo-Norman (xno) we used Middle

French (frm),
• for Azerbaijani (aze) we used Turkish (tur),
• for Khakas (kjh) we used Turkish (tur), but

not including data hallucination, and
• for Võro (vro) we used Estonian (est).

Family Sub-family Acc.

Afro-Asiatic 91.3
Semitic 90.1

Algic 44.9
Turkic 83.3

Austronesian 82.0
Gr. Ctr.

80.4
Philippines

Dravidian 85.0

IndoEuropean 87.5
Germanic 84.3
Romance 96.3
Iranian 86.2
Indic 81.5

Niger-Congo 97.7
Bantoid 97.3

Kwa 99.5

Oto-Manguean 82.4
Zapotecan 73.9
Otomian 97.2

Sino-Tibetan 84.7
Siouan 89.7

Songhay 100.0
Southern Daly 70.3

Uralic 86.7
Mordvin 92.8
Finnic 81.9
Permic 96.7

Uto-Aztecan 79.0
Tungusic 55.0

Table 2: Results per language Family/Genus.

Multiple-Language Cross-Lingual Transfer
We submitted systems with unique transfer
language combinations for extremely low-resource
languages for which several very related languages
were available (all systems also included halluci-
nated data in the test language). Specifically:

• for Ingrian (izh) we used Estonian (est), Votic
(vot), and a random sample (20,000 instances)
from Finnish (fin) data,
• for Votic (vot) we used Estonian (est), Ingrian

(izh), and a random sample (20,000 instances)
from Finnish (fin) data,
• for Urdu (urd) we used Hindi (hin) and Ben-

gali (ben),
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• for Bashkir (bad) we used Turkish (tur),
Kazakh (kaz), and Kyrgyz (kir),
• for Crimean Tatar (crh) we used Turkish (tur),

Kazakh (kaz), and Kyrgyz (kir),
• for Kazakh (kaz) we used Turkish (tur),

Bashkir (bad), and Kyrgyz (kir),
• for Kyrgyz (kir) we used Turkish (tur),

Bashkir (bad), and Kazakh (kaz),
• for Uighur (uig) we used Turkish (tur) and

Uzbek (uzb), and
• for Ludian (lud) we used 20,000 random sam-

ples from Karelian (krl) and Veps (vep).

Romanization for Different Scripts Last, we
experimented with cross-lingual transfer and
transliteration of related languages written in dif-
ferent script. The motivation lies in the observation
made by Anastasopoulos and Neubig (2019) that
often cross-lingual transfer results in smaller im-
provements if the transfer and the test language
do not share the same script, even if the lan-
guages are related. They bring Arabic–Maltese
and Kurmanji–Sorani as possible examples. In
concurrent work (Murikinati et al., 2020) we exper-
imented with transliterating the transfer language
into the test language’s script, with encouraging re-
sults in low-resource settings. Alternatively, if the
training languages use the latin script but the test
language does not, we found that that by romaniz-
ing the test language training data and concatenat-
ing them as another language (along with the data
in the original script) also helped. We applied these
strategies on the following language pairs.

Transliterating a transfer language into the test
language’s script:

1. for Maltese (mlt) we used Italian (ita) and
romanized Hebrew (heb),

2. for Oromo (orm) we used romanized Arabic
(ara) and romanized Hebrew (heb), and

3. for Bengali (ben) we used Sanskrit (san),
Hindi (hin), and Sanskrit transliterated into
the Bengali script using the Indic NLP li-
brary2 (Kunchukuttan, 2020).

Romanizing the test language training data and
training with both romanized and original, along
with more romanized, related languages:

1. for Classical Syriac (syc) we used romanized
Arabic (ara) and romanized Hebrew (heb), as

2https://github.com/anoopkunchukuttan/
indic_nlp_library

well as romanized Classical Syriac (Classical
Syriac originally uses a distinct script),

2. for Pashto (pus) we used romanized Farsi (fas)
and romanized Pashto, while

3. for Tajik (tgk) we used romanized Farsi (fas)
and romanized Tajik.

3 Results

Table 1 lists the accuracy of our submitted sys-
tem in every language. We also report results per
language family and genus in Table 2, to further
facilitate an equitable evaluation across language
families. Our system achieves a macro-averaged ac-
curacy of 86.6% with a standard deviation of 14.3.
Even though it does not use self-attention and we
did not tune any hyper-parameters, our system still
achieved competitive performance, tying for first in
25 of the 90 total languages (it still however does
not outperform the best baseline system (Wu et al.,
2020)).

These include languages that were generally
easy for all systems, such as the Austronesian and
the Niger-Congo ones. However, they also include
the extremely low-resource languages like Ludian
(lud), Võro (vro), and Middle Low German (gml),
where we suspect that our system performed en par
with the more sophisticated (and we suspect, tuned)
systems due to our informed selection of languages
for cross-lingual transfer.

The two languages where our system performs
the worst are Algic (Cree) and Tungusic (Evenki).
We suspect this is due to the fact that the data hal-
lucination technique, which is crucial for such low
resource settings, is not appropriate for capturing
the vowel harmony of Evenki along with its agglu-
tinating morphological patterns – the hallucinated
data do not follow these patterns and hence do not
guide the model towards learning them. As for
Cree, we suspect that the problem lies again in the
data hallucination process: the polysynthetic and
fusional nature of Cree verb inflected forms is too
complicated to be modeled by the simple character-
level alignment model which is the first step for
hallucination.

4 Conclusion and Future Work

The performance of our system in the 2020 SIG-
MORPHON Shared Task leaves many questions
unanswered and several avenues to explore in fu-
ture work. Regarding the choice of languages to
use for cross-lingual transfer, we will further in-
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vestigate the use of automatic suggestion systems
such as the one of Lin et al. (2019). With re-
gards to modeling, we will update our model to use
sparsemax (Martins and Astudillo, 2016), which
can facilitate exact search and hopefully lead to
better results (Peters and Martins, 2019).

As we anticipate and hope the shared task and
the whole community will become more multilin-
gual in the future, in the future we will employ
the language/task selection method of Xia et al.
(2020), which will allow us to tune the systems in a
small subset of languages that will generalize well
in all others. Similarly, we will employ more so-
phisticated techniques for learning in multilingual
settings, such as differential data selection (Wang
et al., 2019, 2020) which will allow us to optimize a
single model to multiple model objectives (namely,
each target language).
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Abstract
In this paper, we describe our three submis-
sions to the SIGMORPHON 2020 shared task
1 on grapheme-to-phoneme conversion for 15
languages. We experimented with a single
multilingual Transformer model. We observed
that the multilingual model achieves results
on par with our separately trained monolin-
gual models and is even able to avoid a few
of the errors made by the monolingual models.

1 Introduction
Grapheme-to-phoneme conversion is the task of
predicting the phonemic representation for a given
orthographic word, where a phoneme is the small-
est unit of sound which can distinguish one word
from another. In many languages, some phonemes
have different realizations depending on their con-
text, and these variants are called allophones.
While the task is about predicting phonemes and
not allophones, in fact most datasets (e.g., the
datasets for Hungarian, Bulgarian, and Armenian)
also contain allophones. However, since the distri-
bution of allophones conditioned on the context is
learnable, this is not an issue.
The shared task training data consists of 15 lan-

guages which have diverse phonologies, ranging
from tonal languages to languages with glottalized
consonants, and they are written in eight different
writing systems. The data comes from the English
version of Wiktionary. Each training set contains
3600 words, and each development and test set
contains 450 words. The official metrics for the
task are Word Error Rate (WER) and Phoneme Er-
ror Rate (PER).
A multilingual approach for grapheme-to-

phoneme conversion has been explored by Milde
et al. (2017). They propose a sequence-to-
sequence multilingual model that benefits from

training on additional phonetic representations for
the same language (which was not permitted in
our shared task).
The Transformer (Vaswani et al. 2017) with

its attention mechanism has been applied very
successfully to machine translation tasks, and it
was also used for grapheme-to-phoneme conver-
sion. Yolchuyeva et al. (2019) suggested using
a Transformer-based approach for grapheme-to-
phoneme conversion andYu et al. (2020) proposed
a multilingual Transformer model for languages
with different writing systems by employing byte-
level input representation.
In our submission to the shared task, we explore

the performance of a multilingual Transformer
model with augmented input representation which
can transduce a word from any language present
in the training data into its IPA representation.

2 Linguistic Background
2.1 IPA
The phonemic representation in this task uses the
International Phonetic Alphabet (IPA). Interest-
ingly, there is an issue with IPA which is lack of
“orthography”. This might seem surprising given
that the IPA aims at representing the pronunciation
of words with more rigor than typical orthogra-
phies. However, different levels of depth of anal-
ysis are possible with IPA, and this makes incon-
sistent use of symbols among annotators unavoid-
able. To give an example, Bulgarian exhibits a
voiceless coronal plosive /t/~/t̪/. The phoneme is
articulated as a dental plosive in Bulgarian. Some-
what randomly, the IPA provides an atomic sym-
bol for the voiceless alveolar plosive (/t/), but only
a composed symbol for the voiceless dental plo-
sive (/t̪/). In principle, /t̪/ would be the correct
representation for the phoneme in question, but
since there is no phonemic contrast between den-
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tal and alveolar articulation in Bulgarian, a sim-
ple /t/ suffices to represent the voiceless coronal
plosive phoneme in Bulgarian. Hence, as is ex-
pected, the phoneme is not transcribed consistently
in the training data; while /t̪/ is used 1588 times,/t/
is applied 681 times. Similar issues are found
frequently for other phonemes, and for other lan-
guages.

2.2 Languages
In our monolingual baseline models trained with
the Transformer baseline published by the task or-
ganizers, the WER (PER) ranged from only 3.78
(0.66) for Hungarian up to 40.00 (16.38) for Ko-
rean. Seeing these huge differences in perfor-
mance, it seemed worth analyzing the difficulties
faced by the model for the three languages with
the worst WER, viz. Korean (40.00), Bulgarian
(30.67), and Georgian (28.44).

2.2.1 Georgian
We were particularly surprised to see Georgian
among the seemingly most difficult languages.
Georgian has a fully phonemic alphabet; each
character represents exactly one phoneme, and
each phoneme is represented by exactly one char-
acter (Hewitt 1995). Grapheme-to-phoneme con-
version (and phoneme-to-grapheme conversion)
for Georgian is thus a trivial task and can be done
in principle with 100% accuracy using a simple 1-
to-1 look-up table.
We actually implemented this look-up table, and

this allowed us to identify and quantify the is-
sues in the Georgian dataset. We found that there
are three phonemes that are each inconsistently
represented by two IPA symbols (and distributed
roughly 50/50): i~ɪ; x~χ; ɣ~ʁ. The difference be-
tween these symbols is neither phonemic nor allo-
phonic. Rather, it is caused by different annotators
using different representation for a given phoneme,
in line with the orthographic weakness of the IPA
outlined above in Section 2.1.
We reported these data inconsistencies,1 and we

prepared a consistent dataset produced with our
look-up table. Together with the organizers, we
planned to update the Georgian data directly on
Wiktionary and then re-retrieve the training data
from there. Unfortunately, bulk uploading to Wik-
tionary is not trivial, and it was not possible for
us to update the data before the task deadline. For

1https://github.com/sigmorphon/2020/issues/8

the current task, it means that the WER cannot be
substantially reduced for Georgian due to these in-
consistencies.

2.2.2 Bulgarian
Bulgarian exhibits vowel reduction in unstressed
syllables (similar phenomena are found, for in-
stance, in English, German, and Russian), which
leads to many allophones for vowels in unstressed
positions (Leafgren 2020). These allophones
should not be present in a purely phonemic tran-
scription, however they are in the given training
set. Furthermore, the pronunciation of a vowel in
Bulgarian depends on the position of stress, yet
Bulgarian word stress can fall on any syllable and
is not completely predictable. We experimented
with a self-written tool which predicts the stress
position in Bulgarian based on heuristics, however
the WER could only be decreased marginally us-
ing a stress-annotated training set, which is why
we abandoned this approach. Similar issues like
the ones discussed above for Georgian are present
in the Bulgarian training data, and these were also
discussed on GitHub.2 However, these issues are
somewhat more difficult to solve automatically
compared to Georgian.

2.2.3 Korean
Korean uses an alphabet that provides a symbol for
each consonant and for each vowel, yet it groups
symbols into square syllable blocks, which makes
it look somewhat close to Chinese and Japanese
writing, although it is much simpler. By default,
Unicode encodes Korean in syllable blocks and
not as single sounds, which results in a charac-
ter set comprising thousands of characters. Luck-
ily, Unicode also provides code points for the
single-sound characters (called Jamo), and sylla-
ble characters can easily be decomposed to single-
sound characters.3 We used hangul-jamo4 for
this decomposition. To give an example of the de-
composition, 가감 /k a̠ ɡ a̠ m/, is decomposed to
ㄱㅏㄱㅏㅁ . With this approach, we were able to
decrease theWER and PER of ourKorean baseline
Transformer model considerably: the WER was
reduced from 40.00 to 21.50, and the PER from
16.38 to 3.86. We use this preprocessing step for
Korean for all our submitted models.

2https://github.com/sigmorphon/2020/issues/9
3http://www.unicode.org/versions/Unicode8.0.

0/ch03.pdf
4https://github.com/jonghwanhyeon/

hangul-jamo
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3 Approach
We trained a multilingual model which can trans-
duce a word in any of the 15 source languages
into its IPA representation. Multilingual models
can be of the types many-to-one, one-to-many, or
many-to-many. In our case, there are obviously
multiple languages on the source side. On the
target side, there is usually exactly one desired
phoneme sequence for a given source word. Su-
perficially, we thus have a many-to-one problem.
However, many character sequences exist in more
than one language. For instance, the character se-
quence <transformation> without further context
can be read as an Englishword or as a Frenchword,
and its pronunciation depends on the choice of lan-
guage (/tɹæns.fɔɹ.meɪ.ʃən/ vs. /tʁɑ̃s.fɔʁ.ma.sjɔ̃/).
This makes it a many-to-many problem for a sub-
set of the data.
The possibility of multiple desired sequences on

the target side for a given source word makes it
necessary to annotate the source words with the
desired language. In our approach, we prefix each
source word with its two-letter ISO language code,
followed by an underscore, e.g. 'fr_maison', or
'ka_ავტორი'. This is similar to the approach in
Johnson et al. (2017).
A side effect of our multilingual approach is that

the size of the training data is increased from 3600
to 54000 (15 x 3600) samples. Ideally, a model
might profit from this enlarged dataset, and lan-
guages can learn from each other. Given the vari-
ous source-side writing systems and differences in
phoneme sets across languages, we expect cross-
language learning to be somewhat limited.
The multilingual approach proposed here al-

lows for language-specific preprocessing where
needed. In our case, we only used a preprocess-
ing step for Korean, as outlined above in Section
2.2.3.

3.1 Model UZH-1
For our first submission, we used the Transformer
baseline5 provided by the organizers and exper-
imented with different hyperparameters. The
Transformer (Vaswani et al. 2017) is implemented
in Fairseq (Ott et al. 2019) and uses Adam
(Kingma and Ba 2015) for optimization and ReLU
as an activation function. It has 4 encoder and de-
coder layers with 4 attention heads each.

5https://github.com/sigmorphon/2020/tree/
master/task1/baselines/transformer

In our hyperparameter tuning, we experimented
with the following values: embedding dimension
{128, 256} and hidden size {512, 1024} for both
the encoder and the decoder, batch size {256, 512,
1024}, and dropout probability {0.1, 0.2, 0.3}.
The number of epochs is limited to 400.

Our submitted model has the largest possible
values for all tuned hyperparameters: embedding
dimensions of 256, hidden sizes of 1024, a batch
size of 1024, and a dropout probability of 0.3. Due
to limitations in available computation power, fur-
ther tuning with even larger hyperparameter val-
ues was not feasible for us.

3.2 Model UZH-2
For our second submission, we added extra lan-
guage data from 6 languages not addressed in the
task, viz. English, Italian, Portuguese, Czech,
Danish, and Macedonian. Some of these lan-
guages have rather small data sets available on
Wiktionary, therefore we added only 2400 training
samples per language, and 300 development sam-
ples each, which is two thirds of the data for the
other languages.
We selected the additional languages based on

our intuition regarding whether a language might
be useful for one or more of the 15 languages in
the task. An additional restriction was the fact
that large enough data sets are available mainly
for European languages. Of the selected addi-
tional languages, some are closely related to an-
other one from the official training set (e.g., Mace-
donian to Bulgarian, or, to a lesser degree, Dan-
ish to Dutch). Others have similar phonologies
(e.g., Spanish and Greek, or Czech and Hungar-
ian). In addition, some training sets (e.g., the one
for French) contain English loanwords whose ir-
regular pronunciation might be learned from addi-
tional English data.
The data was retrieved from Wiktionary using

WikiPron (Lee et al. 2020) and sampled randomly.
We used the same model architecture and the same
hyperparameter search space for this experiment
as in UZH-1, and the final model has the same hy-
perparameter values as UZH-1.

3.3 Model UZH-3
Our third submission is an ensemble model. It
uses the predictions of UZH-1 and UZH-2, and for
eachword it takes the higher probability prediction
from the two models.
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4 Results

UZH-1 UZH-2 UZH-3
WER PER WER PER WER PER

arm 15.56 3.29 15.78 3.52 14.89 3.17
bul 32.89 6.48 30.00 5.59 30.22 5.77
fre 7.78 1.88 8.00 1.80 6.89 1.64
geo 26.44 5.00 28.00 5.11 26.22 4.97
gre 18.00 2.97 21.33 3.41 18.89 3.03
hin 6.89 1.58 7.78 2.16 6.00 1.43
hun 5.78 1.15 7.11 1.54 6.00 1.18
ice 11.78 2.39 12.89 2.78 11.78 2.46
kor 28.67 4.99 29.11 4.99 28.44 4.88
lit 27.33 4.69 28.44 4.84 27.11 4.61
ady 26.00 6.05 28.00 6.35 25.78 5.94
dut 17.78 3.27 21.56 3.94 18.67 3.42
jpn 9.33 2.46 6.00 1.58 6.00 1.54
rum 13.33 2.96 13.78 3.11 12.00 2.59
vie 8.44 2.91 6.67 2.62 6.22 2.46

macro
avg 17.07 3.47 17.63 3.56 16.34 3.27

Table 1: WER and PER of our 3 models for each lan-
guage and as macro-average on the official test set.

As can be seen from Table 1, our basic multi-
lingual system (UZH-1) achieved amacro-average
WER of 17.07 and a PER of 3.47 on the official
test set.
For the multilingual model with additional data

from six extra languages (UZH-2), we achieved
a macro-average WER of 17.63 and a PER of
3.56. While performance did not increase with
this approach, it also did not decrease dramatically,
which indicates that it would be possible to have
an even larger multilingual model for more than
15 languages without major performance loss.

More interestingly, even though the perfor-
mance of UZH-2 was slightly worse, the model
was able to resolve some of the errors made by
UZH-1, while at the same time introducing others.
We assume that there is indeed a cross-language
interference which can influence the result both
positively and negatively. We observed similar
behavior on the development set during our ex-
periments, which brought us to the idea of com-
bining the results of both systems to get the best
of both. Indeed, our ensemble model (UZH-3),
which takes the prediction with the higher prob-
ability from UZH-1 and UZH-2, was the best-
performing model among our submissions with a
macro-average WER of 16.34 and PER of 3.27.

5 Conclusion
While other submissions outperformed our mod-
els, our PER for UZH-3 is only 0.51 points higher
than that of the winning model (IMS). The differ-
ence inWER is slightly higher, with an increase of
2.53 points compared to the winning model. Over-
all, this shows that a single multilingual model can
achieve competitive results even in a setting with
highly unrelated languages, by simply prefixing
each word with its language code. In future work,
we like to explore further how cross-language in-
terference in a multilingual model influences per-
formance both positively and negatively.
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Abstract

We describe the NYU-CUBoulder systems
for the SIGMORPHON 2020 Task 0 on ty-
pologically diverse morphological inflection
and Task 2 on unsupervised morphological
paradigm completion. The former consists
of generating morphological inflections from
a lemma and a set of morphosyntactic fea-
tures describing the target form. The latter
requires generating entire paradigms for a set
of given lemmas from raw text alone. We
model morphological inflection as a sequence-
to-sequence problem, where the input is the
sequence of the lemma’s characters with mor-
phological tags, and the output is the sequence
of the inflected form’s characters. First, we ap-
ply a transformer model to the task. Second, as
inflected forms share most characters with the
lemma, we further propose a pointer-generator
transformer model to allow easy copying of in-
put characters. Our best performing system for
Task 0 is placed 6th out of 23 systems. We
further use our inflection systems as subcom-
ponents of approaches for Task 2. Our best
performing system for Task 2 is the 2nd best
out of 7 submissions.

1 Introduction

In morphologically rich languages, a word’s sur-
face form reflects syntactic and semantic properties
that are expressed by the word. For example, most
English nouns have both singular and plural forms
(e.g., robot/robots, process/processes), which are
known as the inflected forms of the noun. Some lan-
guages display little inflection. In contrast, others
have many inflections per base form or lemma: a
Polish verb has nearly 100 inflected forms (Janecki,
2000) and an Archi verb has around 1.5 million
(Kibrik, 1998).

Morphological inflection is the task of, given
an input word – a lemma – together with mor-
phosyntactic features defining the target form, gen-

Lemma Features Inflected form
hug V;PST hugged
seel V;3;SG;PRS seels

Figure 1: Morphological inflection examples in En-
glish. A lemma and features are mapped to an inflected
form.

erating the indicated inflected form, cf. Figure
1. Morphological inflection is a useful tool for
many natural language processing tasks (Seeker
and Çetinoglu, 2015; Cotterell et al., 2016b), es-
pecially in morphologically rich languages where
handling inflected forms can reduce data sparsity
(Minkov et al., 2007).

The SIGMORPHON 2020 Shared Task consists
of three separate tasks. We participate in Task
0 on typologically diverse morphological inflec-
tion (Vylomova et al., 2020) and Task 2 on un-
supervised morphological paradigm completion
(Kann et al., 2020). Task 0 consists of generat-
ing morphological inflections from a lemma and
a set of morphosyntactic features describing the
target form. For this task, we implement a pointer-
generator transformer model, based on the vanilla
transformer model (Vaswani et al., 2017) and the
pointer-generator model (See et al., 2017). After
adding a copy mechanism to the transformer, it
produces a final probability distribution as a com-
bination of generating elements from its output
vocabulary and copying elements – characters in
our case – from the input. As most inflected forms
derive their characters from the source lemma, the
use of a mechanism for copying characters directly
from the lemma has proven to be effective for mor-
phological inflection generation, especially in the
low resource setting (Aharoni and Goldberg, 2017;
Makarov et al., 2017).

For our submissions, we further increase the size
of all training sets by performing multi-task train-
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ing on morphological inflection and morphological
reinflection, i.e., the task of generating inflected
forms from forms different from the lemma. For
languages with small training sets, we also perform
hallucination pretraining (Anastasopoulos and Neu-
big, 2019), where we generate pseudo training in-
stances for the task, based on suffixation and pre-
fixation rules collected from the original dataset.

For Task 2, participants are given raw text and
a source file with lemmas. The objective is to gen-
erate the complete paradigms for all lemmas. Our
systems for this task consist of a combination of
the official baseline system (Jin et al., 2020) and
our systems for Task 0. The baseline system finds
inflected forms in the text, decides on the num-
ber of inflected forms per lemma, and produces
pseudo training files for morphological inflection.
Our inflection model then learns from these and,
subsequently, generates all missing forms.

2 Related Work

SIGMORPHON and CoNLL–SIGMORPHON
shared tasks. In recent years, the SIGMOR-
PHON and CoNLL–SIGMORPHON shared tasks
have promoted research on computational mor-
phology, with a strong focus on morphological in-
flection. Research related to those shared tasks
includes Kann and Schütze (2016b), who used
an LSTM (Hochreiter and Schmidhuber, 1997)
sequence-to-sequence model with soft attention
(Bahdanau et al., 2015) and achieved the best result
in the SIGMORPHON 2016 shared task (Kann and
Schütze, 2016a; Cotterell et al., 2016a). Due to
the often monotonic alignment between input and
output, Aharoni and Goldberg (2017) proposed a
model with hard monotonic attention. Based on
this, Makarov et al. (2017) implemented a neural
state-transition system which also used hard mono-
tonic attention and achieved the best results for
Task 1 of the SIGMORPHON 2017 shared task. In
2018, the best results were achieved by a revised
version of the neural transducer, trained with imita-
tion learning (Makarov and Clematide, 2018). That
model learned an alignment instead of maximizing
the likelihood of gold action sequences given by a
separate aligner.

Transformers. Transformers have produced
state-of-the-art results on various tasks such as ma-
chine translation (Vaswani et al., 2017) language
modeling (Al-Rfou et al., 2019), question answer-
ing (Devlin et al., 2019) and language understand-

ing (Devlin et al., 2019). There has been very little
work on transformers for morphological inflection,
with, to the best of our knowledge, Erdmann et al.
(2020) being the only published paper. However,
the widespread success of transformers in NLP
leads us to believe that a transformer model could
perform well on morphological inflection.

Pointer-generators. In addition to the trans-
former, the architecture of our model is also in-
spired by See et al. (2017), who used a pointer-
generator network for abstractive summarization.
Their model could choose between generating a
new element and copying an element from the input
directly to the output. This copying of words from
the source text via pointing (Vinyals et al., 2015),
improved the handling of out-of-vocabulary words.
Copy mechanisms have also been used for other
tasks, including morphological inflection (Sharma
et al., 2018). Transformers with copy mechanisms
have been used for word-level tasks (Zhao et al.,
2019), but, as far as we know, never before on the
character level.

3 SIGMORPHON 2020 Shared Task

The SIGMORPHON 2020 Shared Task is com-
posed of three tasks: Task 0 on typologi-
cally diverse morphological inflection (Vylomova
et al., 2020), Task 1 on multilingual grapheme-to-
phoneme conversion (Gorman et al., 2020), and
Task 2 on unsupervised morphological paradigm
completion (Kann et al., 2020). We submit systems
to Tasks 0 and 2.

3.1 Task 0: Typologically Diverse
Morphological Inflection

SIGMORPHON 2020 Task 0 focuses on morpho-
logical inflection in a set of typologically diverse
languages. Different languages inflect differently,
so it is not trivially clear that systems that work on
some languages also perform well on others. For
Task 0, systems need to generalize well to a large
group of languages, including languages unseen
during model development.

The task features 90 languages in total. 45 of
them are development languages, coming from five
families: Austronesian, Niger–Congo, Uralic, Oto-
Manguean, and Indo-European. The remaining 45
are surprise languages, and many of those are from
language families different from the development
languages. Some languages have very small train-
ing sets, which makes them hard to model. For
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those cases, the organizers recommend a family-
based multilingual approach to exploit similarities
between related languages. While this might be
effective, we believe that using multitask training
in combination with hallucination pretraining can
give the model enough information to learn the task
well, while staying true to the specific structure of
each individual language.

3.2 Task 2: Unsupervised Morphological
Paradigm Completion

Task 2 is a novel task, designed to encourage work
on unsupervised methods for computational mor-
phology. As morphological annotations are limited
for many of the world’s languages, the study of mor-
phological generation in the low-resource setting
is of great interest (Cotterell et al., 2018). How-
ever, a different way to tackle the problem is by
creating systems that are able to use data without
annotations.

For Task 2, a tokenized Bible in each language
is given to the participants, along with a list of
lemmas. Participants should then produce com-
plete paradigms for each lemma. As slots in the
paradigm are not labeled with gold data paradigm
slot descriptions, an evaluation metric called best-
match accuracy was designed for this task. First,
this metric matches predicted paradigm slots with
gold slots in the way which leads to the highest
overall accuracy. It then evaluates the correctness
of individual inflected forms.

4 Methods

In this section, we introduce our models for Tasks
0 and 2 and describe all approaches we use, such
as multitask training, hallucination pretraining and
ensembling. The code for our models is available
online.1

4.1 Transformer

Our model is built on top of the transformer ar-
chitecture (Vaswani et al., 2017). It consists of an
encoder and a decoder, each composed of a stack
of layers. Each encoder layer consists, in turn, of a
self-attention layer, followed by a fully connected
layer. Decoder layers contain an additional inter-
attention layer between the two.

With inputs (x1, · · · , xT ) being a lemma’s char-
acters followed by tags representing the mor-

1https://github.com/AssafSinger94/
sigmorphon-2020-inflection

phosyntactic features of the target form, the en-
coder processes the input sequence and outputs hid-
den states (h1, · · · , hT ). At generation step t, the
decoder reads the previously generated sequence
(y1, · · · , yt−1) to produce states (s1, · · · , st−1).
The last decoder state st−1 is then passed through
a linear layer followed by a softmax, to generate a
probability distribution over the output vocabulary:

Pvocab = softmax(V st−1 + b) (1)

During training, the entire target sequence(
y1, · · · , yTy

)
is input to the decoder at once, along

with a sequential mask to prevent positions from
attending to subsequent positions.

4.2 Pointer-Generator Transformer
The pointer-generator transformer allows for both
generating characters from a fixed vocabulary, as
well as copying from the source sequence via point-
ing (Vinyals et al., 2015). This is managed by pgen –
the probability of generating as opposed to copying
– which acts as a soft switch between the two ac-
tions. pgen is computed by passing a concatenation
of the decoder state st, the previously generated
output yt−1, and a context vector ct through a linear
layer, followed by the sigmoid function.

pgen = σ(w[st; ct; yt−1] + b) (2)

The context vector is computed as the weighted
sum of the encoder hidden states

ct =
∑T

i=1
atihi (3)

with attention weights
(
at1, · · · , atT

)
. For each in-

flection example, let the extended vocabulary de-
note the union of the output vocabulary, and all
characters appearing in the source lemma. We
then use pgen, Pvocab produced by the transformer,
and the attention weights of the last decoder layer(
at1, · · · , atT

)
to compute a distribution over the

extended vocabulary:

P (c) = pgenPvocab(c) + (1− pgen)Pcopy(c), (4)

with
Pcopy(c) =

∑
i:xi=c

ati (5)

The copy distribution Pcopy(c) for each character
c is the sum of attention weights over all source
positions where xi = c. Note that if c is an out-of-
vocabulary (OOV) character, then Pvocab(c) is zero;
similarly, if c does not appear in the source lemma,
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raw grip grips V;SG;3;PRS
grip gripped V;PST

generated
grips grip V;LEMMA
grips gripped V;PST
gripped grip V;LEMMA

Figure 2: English multitask training example (Task 0).

then
∑

i:xi=c a
t
i is zero. The ability to produce

OOV characters is one of the primary advantages
of pointer-generator models; by contrast models
such as our vanilla transformer are restricted to
their pre-set vocabulary.

4.3 Multitask Training
Some languages in Task 0 have small training sets,
which makes them hard to model. In order to
handle that, we perform multitask training, and,
thereby, increase the amount of examples available
for training.

Morphological reinflection. Morphological re-
inflection is a generalized version of the morpho-
logical inflection task, which consists of producing
an inflected form for any given source form – i.e.,
not necessarily the lemma –, and target tag. For
example:

(hugging; V;PST)→ hugged. (6)

This is a more complex task, since a model needs
to infer the underlying lemma of the source form
in order to inflect it correctly to the desired form.

Many morphological inflection datasets contain
lemmas that are converted to several inflected
forms. Treating separate instances for the same
source lemma as independent is missing an oppor-
tunity to utilize the connection between the differ-
ent inflected forms. We approach this by converting
our morphological inflection training set into one
for morphological reinflection as described in the
following.

From inflection to reinflection. Inflected forms
of the same lemma are grouped together to sets
of one or more (inflected form, morphological fea-
tures) pairs. Then, for each set, we create new train-
ing instances by inflecting all forms to one another,
as shown in Figure 2. We also let the model inflect
forms back to the lemma by adding the lemma as
one of the inflected forms, marked with the synthet-
ically generated LEMMA tag. The new training
set fully utilizes the connections between different

Hyperparameter Value
Embedding dimension 256
Encoder layers 4
Decoder layers 4
Encoder hidden dimension 1024
Decoder hidden dimension 1024
Attention heads 4

Table 1: The hyperparameters used in our inflection
models for both Task 0 and Task 2.

forms in the paradigm, and, in that way, provides
more training instances to our model.

4.4 Hallucination Pretraining

Another effective tool to improve training in the
low-resource setting is data hallucination (Anas-
tasopoulos and Neubig, 2019). Using hallucina-
tion, new pseudo-instances are generated for train-
ing, based on suffixation and prefixation rules col-
lected from the original dataset. For languages with
less than 1000 training instances, we pretrain our
models on a hallucinated training set consisting of
10,000 instances, before training on the multitask
training set.

4.5 Submissions and Ensembling Strategies

We submit 4 different systems for Task 0. NYU-
CUBoulder-2 consists of one pointer-generator
transformer model, and, for NYU-CUBoulder-4,
we train one vanilla transformer. Those two are our
simplest systems and can be seen as baselines for
our other submissions.

Because of the effects of random initialization
in non-convex objective functions, we further use
ensembling in combination with both architectures:
NYU-CUBoulder-1 is an ensemble of three pointer-
generator transformers, and NYU-CUBoulder-3 is
an ensemble of five pointer-generator transformers.
The final decision is made by majority voting. In
case of a tie, the answer is chosen randomly among
the most frequent predictions. Models participating
in the ensembles are from different epochs during
the same training run.

As previously stated, all systems are trained on
the augmented multitask training sets, and systems
trained on languages with less than 1000 train-
ing instances were pretrained on the hallucinated
datasets.
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4.6 Task 2: Model description

Our systems for Task 2 consist of a combination of
the official baseline system (Jin et al., 2020) and our
inflection systems for Task 0. The system is given
raw text and a source file with lemmas, and gener-
ates the complete paradigm of each lemma. The
baseline system finds inflected forms in the text, de-
cides on the number of inflected forms per lemma,
and produces pseudo training files for morphologi-
cal inflection. Any inflections that the system has
not found in the raw text are given as test instances.
Our inflection model then learns from the files and,
subsequently, generates all missing forms. We use
the pointer-generator and vanilla transformers as
our inflection models.

For Task 2, we use ensembling for all submis-
sions. NYU-CUBoulder-1 is an ensemble of six
pointer-generator transformers, NYU-CUBoulder-
2 is an ensemble of six vanilla transformers, and
NYU-CUBoulder-3 is an ensemble of all twelve
models. For all models in both tasks, we use the
hyperparameters described in Table 1.

5 Experiments

5.1 Task 0

Data. The dataset for Task 0 covers 90 languages
in total: 45 development languages and 45 surprise
languages. For details on the official dataset please
refer to Vylomova et al. (2020).

Baselines. This year, several baselines are pro-
vided for the task. The first system has also been
used as a baseline in previous shared tasks on mor-
phological reinflection (Cotterell et al., 2017, 2018).
It is a non-neural system which first scans the
dataset to extract suffix- or prefix-based lemma-
to-form transformations. Then, based on the mor-
phological tag at inference time, it applies the
most frequent suitable transformation to an input
lemma to yield the output form (Cotterell et al.,
2017). The other two baselines are neural models.
One is a transformer (Vaswani et al., 2017; Wu
et al., 2020), and the second one is a hard-attention
model (Wu and Cotterell, 2019), which enforces
strict monotonicity and learns a latent alignment
while learning to transduce. To account for the
low-resource settings for some languages, the or-
ganizers also employ two additional methods: con-
structing a multilingual model trained for all lan-
guages belonging to each language family (Kann
et al., 2017), and data augmentation using halluci-

Sub-1 Sub-2 Sub-3 Sub-4 Base
Development Set

Low 88.71 88.02 84.90 84.07 -
Other 90.46 90.63 90.20 90.94 -
All 90.06 90.02 88.96 89.34 -

Test Set
Low 84.8 84.8 85.5 83.9 89.77
Other 89.7 89.8 89.8 90.2 92.43
All 88.6 88.7 88.8 88.8 91.81

Table 2: Macro-averaged results over all languages
on the official development and test sets for Task 0.
Low=languages with less than 1000 train instances,
Other=all other languages, All=all languages.

nation (Anastasopoulos and Neubig, 2019). Four
model types are trained for each neural architec-
ture: a plain model, a family-multilingual model, a
data augmented model, and an augmented family-
multilingual model. Overall, there are nine baseline
systems for each language. We compare our mod-
els to an oracle baseline by choosing the best score
over all baseline systems for each language.

Results. Our results for Task 0 are displayed in
Table 2. All four systems produce relatively sim-
ilar results. NYU-CUBoulder-3, our five-model
ensemble, performs best overall with 88.8% accu-
racy on average. We further look at the results for
low-resource (< 1000 training examples) and high-
resource (>= 1000 training examples) languages
separately. This way, we are able to see the ad-
vantage of the pointer-generator transformer in the
low-resource setting, where all pointer-generator
systems achieve an at least 0.9% higher accu-
racy than the vanilla transformer model. How-
ever, in the setting where training data is abun-
dant, the effect of the copy mechanism vanishes, as
NYU-CUBoulder-4 – our only vanilla transformer
– achieved the best results for our high-resource
languages.

5.2 Task 2

Data. For Task 2, a tokenized Bible in each lan-
guage is given to the participants, along with a list
of lemmas. Participants are required to construct
the paradigms for all given lemmas.

The languages for Task 2 are again divided into
development and test languages. Development lan-
guages are available for model development and
hyperparameter tuning, but are not used during the
final evaluation. The test languages are used for
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System Baseline 1 Baseline 2 Sub-1 Sub-2 Sub-3
Test Set

slots macro slots macro slots macro slots macro slots macro
Basque 30 0.0006 27 0.0006 30 0.0005 30 0.0005 30 0.0007
Bulgarian 35 0.283 34 0.3169 35 0.2769 35 0.2894 35 0.2789
English 4 0.656 4 0.662 4 0.502 4 0.528 4 0.512
Finnish 21 0.0533 21 0.055 21 0.0536 21 0.0547 21 0.0535
German 9 0.2835 9 0.29 9 0.273 9 0.2735 9 0.2735
Kannada 172 0.1549 172 0.1512 172 0.111 172 0.1116 172 0.111
Navajo 3 0.0323 3 0.0327 3 0.004 3 0.0043 3 0.0043
Spanish 29 0.2296 29 0.2367 29 0.2039 29 0.2056 29 0.203
Turkish 104 0.1421 104 0.1553 104 0.1488 104 0.1539 104 0.1513
All 0.2039 0.2112 0.1749 0.1802 0.1765

Table 3: Results for all test languages on the official test sets for Task 2.

evaluation only, and do not have development sets.
The development languages are: Maltese, Persian,
Portuguese, Russian, Swedish. The test languages
are: Basque, Bulgarian, English, Finnish, German,
Kannada, Navajo, Spanish and Turkish.

Baselines. The baseline system for the task is
composed of four components, eventually produc-
ing morphological paradigms (Jin et al., 2020). The
first three modules perform edit tree (Chrupala,
2020) retrieval, additional lemma retrieval from the
corpus, and paradigm size discovery, using distri-
butional information. After the first three steps,
pseudo training and test files for morphological in-
flection are produced. Finally, the non-neural Task
0 baseline system (Cotterell et al., 2017) or the neu-
ral transducer by Makarov and Clematide (2018)
are used to create missing inflected forms.

Results. Systems for Task 2 are evaluated using
macro-averaged best-match accuracy (Jin et al.,
2020). Results are shown in in Table 3. All three
systems produce relatively similar results. NYU-
CUBoulder-2, our vanilla transformer ensemble,
performed slightly better overall with an average
best-match accuracy of 18.02%. Since our system
is close to the baseline models, it performs simi-
larly, achieving slightly worse results. For Basque,
our all-round ensemble NYU-CUBoulder-2 out-
performed both baselines with a best-match accu-
racy of 00.07%, achieving the highest result in the
shared task.

5.3 Low-resource Setting

As most inflected forms derive their characters
from the source lemma, the use of a mechanism

for copying characters directly from the lemma
has proven to be effective for morphological inflec-
tion generation, especially in the low-resource set-
ting (Aharoni and Goldberg, 2017; Makarov et al.,
2017). As all Task 0 datasets are fairly large, we
further design a low-resource experiment to inves-
tigate the effectiveness of our model.

Data. We simulate a low-resource setting by sam-
pling 100 instances from all languages that we
already consider low-resource, i.e., all languages
with less than 1000 training instances. We then
keep their development and test sets unchanged.
Overall, we perform this experiment on 21 lan-
guages.

Experimental setup. We train a pointer-
generator transformer and a vanilla transformer on
the modified datasets to examine the effects of the
copy mechanism. We keep the hyperparameters
unchanged, i.e., they are as mentioned in Table 1.
We use a majority-vote ensemble consisting of 5
individual models for each architecture.

Baseline. We additionally train the neural trans-
ducer by Makarov and Clematide (2018), which
has achieved the best results for the 2018 shared
task in the low-resource setting (Cotterell et al.,

System Trm Trm-PG Baseline
All 63.06 67.61 70.06

Table 4: Results on the official development data
for our low-resource experiment. Trm=Vanilla trans-
former, Trm-PG=Pointer-generator transformer, Base-
line=neural transducer by Makarov and Clematide
(2018).
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Model: 1 2 3 4 5
Copy X X X
Multitask Train X X X
Hallucination X X X X

Table 5: System components for the ablation study for
Task 0. Each model is a transformer which contains a
combination of the following components: copy mech-
anism, multitask training and hallucination pretraining.

2018). The neural transducer uses hard monotonic
attention (Aharoni and Goldberg, 2017) and trans-
duces the lemma into the inflected form by a se-
quence of explicit edit operations. It is trained
with an imitation learning method (Makarov and
Clematide, 2018). We use this model as a reference
for the state of the art in the low-resource setting.

Results. As seen in Table 4, for the low-resource
dataset, the pointer-generator transformer clearly
outperforms the vanilla transformer by an average
accuracy of 4.46%. For some languages, such as
Chichicapan Zapotec, the difference is up to 14%.
While the neural transducer achieves a higher accu-
racy, our model performs only 2.45% worse than
this state-of-the-art model.2 We are also able to ob-
serve the use of the copy mechanism for copying of
OOV characters in the test sets of some languages.

6 Ablation Studies

Our systems use three components on top of the
vanilla transformer: a copy mechanism, multitask
training and hallucination pretraining. We further
perform an ablation study to measure the contri-
bution of each component to the overall system
performance. For this, we additionally train five
different systems with different combinations of
components. A description of which component
is used in which system for this ablation study is
shown in Table 5.

6.1 Results
Copy mechanism. Comparing models 2 and 4,
which are both trained on the original dataset, pre-
trained with hallucination and differ only by the
use of the copy mechanism, we are able to see that
adding this component slightly improves perfor-
mance by 0.06−0.16%. When comparing models 1
and 3, the copy mechanism decreases performance
slightly by 0.3% for the high-resource languages

2We could probably obtain better results with appropriate
hyperparameter tuning.

Model: 1 2 3 4 5
Development Set

Low 88.20 90.00 87.52 89.84 86.35
Other 90.63 92.66 90.93 92.60 90.63
All 90.02 92.04 90.13 91.96 89.63

Table 6: Ablation study for Task 0; development set
results, averaged over all languages. Low=languages
with less than 1000 train instances, Other=all other lan-
guages, All=all languages.

and 0.11% overall, but increases performance for
low-resource languages by 0.68%.

Multitask training. Unlike the copy mechanism,
multitask training actually consistently decreases
the performance of the models. Looking at mod-
els 1 and 2, training the pointer-generator trans-
former on the multitask dataset decreases accuracy
by 1.8− 2.03% for all three language groups. The
same happens for the vanilla transformer with an
accuracy decrease of 1.67− 2.32%. A possible ex-
planation are the relatively large training sets pro-
vided for the shared task, as this method is more
suitable for the low-resource setting.

Hallucination pretraining. In order to exam-
ine the effect of hallucination pretraining on our
submitted models, we now compare the pointer-
generator transformers trained on the multitask data
with and without hallucination pretraining (models
1 and 5). Hallucination pretraining shows to be
helpful: it increases the accuracy on low-resource
languages by 1.85%. The performance on the high-
resource languages is necessarily the same, as only
models for low-resource languages are actually pre-
trained.

7 Conclusion

We presented the NYU-CUBoulder submissions
for SIGMORPHON 2020 Task 0 and Task 2.

We developed morphological inflection models,
based on a transformer and a new model for the
task, a pointer-generator transformer, which is a
transformer-analogue of a pointer-generator model.
For Task 0, we further added multitask training
and hallucination pretraining. For Task 2, we com-
bined our inflection models with additional compo-
nents from the provided baseline to obtain a fully
functional system for unsupervised morphological
paradigm completion.

We performed an ablation study to examine the

96



effects of all components of our inflection system.
Finally, we designed a low-resource experiment
to show that using the copy mechanism on top of
the vanilla transformer is beneficial if training sets
are small, and achieved results close to a state-
of-the-art model for low-resource morphological
inflection.
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Abstract

In this paper, we present the systems of the
University of Stuttgart IMS and the Univer-
sity of Colorado Boulder (IMS–CUBoulder)
for SIGMORPHON 2020 Task 2 on unsu-
pervised morphological paradigm completion
(Kann et al., 2020). The task consists of gen-
erating the morphological paradigms of a set
of lemmas, given only the lemmas themselves
and unlabeled text. Our proposed system is
a modified version of the baseline introduced
together with the task. In particular, we ex-
periment with substituting the inflection gen-
eration component with an LSTM sequence-
to-sequence model and an LSTM pointer-
generator network. Our pointer-generator sys-
tem obtains the best score of all seven submit-
ted systems on average over all languages, and
outperforms the official baseline, which was
best overall, on Bulgarian and Kannada.

1 Introduction

In recent years, a lot of progress has been made on
the task of morphological inflection, which consists
of generating an inflected word, given a lemma
and a list of morphological features (Kann and
Schütze, 2017; Makarov and Clematide, 2018; Cot-
terell et al., 2016, 2017, 2018; McCarthy et al.,
2019). The systems developed for this task learn
to model inflection in morphologically complex
languages in a supervised fashion.

However, not all languages have annotated data
available. For the 2018 SIGMORPHON shared
task (Cotterell et al., 2018), data for 103 unique
languages has been provided. Even this highly mul-
tilingual dataset is just covering 1.61% of the 6359
languages1 that exist in the world (Lewis, 2009).
The unsupervised morphological paradigm com-
pletion task (Jin et al., 2020) aims at generating

1The number of languages can vary depending on the
classification schema used.

Figure 1: Partial Portuguese development examples.
The input is a list of lemmas, and the output is a list
of all inflected forms of each lemma. In this exam-
ple, unnamed paradigm slots correspond to the fol-
lowing UniMorph features: 1=V.PTCP;FEM;PL;PST,
2=V.PTCP;FEM;SG;PST, 3=V.PTCP;MASC;PL;PST,
4=V.PTCP;MASC;SG;PST.

inflections – more specifically all inflected forms,
i.e., the entire paradigms, of given lemmas – with-
out any explicit morphological information during
training. A system that is able to solve this problem
can generate morphological resources for most of
the world’s languages easily. This motivates us to
participate in the SIGMORPHON 2020 shared task
on unsupervised morphological paradigm comple-
tion (Kann et al., 2020).

The task, however, is challenging: As the num-
ber of inflected forms per lemma is unknown a
priori, an unsupervised morphological paradigm
completion system needs to detect the paradigm
size from raw text. Since the names of morphologi-
cal features expressed in a language are not known
if there is no supervision, a system should mark
which inflections correspond to the same morpho-
logical features across lemmas, but needs to do so
without using names, cf. Figure 1. For the shared
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task, no external resources such as pretrained mod-
els, annotated data, or even additional monolingual
text can be used. The same holds true for multilin-
gual models.

We submit two systems, which are both modi-
fications of the official shared task baseline. The
latter is a pipeline system, which performs four
steps: edit tree retrieval, additional lemma retrieval,
paradigm size discovery, and inflection generation
(Jin et al., 2020). We experiment with substitut-
ing the original generation component, which is
either a simple non-neural system (Cotterell et al.,
2017) or a transducer-based hard-attention model
(Makarov and Clematide, 2018) with an LSTM
encoder-decoder architecture with attention (Bah-
danau et al., 2015) – IMS-CUB1– and a pointer-
generator network (See et al., 2017) – IMS-CUB2.
IMS-CUB2 achieves the best results of all submit-
ted systems, outperforming the second best sys-
tem by 2.07% macro-averaged best-match accu-
racy (BMAcc; Jin et al., 2020), when averaged
over all languages. However, we underperform the
baseline system, which performs 1.03% BMAcc
better than IMS-CUB2. Looking at individual lan-
guages, IMS-CUB2 obtains the best results overall
for Bulgarian and Kannada.

The findings from our work on the shared task
are as follows: i) the copy capabilities of a pointer-
generator network are useful in this setup; and ii)
unsupervised morphological paradigm completion
is a challenging task: no submitted system outper-
forms the baselines.

2 Related Work

Unsupervised methods have shown to be effec-
tive for morphological surface segmentation. LIN-
GUISTICA (Goldsmith, 2001) and MORFESSOR
(Creutz, 2003; Creutz and Lagus, 2007; Poon et al.,
2009) are two unsupervised systems for the task.

In the realm of morphological generation,
Yarowsky and Wicentowski (2000) worked on a
task which was similar to unsupervised morpholog-
ical paradigm completion, but required additional
knowledge (e.g., a list of morphemes). Dreyer and
Eisner (2011) used a set of seed paradigms to train a
paradigm completion model. Ahlberg et al. (2015)
and Hulden et al. (2014) also relied on information
about the paradigms in the language. Erdmann et al.
(2020) proposed a system for a task similar to this
shared task.

Learning to generate morphological paradigms

Language Training Development Test
Basque 85 16 499

Bulgarian 1609 441 2874
English 343 83 302
Finnish 2306 522 1789
German 3940 999 667
Kannada 832 211 2854
Navajo 17 4 279
Spanish 1940 494 2506
Turkish 3095 787 8502

Table 1: Number of instances retrieved by steps 1 to 3
in our pipeline, which are used for training and devel-
opment of our inflection generation components. The
test set contains the lemma and paradigm slot for forms
that need to be generated.

in a fully supervised way is the more common
approach. Methods include Durrett and DeNero
(2013), Nicolai et al. (2015), and Kann and Schütze
(2018). Supervised morphological inflection has
further gained popularity through previous SIG-
MORPHON and CoNLL–SIGMORPHON shared
tasks on the topic (Cotterell et al., 2016, 2017,
2018; McCarthy et al., 2019). The systems pro-
posed for these shared tasks have a special rel-
evance for our work, as we investigate the per-
formance of morphological inflection components
based on Kann and Schütze (2016a,b) and Sharma
et al. (2018) within a pipeline for unsupervised
morphological paradigm completion.

3 System Description

In this section, we introduce our pipeline system for
unsupervised morphological paradigm completion.
First, we describe the baseline system, since we
rely on some of its components. Then, we describe
our morphological inflection models.

3.1 The Shared Task Baseline

For the initial steps of our pipeline, we employ the
first three components of the baseline (Jin et al.,
2020), cf. Figure 2, which we describe in this
subsection. We use the official implementation.2

Retrieval of relevant edit trees. This compo-
nent (cf. Figure 2.1) identifies words in the mono-
lingual corpus that could belong to a given lemma’s
paradigm by computing the longest common sub-
string between the lemma and all words. Then, the

2https://github.com/cai-lw/
morpho-baseline
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Figure 2: The baseline system. This paper experiments with modifying the generation module. All components
are described in §3.1.

transformation from a lemma to each word poten-
tially from its paradigm is represented by edit trees
(Chrupała, 2008). Edit trees with frequencies are
below a threshold are discarded.

Retrieval of additional lemmas. To increase the
confidence that retrieved edit trees represent valid
inflections, more lemmas are needed (cf. Figure
2.2). To find those, the second component of the
system applies edit trees to potential lemmas in
the corpus. If enough potential inflected forms are
found in the corpus, a lemma is considered valid.

Paradigm size discovery. Now the system needs
to find a mapping between edit trees and paradigms
(cf. Figure 2.3). This is done based on two assump-
tions: that for each lemma a maximum of one edit
tree per paradigm slot can be found, and that each
edit tree only realizes one paradigm slot for all lem-
mas. In addition, the similarity of potential slots is
measured. With these elements, similar potential
slots are merged until the final paradigm size for a
language is being determined.

Generation. Now, that the system has a set
of lemmas and corresponding potential inflected
forms, the baseline employs a morphological in-
flection component, which learns to generate inflec-
tions from lemmas and a slot indicator, and gener-
ates missing forms (cf. Figure 2.4). We experiment
with substituting this final component.

In the remainder of this paper, we will refer to
the original baselines with the non-neural system
from Cotterell et al. (2017) and the inflection model
from Makarov and Clematide (2018) as BL-1 and
BL-2, respectively.

3.2 LSTM Encoder-Decoder

We use an LSTM encoder-decoder model with at-
tention (Bahdanau et al., 2015) for our first system,
IMS-CUB1, since it has been shown to obtain high
performance on morphological inflection (Kann
and Schütze, 2016a). This model takes two inputs:
a sequence of characters and a sequence of mor-
phological features. It then generates the sequence
of characters of the inflected form. For the input,
we simply concatenate the paradigm slot number
and all characters.

3.3 Pointer-Generator Network

For IMS-CUB2, we use a pointer-generator net-
work (See et al., 2017).3 We expect this system to
perform better than IMS-CUB1, given the pointer-
generator’s better performance on morphological
inflection in the low-resource setting (Sharma et al.,
2018). A pointer-generator network is a hybrid
between an attention-based sequence-to-sequence
model (Bahdanau et al., 2015) and a pointer net-
work (Vinyals et al., 2015).

The standard pointer-generator network consists
of a bidirectional LSTM (Hochreiter and Schmid-
huber, 1997) encoder and a unidirectional LSTM
decoder with a copy mechanism. Here, we follow
(Sharma et al., 2018) and use two separate encoders:
one for the lemma and one for the morphological
tags. The decoder then computes the probability
distribution of the output at each time step as a
weighted sum of the probability distribution over
the output vocabulary and the attention distribution
over the input characters. The weights can be seen
as the probability to generate or copy, respectively,

3We use the following implementation:
https://github.com/abhishek0318/
conll-sigmorphon-2018
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IMS-CUB
Language 1 2-S 2-V
Basque 25.00 18.75 12.50

Bulgarian 97.73 98.19 97.28
English 96.39 98.80 98.80
Finnish 99.04 98.47 98.85
German 91.49 93.39 91.99
Kannada 91.47 92.89 91.00
Maltese 79.17 79.17 85.42
Navajo 0.00 75.00 100.00
Persian 95.56 94.81 95.56

Portuguese 93.81 93.87 93.74
Russian 92.15 93.02 93.19
Spanish 92.91 92.71 93.52
Swedish 93.48 93.69 93.27
Turkish 93.90 95.30 95.68

Table 2: Accuracy of our morphological inflection com-
ponents on the development sets produced by the first
three steps in our pipeline. We list both development
and test languages.

and are computed by a feedforward network, given
the last decoder hidden state. For details, we refer
the reader to Sharma et al. (2018).

4 Experimental Setup

4.1 Data and Languages

The shared task organizers provide data for five
development languages, for which development
sets with gold solutions are given. Those languages
– Maltese, Persian, Portuguese, Russian, Swedish –
are not taken into account for the final evaluation.

The test languages, in contrast, are supposed to
be only for system evaluation and do not come with
developments sets. For those languages – Basque,
Bulgarian, English, Finnish, German, Kannada,
Navajo, Spanish, and Turkish – only a list of lem-
mas and a monolingual Bible (McCarthy et al.,
2020) are given.

4.2 Evaluation Metric

The official evaluation metric of the shared task
is BMAcc (Jin et al., 2020). Gold solutions are
obtained from UniMorph (Kirov et al., 2018). Two
versions of BMAcc exist: micro-averaged BMAcc
and macro-averaged BMAcc. In this paper, we
only report macro-averaged BMAcc, the official
shared task metric.

During the development of our morphological
generation systems, we use regular accuracy, the

standard evaluation metric for morphological in-
flection (Cotterell et al., 2016).

4.3 Morphological Inflection Component

Morphological inflection data. We use the first
three components of the baseline model, i.e., the
ones performing edit tree retrieval, additional
lemma retrieval, and paradigm size discovery, to
create training and development data for our in-
flection models. Those datasets consist of lemma–
inflection pairs found in the raw text, together with
a number indicating the (predicted) paradigm slot,
and are described in Table 1.

The test set for our morphological inflection sys-
tems consist of the lemma–paradigm slot pairs not
found in the corpus.

Hyperparameters. For IMS-CUB1, we use an
embedding size of 300, a hidden layer of size 100,
a batch size of 20, Adadelta (Zeiler, 2012) for op-
timization, and a learning rate of 1. For each lan-
guage, we train a system for 100 epochs, using
early stopping with a patience of 10 epochs.

For IMS-CUB2, we follow two different ap-
proaches. The first is to use a single hyperparame-
ter configuration for all languages (IMS-CUB2-S).
The second consists of using a variable setup de-
pending on the training set size (IMS-CUB2-V).
For IMS-CUB2-S, we use an embedding size of
300, a hidden layer size of 100, a dropout rate of
0.3, and train for 60 epochs with an early-stopping
patience of 10 epochs. We further use an Adam
(Kingma and Ba, 2014) optimizer with an initial
learning rate of 0.001.

For IMS-CUB2-V, we use the following hyper-
parameters for training set size T :

• T < 101: an embedding size of 100, a
dropout coefficient of 0.5, 300 epochs of train-
ing, and an early-stopping patience of 100;

• 100 < T < 501: an embedding size of 100, a
dropout coefficient of 0.5, 80 training epochs,
and an early-stopping patience of 20;

• 500 < T : the same hyperparameters as for
IMS-CUB2-S.

For IMS-CUB2, we select the best performing sys-
tem (between IMS-CUB2-S and IMS-CUB2-V)
as our final model. The models are evaluated on
the morphological inflection task development set
using accuracy. All scores are shown in Table 2.
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BL KU-CST IMS-CUB NYU-CUB
Language 1 2 1 2 1 2 1 2 3
Basque 0.06 0.06 0.02 0.01 0.04 00.06 0.05 0.05 0.07
Bulgarian 28.30 31.69 2.99 4.15 27.22 32.11 27.69 28.94 27.89
English 65.60 66.20 3.53 17.29 47.80 61.00 50.20 52.80 51.20
Finnish 05.33 5.50 0.39 2.08 04.90 05.38 5.36 5.47 05.35
German 28.35 29.00 0.70 4.98 24.60 28.35 27.30 27.35 27.35
Kannada 15.49 15.12 4.27 1.69 10.50 15.65 11.10 11.16 11.10
Navajo 3.23 3.27 0.13 0.20 0.33 01.17 0.40 0.43 0.43
Spanish 22.96 23.67 3.52 10.84 19.50 22.34 20.39 20.56 20.30
Turkish 14.21 15.53 0.11 0.71 13.54 14.73 14.88 15.39 15.13
Average 20.39 21.12 1.74 04.66 16.49 20.09 17.49 18.02 17.65

Table 3: Final performance (macro-average BMAcc in percentages) of all systems on all test languages. Best
scores overall are in bold, and best scores of submitted systems are underlined.

4.4 Results

Table 3 shows the official test set results for
IMS-CUB1 and IMS-CUB2, compared to the of-
ficial baselines and all other submitted systems.

Our best system, IMS-CUB2, achieves the high-
est scores of all submitted systems (i.e., exclud-
ing the baselines), outperforming the second best
submission by 2.07% BMAcc. However, BL-1
and BL-2 outperform IMS-CUB2 by 1.03% and
0.3%, respectively. Looking at the results for indi-
vidual languages, IMS-CUB2 obtains the highest
performance overall for Bulgarian (difference to
the second best system 0.42%) and Kannada (dif-
ference to the second best system 0.53%). Com-
paring our two submissions, IMS-CUB1 underper-
forms IMS-CUB2 by 3.6%, showing that vanilla
sequence-to-sequence models are not optimally
suited for the task. We hypothesize that this could
be due to the amount or the diversity of the gener-
ated morphological inflection training files.

As our systems rely on the output of the previous
3 steps of the baseline, only few training examples
were available for Basque and Navajo: 85 and 17,
respectively. Probably at least partially due to this
fact, i.e., due to finding patterns in the raw text
corpus being difficult, all systems obtain their low-
est scores on these two languages. However, even
though Finnish has 2306 training instances for mor-
phological inflection, our best system surprisingly
only reaches 5.38% BMAcc. The same happens
in Kannada and Turkish: the inflection training set
is relatively large, but the overall performance on
unsupervised morphological paradigm completion
is low. On the contrary, even though English has
a relatively small training set (343 examples), the

performance of IMS-CUB2 is highest for this lan-
guage, with 66.20% BMAcc. We think that the
quality of the generated inflection training set and
the correctness of the predicted paradigm size of
the languages are the main reasons behind these
performance differences. Improving steps 1 to 3 in
the overall pipeline thus seems important in order
to achieve better results on the task of unsupervised
morphological paradigm completion in the future.

5 Conclusion

In this paper, we described the IMS–CUBoulder
submission to the SIGMORPHON 2020 shared
task on unsupervised morphological paradigm com-
pletion. We explored two modifications of the of-
ficial baseline system by substituting its inflection
generation component with two alternative models.
Thus, our final system performed 4 steps: edit tree
retrieval, additional lemma retrieval, paradigm size
discovery, and inflection generation. The last com-
ponent was either an LSTM sequence-to-sequence
model with attention (IMS-CUB1) or a pointer-
generator network (IMS-CUB2). Although our
systems could not outperform the official baselines
on average, IMS-CUB2 was the best submitted
system. It further obtained the overall highest per-
formance for Bulgarian and Kannada.
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Abstract
This paper presents our system for the SIG-
MORPHON 2020 Shared Task. We build off
of the baseline systems, performing exact in-
ference on models trained on language family
data. Our systems return the globally best so-
lution under these models. Our two systems
achieve 80.9% and 75.6% accuracy on the test
set. We ultimately find that, in this setting,
exact inference does not seem to help or hin-
der the performance of morphological inflec-
tion generators, which stands in contrast to its
affect on Neural Machine Translation (NMT)
models.

1 Introduction

Morphological inflection generation is the task of
generating a specific word form given a lemma and
a set of morphological tags. It has a wide range
of applications—in particular, it can be useful for
morphologically rich, but low-resource languages.
If a language has complex morphology, but only
scarce data are available, vocabulary coverage is
often poor. In such cases, morphological inflection
can be used to generate additional word forms for
training data.

Typologically diverse morphological inflection
is the focus of task 0 of the SIGMORPHON Shared
Tasks (Vylomova et al., 2020), to which we sub-
mit this system. Specifically, the task requires the
aforementioned transformation from lemma and
morphological tags to inflected form. A main chal-
lenge of the task is that it covers a typologically
diverse set of languages, i.e. languages have a wide
range of structural patterns and features. Addition-
ally, for a portion of these languages, only scant
resources are available.

Our approach is to train models on language
families rather than solely on individual languages.
This strategy should help us overcome the problems
frequently encountered for low-resource tasks, e.g.,

overfitting, by increasing the amount of training
data used for each model. The strategy is viable due
to the typological similarities between languages
within the same family. We combine two of the
neural baseline architectures provided by the task
organizers, a multilingual Transformer (Wu et al.,
2020) and a (neuralized) hidden Markov model
with hard monotonic attention (Wu and Cotterell,
2019), albeit with a different decoding strategy:
we perform exact inference, returning the globally
optimal solution under the model.

2 Background

Neural character-to-character transducers (Faruqui
et al., 2016; Kann and Schütze, 2016) define a
probability distribution pθ(y | x), where θ is a
set of weights learned by a neural network and x
and y are inputs and (possible) outputs, respec-
tively. In the case of morphological inflection, x
represents the lemma we are trying to inflect and
the morphosyntactic description (MSDs) indicat-
ing the inflection we desire; y is then a candidate
inflected form of the lemma from the set of all valid
character sequences Y . Note that valid character
sequences are padded with distinguished tokens,
BOS and EOS, indicating the beginning and end of
the sequence.

The neural character-to-character transducers
we consider in this work are locally normalized.
Specifically, the model pθ is a probability distri-
bution over the set of possible characters which
models pθ(· | x,y<t) for any time step t. By the
chain rule of probability, pθ(y | x) decomposes as

pθ(y | x) =
|y|∏

t=1

pθ(yt | x,y<t) (1)

The decoding objective then aims to find the
most probable sequence among all valid sequences:
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y? = argmax
y∈Y

log pθ(y | x) (2)

This is known as maximum a posteriori (MAP)
decoding. While the above optimization problem
implies that we find the global optimum y?, we
often only perform a heuristic search, e.g., beam
search, since performing exact search can be quite
computationally expensive due to the size of Y
and the dependency of pθ(· | x,y<t) on all previ-
ous output tokens. For neural machine translation
(NMT) specifically, while beam search often yields
better results than greedy search, translation quality
almost always decreases for beam sizes larger than
5. We refer the interested reader to the large num-
ber of works that have studied this phenomenon in
detail (Koehn and Knowles, 2017; Murray and Chi-
ang, 2018; Yang et al., 2018; Stahlberg and Byrne,
2019).

Exact decoding effectively stretches the beam
size to infinity (i.e. does not limit it), finding the
globally best solution. While the effects of exact
decoding have been explored for neural machine
translation (Stahlberg and Byrne, 2019), to the best
of our knowledge, they have not yet been explored
for morphological inflection generation. This is
a natural research question as the architectures of
morphological inflection generation systems are
often based off of those for NMT.

3 Data

We use the data provided by the SIGMORPHON
2020 shared task, which features lemmas, inflec-
tions, and corresponding MSDs (following uni-
morph schema (Kirov et al., 2018)) for 90 lan-
guages in total. Data was released in two phases;
the first phase included languages from five fam-
ilies: Austronesian, Niger-Congo, Uralic, Oto-
Manguean, and Indo-European. Data from the
second phase included languages belonging to
Afro-Asiatic, Algic, Australian, Dravidian, Ger-
manic, Indo-Aryan, Iranian, Niger-Congo, Nilo-
Sahan, Romance, Sino-Tibetan, Siouan, Tungu-
sic, Turkic, Uralic, and Uto-Aztecan families.
The full list of languages can be found on the
task website: https://sigmorphon.github.io/

sharedtasks/2020/task0/.
Due to scarcity of resources available to the

task organizers, many of the languages had only a
few morphological forms annotated. For example,
Zarma, a Songhay language, had only 56 available

inflections in the training set and 9 in the develop-
ment set.

4 System description

Our systems are built using two model architec-
tures provided as baselines by the task organizers:
a multilingual Transformer (Wu et al., 2020) and
a (neuralized) hidden Markov model (HMM) with
hard monotonic attention (Wu and Cotterell, 2019).
We then perform exact inference on the models.
The following subsections explain the two compo-
nents separately.

4.1 Model Architectures

The architectures of both models exactly follow
those of the Transformer and HMM proposed as
baselines for the SIGMORPHON 2020 Task 0. We
do this in part to create a clear comparison between
morphological inflection generation systems that
perform inference with exact vs. heuristic decoding
strategies.

We trained HMMs for each language family for
a maximum of 50 epochs and Transformers for a
maximum of 20000 steps. Early stopping was per-
formed if subsequent validation set losses differed
by less than 1e − 3. Batch sizes of 30 and 100,
respectively, were used. Other training configura-
tions followed those of the baseline systems.

Due to the resource scarcity for many of the
task’s languages, we used entire language families
to train models rather than individual languages.
Specifically, we aggregated the data from all lan-
guages of a given family, using a cross-lingual
learning approach. We did not subsequently fine-
tune the models on individual languages. Specifi-
cally, we do not do any additional training on indi-
vidual languages nor do we re-target the vocabulary
during decoding. This means generation of invalid
characters (i.e. invalid for a specific language) is
possible.

4.2 Decoding

For decoding, we perform exact inference with a
search strategy built on top of the SGNMT library
(Stahlberg et al., 2017). Specifically, we use Di-
jkstra’s search algorithm, which provably returns
the optimal solution when path scores monotoni-
cally decrease with length. From equation 1, we
can see that the scoring function for sequences y
is monotonically decreasing in t, therefore meet-
ing this criterion. Additionally, to prevent a large
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Greedy Beam5
acc dist acc dist

ang 0.720 0.52 0.726 0.48
azg 0.921 0.22 0.920 0.28
ceb 0.820 0.41 0.820 0.39
cly 0.764 0.44 0.762 0.50
cpa 0.846 0.22 0.845 0.23
czn 0.800 0.48 0.793 0.54
deu 0.977 0.03 0.976 0.03
dje 0.188 1.88 0.000 2.38

Table 1: Accuracy and Levenshtein distance on the test
set for greedy and beam search with beam size 5 for
HMMs.

Greedy Beam5
acc dist acc dist

ang 0.574 0.76 0.578 0.75
azg 0.808 0.63 0.813 0.62
ceb 0.874 0.27 0.874 0.27
cly 0.653 0.72 0.657 0.71
cpa 0.651 0.52 0.653 0.52
czn 0.695 0.62 0.702 0.59
deu 0.883 0.19 0.882 0.19
dje 0.938 0.12 0.938 0.12

Table 2: Accuracy and Levenshtein distance on the test
set for greedy and beam search with beam size 5 for
Transformers.

memory footprint, we can lower bound the search
by the score of the empty string, i.e. stop exploring
solutions whose scores become less than the empty
string at any point in time. We return the globally
best inflection.

5 Results on the Shared Task test data

Results on the test data from SIGMORPHON 2020
Task 0 can be found in Table 3. For comparison
purposes, Tables 1 and 2 show the performance
of our models with greedy and beam search for a
selection of languages.

5.1 Discussion

The results in Table 3 indicate that the HMM per-
formed better in combination with exact decoding
than the Transformer. On average over the 90 lan-
guages, the HMM achieved an accuracy of 80.9%
in comparison to only 75.6% for the Transformer.
Performance by Levenshtein distance looks simi-
lar: the average Levenshtein distances were 0.5 and
0.62 for the HMM and Transformer, respectively.

A particularly interesting language to study in
this scenario is Zarma (dje), which only has 56 sam-
ples in the training set, 9 samples in the develop-
ment set and 16 samples in the test set. Moreover,
it is the only language in its family, Nilo-Sahan.
The terrible performance of our system on this
language compared with greedy search suggests
that low-resource settings may lead to weak per-
formance with exact decoding. Out of the other

languages that performed poorly, many were from
the Germanic and Uralic family. Poor performance
on these languages may stem from the fact that
they belong to a family with high-resource lan-
guages. As we trained on language family data
and did not fine-tune the models, it is possible that
lower-resource languages in a high-resource fam-
ily, which are underrepresented in the training data,
are not adequately modelled. In these setting, per-
formance would likely be improve noticeably by
fine-tuning on the individual languages.

6 Conclusion

We perform exact inference on two baseline neural
architectures for morphological inflection, a Trans-
former and a (neuralized) hidden Markov model
with hard monotonic attention, to find the inflec-
tions with the globally best score under the model.
On test data, the hidden Markov model showed
better results: on average, it achieved 80.9% ac-
curacy and a Levenshtein distance of 0.5, while
the Transformer performed worse with 75.6% and
0.62 respectively. Overall, exact decoding of mor-
phological inflection generators does not appear to
significantly affect model performance compared
with greedy search. This is notable when compared
with NMT systems, for which exact search often
leads to performance degradation.
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Our Systems Baselines
Transformer HMM Transformer HMM

language acc dist acc dist acc dist acc dist
aka 0.966 0.105 0.980 0.059 0.999 0.000 1.000 0.000
ang 0.569 0.770 0.715 0.512 0.683 0.540 0.719 0.640
ast 0.925 0.178 0.976 0.061 0.993 0.010 0.996 0.010
aze 0.833 0.342 0.786 0.410 0.813 0.340 0.727 0.880
azg 0.813 0.618 0.919 0.283 0.922 0.220 0.916 0.270
bak 0.961 0.080 0.921 0.133 0.993 0.010 0.960 0.290
ben 0.965 0.072 0.989 0.024 0.993 0.010 0.993 0.040
bod 0.828 0.235 0.838 0.213 0.844 0.200 0.832 0.220
cat 0.948 0.116 0.939 0.146 0.996 0.010 0.996 0.010
ceb 0.874 0.270 0.820 0.387 0.865 0.280 0.847 0.310
cly 0.657 0.713 0.762 0.487 0.800 0.390 0.799 0.500
cpa 0.650 0.526 0.841 0.232 0.776 0.320 0.864 0.200
cre 0.684 1.250 0.694 1.210 0.667 1.200 0.668 1.260
crh 0.963 0.045 0.971 0.042 0.977 0.030 0.969 0.060
ctp 0.339 1.523 0.525 1.167 0.441 1.310 0.527 1.970
czn 0.702 0.593 0.793 0.551 0.784 0.490 0.813 0.430
dak 0.955 0.097 0.933 0.145 0.956 0.080 0.929 0.160
dan 0.583 0.664 0.672 0.448 0.655 0.450 0.684 5.270
deu 0.882 0.188 0.976 0.033 0.935 0.100 0.984 0.040
dje 0.938 0.125 0.000 4.313 0.875 0.190 0.000 2.880
eng 0.943 0.128 0.958 0.083 0.954 0.090 0.963 0.080
est 0.604 0.996 0.872 0.432 0.880 0.270 0.882 0.480
evn 0.572 1.061 0.536 1.281 0.571 1.060 0.540 1.200
fas 0.999 0.001 0.999 0.001 1.000 0.000 0.999 0.000
fin 0.847 0.280 0.982 0.033 0.958 0.070 0.992 0.020
frm 0.963 0.102 0.986 0.092 0.995 0.010 0.995 0.010
frr 0.214 2.885 0.317 3.539 0.637 1.080 0.782 0.700
fur 0.951 0.075 0.614 0.829 0.994 0.010 0.974 0.120
gaa 0.793 0.746 0.828 0.426 1.000 0.000 1.000 0.000
glg 0.746 0.560 0.927 0.161 0.996 0.010 0.997 0.010
gmh 0.248 1.766 0.766 0.340 0.745 0.360 0.887 0.150
gml 0.106 2.447 0.494 1.267 0.502 1.150 0.537 2.070
gsw 0.722 0.766 0.873 0.244 0.803 0.370 0.888 0.550
hil 0.945 0.172 0.924 0.315 0.950 0.150 0.941 0.210
hin 1.000 0.001 1.000 0.000 1.000 0.000 1.000 0.000
isl 0.745 0.544 0.933 0.136 0.878 0.260 0.950 0.300
izh 0.107 2.357 0.223 1.616 0.563 0.830 0.683 0.790
kan 0.761 0.779 0.768 0.799 0.767 0.640 0.740 0.750
kaz 0.936 0.304 0.955 0.254 0.971 0.150 0.955 0.240
kir 0.953 0.073 0.970 0.064 0.976 0.040 0.976 0.040
kjh 0.875 0.229 0.900 0.138 0.992 0.010 0.921 0.100
kon 0.981 0.038 0.981 0.026 0.987 0.010 0.987 0.010
kpv 0.672 0.711 0.749 0.550 0.945 0.100 0.932 0.250
krl 0.831 0.309 0.964 0.072 0.948 0.080 0.971 0.050
lin 0.891 0.261 0.870 0.283 0.978 0.020 1.000 0.000
liv 0.286 1.893 0.646 0.721 0.603 0.880 0.713 2.230
lld 0.926 0.158 0.974 0.052 0.996 0.010 0.998 0.000
lud 0.220 2.207 0.390 1.573 0.415 1.230 0.512 1.050
lug 0.852 0.295 0.870 0.228 0.909 0.130 0.901 0.150
mao 0.667 0.667 0.524 1.071 0.619 0.710 0.548 0.930
mdf 0.578 1.094 0.692 0.781 0.910 0.200 0.891 0.310
mhr 0.616 1.135 0.724 0.833 0.866 0.250 0.838 0.350
mlg 0.984 0.024 0.984 0.016 1.000 0.000 0.984 0.020
mlt 0.935 0.093 0.890 0.170 0.935 0.090 0.873 0.250
mwf 0.887 0.279 0.779 0.500 0.896 0.270 0.608 0.920
myv 0.779 0.587 0.782 0.546 0.930 0.180 0.888 0.360
nld 0.880 0.210 0.971 0.054 0.961 0.070 0.980 0.040
nno 0.472 0.799 0.636 0.517 0.698 0.480 0.789 0.610
nob 0.661 0.659 0.674 0.630 0.752 0.470 0.748 0.680
nya 0.974 0.060 0.966 0.090 1.000 0.000 1.000 0.000
olo 0.795 0.372 0.896 0.185 0.876 0.200 0.930 0.130
ood 0.793 0.439 0.745 0.529 0.809 0.410 0.758 0.490
orm 0.990 0.020 0.978 0.049 0.990 0.010 0.975 0.040
ote 0.913 0.142 0.964 0.084 0.969 0.040 0.991 0.010
otm 0.793 0.592 0.955 0.130 0.915 0.240 0.981 0.050
pei 0.620 0.800 0.715 0.679 0.728 0.570 0.714 0.610
pus 0.888 0.280 0.878 0.315 0.898 0.260 0.886 0.380
san 0.906 0.185 0.915 0.183 0.931 0.140 0.910 0.210
sme 0.776 0.481 0.978 0.053 0.944 0.110 0.986 0.040
sna 0.965 0.094 0.961 0.103 1.000 0.000 1.000 0.000
sot 0.879 0.343 0.909 0.242 0.990 0.010 1.000 0.000
swa 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
swe 0.782 0.387 0.947 0.093 0.897 0.180 0.976 0.200
syc 0.916 0.084 0.901 0.099 0.900 0.100 0.898 0.100
tel 0.938 0.300 0.941 0.333 0.949 0.260 0.934 0.270
tgk 0.563 1.125 0.875 0.375 0.688 0.750 0.875 0.380
tgl 0.699 0.862 0.617 1.368 0.705 0.830 0.640 1.070
tuk 0.858 0.510 0.848 0.530 0.856 0.430 0.858 0.450
udm 0.796 0.525 0.840 0.400 0.970 0.060 0.959 0.110
uig 0.953 0.163 0.983 0.065 0.988 0.020 0.991 0.010
urd 0.987 0.023 0.991 0.016 0.991 0.020 0.991 0.080
uzb 0.991 0.028 0.991 0.067 0.995 0.020 0.995 0.020
vec 0.816 0.414 0.924 0.174 0.995 0.010 0.996 0.010
vep 0.666 0.636 0.800 0.357 0.781 0.330 0.805 0.340
vot 0.043 3.032 0.093 2.192 0.470 0.930 0.605 0.800
vro 0.175 2.583 0.233 1.689 0.233 1.640 0.388 1.320
xno 0.235 3.039 0.549 1.686 0.765 1.240 0.804 2.880
xty 0.842 0.360 0.875 0.360 0.868 0.330 0.882 0.470
zpv 0.724 0.750 0.789 0.535 0.816 0.410 0.803 1.500
zul 0.628 1.000 0.808 0.449 0.910 0.190 0.872 0.210
average 0.756 0.620 0.809 0.500 0.859 0.307 0.860 0.485
std.dev. 0.237 0.712 0.208 0.692 0.161 0.371 0.170 0.785

Table 3: Accuracy and Levenshtein distance for both of our systems, as well as for the baselines.
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Abstract
We present a model for the unsupervised dis-
covery of morphological paradigms. The
goal of this model is to induce morphological
paradigms from the bible (raw text) and a list
of lemmas. We have created a model that splits
each lemma in a stem and a suffix, and then
we try to create a plausible suffix list by con-
sidering lemma pairs. Our model was not able
to outperform the official baseline, and there is
still room for improvement, but we believe that
the ideas presented here are worth considering.

1 Introduction

In this paper we describe our attempt to cap-
ture morphological paradigms totally from scratch
(Kann et al., 2020) prepared for the task
of morphological paradigm completion in the
CoNLL–SIGMORPHON 2020 Shared Task. Com-
putational morphology is not a new area and there
is plenty of related work. Some years ago, this
problem was commonly tackled using finite-state
and two-level approaches, such as in Kaplan and
Kay (1994), Beesley and Karttunen (2003), and
Koskenniemi (1983). Recent works, on the other
hand, rely mostly on statistical approaches, such
as in Faruqui et al. (2016) and Kann and Schütze
(2017).

There have been several Shared Tasks recently
on morphological inflection (Cotterell et al., 2016,
2017, 2018; McCarthy et al., 2019). The task for
this year is more complex, as we are asked to dis-
cover paradigms from scratch. This is an intriguing
research area that could give us the chance of recov-
ering dead languages that have only limited written
resources. Several researchers have attempted to
solve this task, such as Goldsmith et al. (2017), Jin
et al. (2020), and Erdmann et al. (2020).

We present a pipeline that assumes that all mor-
phological realizations in a paradigm (for each lan-
guage) follow a fixed structure: stem+suffix.

Based on that logic, we look for the best candidates
to compose the suffix inventory, we cluster them
using K-means and after that, we join stems and
suffixes. We employ language models to get the
most natural outputs. The pipeline that we have
developed does not contain any neural network
component, but we contemplate it as a possibility
to extend our work in the near future.

This paper is structured as follows: In the next
section we introduce the task that we have worked
on. We describe our approach in the third section.
Afterwards, we show our results compared to the
baseline model. To conclude, we discuss our results
and provide possible future directions.

2 Task

In this competition there was one task that we had
to perform. A computational system had to be
built, which, given a raw text and a set of lemmas,
it would return the complete list of paradigms for
each verb. The computational model should be able
to read a text like this,

The aircraft landed at the JFK airport. Other
pilots decided to land in Philadelphia. As you may

imagine, landing a plane is not an easy job, but
imagination can help.

and extract morphological paradigms. In the shared
task, a list of lemmas is also given as a starting
point. This list of lemmas could include verbs like
land and imagine.

In the case of the verb land, in the example
above, it is pretty easy to get its inflections (land,
landed, landing). This could, for example, be done
with a Minimum Edit Distance based method and it
is relatively easy, as there is no usage of land with
the function of a noun. It gets slightly more compli-
cated with the verb imagine, as a simple distance-
based algorithm could fail, because it could find

111

https://doi.org/10.18653/v1/P17


imagination as a possible conjugation of the verb
imagine.

2.1 Dataset

As one of the most widely extended resources is
the bible, the organizers decided to consider it as
the raw text input data. Together with the bible, a
list of verbal lemmas was given. The languages for
development were Maltese, Persian, Portuguese,
Russian and Swedish. The languages for testing in-
cluded the following: Basque, Bulgarian, English,
Finnish, German, Kannada, Navajo, Spanish and
Turkish.

3 Method

Our method has a very strong assumption, which
oversimplifies the problem but it also gives the
chance of recognizing some patterns. The assump-
tion is that all lemmas and their inflections have the
following form for all languages

STEM+SUFFIX → STEM+SUFFIX ′

as illustrated in the following examples for English
and Spanish:

play → playing play+ε→ play+ing
jugar → jugando jug+ar → jug+ando

Pipeline

We use a pipeline that includes four different steps.
These are described below.

3.1 Step 1

In the first step, for each lemma l in the lemma
list L and each word w in the corpus/dictionary
D, all possible splits l11+l

|l|
2 , l21+l

|l|
3 ,.., l|l|1 +ε, and

w1
1+w

|w|
2 , w2

1+w
|w|
3 ,.., w|w|

1 +ε are generated. (We
use vji , with 0 ≤ i ≤ j ≤ |v|, to denote the sub-
string vi..vj of a string v.) We assume the stem (the
hypothesized STEM) to be nonempty but allow the
suffix to be empty. For the Spanish lemma jugar we
thus get j+ugar , ju+gar , jug+ar , juga+r , and
jugar+ε.

3.2 Step 2

In the second step, we determine the inflections of
the regular verbs of the language. These will be
used for the estimation of the morphological rich-
ness rm of the lemmas (verbs) in the third step.
The morphological richness of the lemmas can
be identified with the number of combinations of
those tense, aspect, mood, and agreement features

that can be distinctively morphologically realized.
Because the morphological richness of the lem-
mas (verbs) does not tend to vary much across
the different lemmas (verbs), even if they inflect
semi-irregularly or irregularly, we assume that each
lemma has rm different inflections. rm thus pro-
vides an upper bound on the number of cells of the
paradigms of the language/corpus.

For determining rm we identify the inflections
of the lemmas with regular inflection. First, we
determine for each splitted lemma l = r+s the
number of potential inflections of the hypothe-
sized stem r, that is r+s′, in D. This is the set
Sr+s = {s′ | r+s′ ∈ D}. Then, for regularly in-
flecting lemmas, Sr+s will be large for the actual
split but also for any split within the stem. This
is illustrated for the German lemma spielen (play)
with the actual split spiel+en below.
Sspiele+n = {ε,n}
Sspiel+en = {e, st , t , en, ...}
Sspie+len = {le, lst , lt , len, ...}
To accommodate for this deficiency, we also con-

sider pairs of splitted lemmas l = r+s, l′ = r′+s
with distinct stem endings r|r| 6= r′|r′| and we de-

termine the split î of s that yields the maximum
number of common inflections:

î = maxi∈{0,..,|s|} |Srsi0+s
|s|
i+1

∩ S
r′si−1

0 +s
|s|
i

|

We choose for each lemma pair l, l′ the splits
r̂+ŝ and r̂′+ŝ, with r̂ = rsî0, r̂′ = r′sî0, and
ŝ = s

|s|
î+1

, and consider their common suffixes in
D: Sr̂+ŝ ∩ Sr̂′+ŝ.

Because regularly inflecting verbs tend to share
their inflections, this lemma pairing allows us to re-
liably predict that, for example, the stems of spielen
and gehen are spiel and geh.
Sspiele+n ∩ Sgehe+n = {ε,n}
Sspiel+en ∩ Sgeh+en = {e, st , t , en, ...}
Sspie+len ∩ Sge+hen = ∅
Finally, for all splitted lemmas r̂+ŝ we collect

the suffixes in Sr̂+ŝ in one bag.

3.3 Step 3

The goal of this step is to group different realiza-
tions of the same suffix. The previous step captures
relevant suffixes, but in some cases, some parts of
the stem are also included in these suffixes, or there
might be some slight differences, because of mor-
phophonological changes. In order to group them,
we employ K-Means.
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When using K-means we need a function that
calculates the distance between the elements, and
based on this distance, the instances will be clus-
tered. We decided to employ a modified version
of Minimum Edit Distance. Our modified version
tries to punish changes that are made at the end
of the suffix. The assumption in this case, is that
changes at the beginning of the suffix are more
likely to be caused by the stem (and they could be
the same suffix). On the other hand, if there are
changes at the end, it would be a different suffix.
Our edit distance algorithm allows insertion and
deletion as possible changes. We also assume that
it is worse to substitute a vowel with a consonant,
than changing a vowel with a vowel. Therefore,
this would happen:

Distance (era, bra) > Distance (era, ara)

ntar ntaron aron ar
ntar 0.000 0.939 0.778 0.094
ntaron - 0.000 0.015 0.832
aron - - 0.000 0.656
ar - - - 0.000

We estimate that the number of paradigms (rm)
in a language is approximately the third of the
number of different suffixes found in the previ-
ous step. This number was estimated based on
the behaviour of the model considering Swedish
data. Therefore, K-means will reduce the num-
ber of possible suffixes to the third (this is a pa-
rameter that will be tuned in the future). For ex-
ample, one of the clustered groups found in this
step considering the Spanish data would be this:
{rá, erá, derá, ará, irá}. This corresponds to the
suffix of future simple, third person singular.

3.4 Step 4

In the previous steps we will have generated pos-
sible suffixes for each cell in a paradigm. Now,
the goal is to make a guess of how a word form
should be generated. For example, in Spanish, if
we have the lemma sanar, and we want to build the
first person singular of the future simple tense (sa-
naré), we could expect the lemma to be combined
with suffixes like é, ré, aré, iré, and so on. These
suffixes would be the output of the previous step.

First of all, for each lemma, the model needs
to decide the position in which we will split the
lemma, as following the previous assumption a
word will have this shape: STEM+SUFFIX. In or-
der make that decision, we check how often we
associate each lemma with a specific stem in the

output of step 2, and use the most frequently occur-
ring stem for all the suffixes. For example, for the
verb sanar, in Spanish, we get these frequencies:
san:15, sana:21, sa:1, and therefore, we
would use the stem sana.

We, then, try to join that stem with the clustered
suffixes. Each stem will be joined with one suf-
fix from each cluster. In order to decide which
is the best suffix, we use a bigram character-level
language model to estimate the probability of the
output sequences, trained on the input bible. These
are the probabilities that we get if we consider the
example of the stem sana (from sanar) and suffixes
é, ré, aré and iré in Spanish.

Candidate output Probability
sanaé 0.0
sanaré 4.097e− 07
sanaaré 1.272e− 10
sanairé 2.201e− 10

Obviously, in this case, the conjugation sanaré
would be returned.

3.5 Expansion of the lemma list

At this point, the model produced a little amount
of suffixes. Then, we decided to extend the list of
input lemmas, so that it can find new suffixes and
increase, therefore, the recall of the model.

We obtain new lemmas by training a very simple
verb classifier. We create a simple dataset with
the input lemmas and some random words from
the corpus. The input lemmas will be tagged as
verbs and the random words will be tagged as non-
verbs. We, then, train a simple Logistic Regression
model, using character uni-, bi- and trigrams for
representing each word. We also include word
boundary symbols. For instance, in Spanish we
would have cases like:

Word Features (trigrams) class
comer <co, com, ome, mer, me> V
plaza <pl, pla, laz, aza, za> NV

Using this approach we obtain new verbs that
can be used in our Pipeline. The model that uses
the extended list of lemmas for extracting suffixes
is called the Flexible model, and on the other hand,
the initial model (the one that uses only the initial
lemmas as input) is called the Non-flexible model.

4 Results

Table 1 and table 2 show our models performance
for the development languages and also the test
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Development languages
Language Gold Baseline Non-flexible model Flexible model

no. of slots no. of slots macro no. of slots macro no. of slots macro
Maltese 32 17 0.2029 2 0.013 254 0.0022
Persian 136 31 0.0605 2 0.0074 11 0.0155
Portuguese 76 34 0.3964 70 0.1275 1104 0.0109
Russian 16 19 0.4132 10 0.0706 387 0.0035
Swedish 11 15 0.4167 17 0.2282 588 0.0093

Table 1: Macro average results and the number of predicted slots for the Baseline model together with our Non-
flexible and Flexible models, tested on development languages.

Test languages
Language Gold Baseline Non-flexible model Flexible model

no. of slots no. of slots macro no. of slots macro no. of slots macro
Basque 1658 27 0.0006 2 0.0001 30 0.0002
Bulgarian 54 34 0.3169 13 0.0415 138 0.0299
English 5 4 0.662 7 0.1729 51 0.0353
Finnish 141 21 0.055 108 0.0208 1169 0.0039
German 20 9 0.29 40 0.0498 425 0.007
Kannada 57 172 0.1512 1 0.0169 44 0.0427
Navajo 30 3 0.0327 2 0.002 38 0.0013
Spanish 70 29 0.2367 40 0.1084 225 0.0352
Turkish 120 104 0.1553 502 0.0071 1772 0.0011

Table 2: Macro average results and the number of predicted slots for the Baseline model together with our Non-
flexible and Flexible models, tested on test languages.

languages. Unfortunately, we could not surpass the
baseline model in any of the languages. We can
say that among the development language results,
Portuguese and Swedish are the ones that are best
captured by the Non-flexible model. Considering
the test languages, Spanish and English are the
ones that were best modeled by the Non-flexible
model.

It also seems that while the flexible model might
have a better recall, the obtained result is not good
enough, and therefore, it still requires some filter-
ing.

5 Discussion and Future Work

We have presented our approach for automatically
discovering morphological paradigms, given a text
and list of lemmas. As mentioned above, our results
are behind the official baseline, and therefore, there
is a wide range of possibilities for improvement.
We discuss some of them below.

We assumed each inflected form to be decom-
posable into a stem and a suffix. This could be, for
example, sufficient for English or Spanish, but not

for languages such as German that follow a two
splits pattern:

STEM+SUFFIX → PREFIX+STEM+SUFFIX ′

In German, for example, participles are formed by
prefixing ge:

play → played play+ε→ play+ed
spielen → gespielt spiel+en → ge+spiel+t

Apart from that, a much more straightforward
estimate of the morphological richness rm could,
for example, be obtained by just considering the
triple l1 = r̂1+s, l2 = r̂2+s, l3 = r̂3+s of opti-
mally splitted distinct lemmas with the maximum
number of common suffixes. Because these lem-
mas are most likely to be frequently used lemmas
with regular inflection, the size of the union of their
inflections would presumably yield a good estimate
of rm. Clustering of these triples could also help
in identifying verb classes with distinct but regular
inflection.

Moreover, splitting of compound verbs of the
form X+V, with X typically a noun or verb, would
certainly improve performance because the inflec-
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tions of the verb V could be used for the typically
less frequent compound verb X+V.

With respect to the writing system, the Basque
bible follows old orthographical rules. On the other
hand, the lemmas were written following more re-
cent orthography rules. This lack of consistency
makes the task a challenge, and we expect it to
happen in other languages as well. This issue re-
quires special attention, by maybe applying some
preprocessing to the lemmas to accommodate to
the old writing system (Etxeberria et al., 2019).

Also, we mentioned at the beginning of the ar-
ticle that we have not used any neural network
based component, and these would be very useful
for learning the morphophonological changes that
commonly happen when inflecting words. There-
fore, we would like to incorporate a Sequence-
to-Sequence model at the end of our pipeline
(Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017).

Acknowledgments

We acknowledge the anonymous reviewers for
their relevant comments and possible extra fu-
ture directions, and also the organizers of the
CoNLL–SIGMORPHON 2020 Shared Task for
giving us the opportunity of participating in such a
challenging task.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite-
state Morphology: Xerox Tools and Techniques.
CSLI, Stanford University.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
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Abstract
This paper presents the University of Al-
berta systems and results in the SIGMOR-
PHON 2020 Task 1: Multilingual Grapheme-
to-Phoneme Conversion. Following previous
SIGMORPHON shared tasks, we define a low-
resource setting with 100 training instances.
We experiment with three transduction ap-
proaches in both standard and low-resource
settings, as well as on the related task of
phoneme-to-grapheme conversion. We pro-
pose a method for synthesizing training data
using a combination of diverse models.

1 Introduction

In this system paper, we discuss the participation
of the University of Alberta team in the SIGMOR-
PHON 2020 Task 1: Multilingual Grapheme-to-
Phoneme Conversion (Gorman et al., 2020). This is
a sequence-to-sequence transduction task, in which
a word, represented by a sequence of graphemes,
must be converted into the sequence of phonemes
representing its pronunciation. For example, given
the French word connaissent the correct output is
the phoneme sequence [k O n E s].

Following previous SIGMORPHON shared
tasks, in addition to the standard setting with 3600
training examples for each language (which we
refer to as the high-resource setting), we define a
low-resource setting in which training data is lim-
ited to 100 examples. This emulates a plausible
scenario of working with a low-resource language
for which only a small quantity of reliable phono-
logical data is available. For example, a typical
IPA description of the phonological inventory of a
single language contains about a hundred phonetic
transcriptions of individual words (IPA, 1999). We
analyze the relative performance of different sys-
tems depending on the size of the training data.

The task of phoneme-to-grapheme (P2G) conver-
sion is the inverse of grapheme-to-phoneme Con-

version (G2P), in which the goal is to predict the
spelling of a word given its phonetic transcription
(Rentzepopoulos and Kokkinakis, 1996). While
G2P reflects the difficulty of reading, P2G may
indicate the complexity of writing in a given lan-
guage. Training instances for one of the two tasks
can easily be applied to the other one by simply re-
versing the input and output. We use the shared task
datasets to investigate how systems designed for
G2P perform on P2G. We also leverage raw text
corpora to improve the accuracy on P2G, which
indirectly leads to improvements on G2P as well.

We develop a novel method of mitigating re-
source limitations by synthesizing additional train-
ing data using a combination of multiple G2P and
P2G models. The underlying intuition is that a
P2G model should be the inverse of the correspond-
ing G2P model. Since models trained on a small
number of instances tend to have limited accuracy,
we attempt to distinguish between the correct and
incorrect predictions by ensuring that P2G model
output matches the corresponding G2P model input.
The precision of this approach is further improved
by comparing predictions of different systems. Fig-
ure 1 illustrates this idea.

The principal contributions of this paper include
a novel G2P data augmentation method that lever-
ages multiple systems and text corpora, as well as
a thorough comparison of several G2P and P2G
systems in both low-resource and high-resource
settings.

2 Prior Work

Our methods build upon the prior work of the Uni-
versity of Alberta teams on string transduction. Di-
recTL, a feature-based discriminative transducer,
was originally designed for the G2P task (Jiampo-
jamarn et al., 2008). In DirecTL+ (Jiampojamarn
et al., 2010), the feature set was augmented with
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Figure 1: Our approach to synthesizing additional G2P training data.

joint n-grams defined on both source and target
substrings. The system was applied to related tasks
such as transliteration (Jiampojamarn et al., 2009),
morphological inflection (Nicolai et al., 2015),
stemming (Nicolai and Kondrak, 2016), and cog-
nate projection (Hauer et al., 2019), proving to be
particularly competitive in low-resource settings.
DTLM (Nicolai et al., 2018), our principal tool in
this work, is a successor of DirecTL+, which in-
corporates target-side language models and a high-
precision alignment. DTLM achieved state-of-the-
art results on several tasks in which plain word
types constitute the transduction target strings. Fi-
nally, our data augmentation approach is inspired
by the self-training approach of Hauer et al. (2017).

3 Methods

In this section, we first describe DTLM, a multi-
purpose string discriminative transduction system
which we apply to both G2P and P2G tasks. We
then introduce our approach to synthesizing addi-
tional training data from unannotated texts.

3.1 Discriminative String Transduction

The core of DTLM, adapted from DirecTL+, is a
dynamic programming algorithm which uses a set
of feature templates to transduce multiple charac-
ters in a single operation. The feature set includes
context features (n-grams on the source side), tran-
sition features (target side bigrams), linear-chain
features (conjunction of context and transition fea-
tures), and joint n-gram features (on both source
and target).

The transduction quality of DTLM depends on
a high precision one-to-many alignment, which
is performed with M2M+ aligner (Jiampojamarn

et al., 2007) in a two-step process. In the first step,
M2M+ induces a one-to-one alignment in which
null symbols may be inserted on either side. In the
second step, the null links on the source side are
removed by merging adjacent target symbols.

The accuracy of DTLM can be enhanced by
leveraging target character and word language mod-
els. A 4-gram character languages model, which
is induced from a set of word types extracted
from a text corpus, encourages the prediction of
high-probability letter sequences. A unigram word
language model (which we also refer to as word
counts) biases DTLM toward the production of
known word-forms, with more common words and
prefixes being preferred. Thus, DTLM is able to
take advantage of existing multi-lingual text cor-
pora, such as Wikipedia, to improve its accuracy
on P2G. Since we have no access to any corpora of
phonetic transcriptions, the language model com-
ponent is not used for G2P.

3.2 Data Augmentation

Inspired by the data hallucination technique for
neural model training (Silfverberg et al., 2017;
Anastasopoulos and Neubig, 2019), we introduce a
method to synthesize additional training instances
from unannotated texts. For each language under
consideration, we train base transduction models
on the available training data, and extract a list of
words from a text corpus. A naive self-training ap-
proach would be to simply apply a base G2P model
to the words in the list to produce new training
instances. However, without some mechanism to
filter out incorrect predictions, a model trained on
the augmented data would learn to replicate many
of the errors made by the base model. Instead, we
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reduce the noise by cross-checking the predictions
of the independent base transduction systems ap-
plied in both directions.

Figure 1 illustrates the data augmentation pro-
cess. For each word in the word list, we perform
multiple sanity checks before accepting a new train-
ing instance. First, both G2P models (in this case,
DTLM and FST) must agree on their phoneme pre-
dictions. Second, when applied to the common
G2P prediction, the corresponding base P2G mod-
els must not only agree, but also output the original
orthographic word. If both G2P models predict
the same phoneme sequence, and both P2G mod-
els recover the original grapheme sequence, that
grapheme–phoneme pair is added to the synthetic
training data. The final augmented model is trained
on the combined original and synthetic data.

4 Development

In this section, we describe our development ex-
periments on both G2P and P2G with three differ-
ent transduction systems and the synthetic training
data.

4.1 Datasets

We created low-resource datasets of 100 instances
from each standard (high-resource) training set of
3600 instances (Lee et al., 2020). We extracted
every 36th instance, starting from the first instance,
in a deterministic manner, to ensure replicability.
The P2G datasets were created by swapping the
grapheme and phoneme strings in the task datasets.
The official development sets of 450 instances were
used for model tuning only.

4.2 Task Baselines

The task organizers provided implementations of
three baseline systems, which are referred to as
FST, LSTM, and TRANSFORMER. These are not
baselines in the traditional sense of “the simplest
possible algorithm” (Manning and Schutze, 2001,
page 234), but rather sophisticated systems capable
of achieving state-of-the-art results on related tasks.
Rather than develop a novel competitive approach,
our goal was to combine the unmodified baselines
and DTLM to achieve a relative improvement with
respect to the individual systems.

As our neural base system, we selected TRANS-
FORMER, an encoder-decoder architecture with
fully-connected layers and self-attention mecha-
nism, which was originally developed for machine

Language DTLM -LM -WC -LM -WC
Dutch 21.6 25.6 25.1 29.8
French 28.2 28.4 48.4 52.2
Greek 33.1 40.9 52.0 59.6

Table 1: WER for variants of DTLM on P2G develop-
ment sets in the standard (high-resource) setting.

translation (Vaswani et al., 2017). Our choice of
TRANSFORMER over LSTM was based on initial
development experiments.1 The system is imple-
mented using the Fairseq toolkit (Ott et al., 2019).

Unlike FST, which only needs to be tuned on the
size of n-grams, TRANSFORMER requires exten-
sive tuning which may take several days to com-
plete. We attempted to follow the tuning guidelines
as they became available. We kept the hyperparam-
eters as specified in the source code, with the max-
imum number of training epochs set to 400. The
tuning was performed separately for each language
in terms of word error rate (WER). We trained the
models on two Nvidia Titan RTX GPUs, using
Adam optimizer. We varied dropout probability be-
tween 0.1, 0.2, and 0.3. and batch size between 256,
512, and 1024 in the high-resource setting, and 64
in the low-resource setting. Due to the underspec-
ification in the guidelines, instead of tuning the
number of epochs, we took the model checkpoint
of the last epoch.

Unfortunately, we were ultimately unsuccessful
in replicating the official results of TRANSFORMER.
The implementation used for producing the official
results was not available at the system submission
time, and used different hyperparameter settings.2

4.3 DTLM and P2G

DTLM was our principal system for both G2P and
P2G. The models were tuned on the official de-
velopment sets separately for each task (G2P and
P2G), language, and setting (high-resource and
low-resource). The context size was varied from
1 to 3 in low-resource, and from 2 to 7 in high-
resource settings. We also varied joint n-gram fea-
tures from 1 to 6, and Markov order from 0 to 2,
with and without linear chain features.

For P2G models, we extracted word frequency
lists for each language from the first one million

1However, the official baseline results, show LSTM as
more accurate than TRANSFORMER on most languages. The
model results and predictions were not available at the system
submission time.

2Unlike the earlier implementation that we used, it tuned
the number of training epochs without a fixed maximum.
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lines of Wikipedia3, excluding words with fre-
quency less than 10, shorter than 4 characters, or
containing non-alphabetic characters. From the
word lists, we generated 4-gram character language
models using the CMU Toolkit4. Target language
models are not used for the G2P task because of
the lack of phonetic transcription corpora.

Table 1 demonstrates the impact of word counts
(WC) and character language models (LM) on P2G
accuracy. The results on three challenging lan-
guages suggest that most of the DTLM advantage
comes from leveraging monolingual text corpora.
Furthermore, word counts help more than charac-
ter LMs. Without those two components, DTLM
results on P2G in the standard (high-resource) set-
ting were in the same range as FST and TRANS-
FORMER.

4.4 Synthetic Training Data

For our data augmentation approach outlined in
Section 3.2, we required base G2P and P2G trans-
duction systems. We preferred FST and DTLM
over TRANSFORMER, as they performed better on
small training datasets in terms of both accuracy
and speed. Although data augmentation could also
be applied to P2G, we used it exclusively for G2P,
which is the primary focus of this shared task.

The starting point for generating the synthetic
training data were the word lists extracted from
Wikipedia, as described in Section 4.3. We applied
the base models to the lists, and filtered out the
instances on which the models disagreed or failed
to recover the original spelling from their own pho-
netic predictions. We further limited the number of
synthetic training instances to 20,000 per language.
This process failed to produce a substantial num-
ber of new instances for Vietnamese and Korean,
which we attribute to the unusual characteristics of
the two scripts.

The data augmentation approach was successful
in our development experiments on the standard
high-resource datasets, reducing the average WER
with respect to base TRANSFORMER from 17.0%
to 16.0%, We obtained improvements on 13 out of
15 languages, with the exception of Bulgarian and
Korean.5

3https://dumps.wikimedia.org
4http://www.speech.cs.cmu.edu/SLM
5Only 36% of the graphemes in the Korean test set are

observed in the low-resource train set. The corresponding
number in Japanese is 90%.

High Resource Low Resource
Language DTLM FST TF DTLM FST TF
Adyghe 18.2 16.7 21.3 53.1 56.0 87.8
Armenian 4.9 5.1 8.0 14.0 27.3 80.7
Bulgarian 6.0 6.4 8.4 20.9 28.7 83.8
Dutch 23.8 27.3 21.1 34.0 66.7 90.4
French 28.7 50.4 51.3 51.6 72.4 94.0
Georgian 1.1 0.7 1.1 4.4 6.4 74.7
Greek 32.9 59.6 56.9 41.3 89.1 97.6
Hindi 3.8 12.0 15.1 18.0 45.8 86.9
Hungarian 4.0 6.9 8.0 14.9 28.7 81.8
Icelandic 13.6 12.0 15.6 28.0 45.6 82.4
Japanese 4.4 9.8 3.6 61.1 59.3 97.8
Korean 39.1 50.0 32.7 96.7 97.3 100
Lithuanian 4.0 3.6 3.3 15.1 25.8 75.1
Romanian 1.8 1.3 2.9 17.8 15.6 57.3
Vietnamese 16.2 18.4 16.2 71.8 85.6 96.9
Average 13.5 18.7 17.7 36.2 50.0 85.8

Table 2: WER on P2G test sets.

5 Test Results

Table 2 shows the P2G results on the test sets. All
models are trained on the same training sets, with-
out any synthesized instances. TRANSFORMER

(TF) completely fails with only 100 training in-
stances (low resource), but outperforms FST with
3600 training instances (high resource).6 DTLM
is substantially more accurate on average than
the other two systems in both settings. Although
DTLM benefits from information extracted from
freely-available unannotated text corpora, the re-
sults of the three systems are directly comparable
because they all use the same annotated training
material. This further confirms the claim of Nicolai
et al. (2018) that DTLM achieves state-of-the-art
results on the task of phoneme-to-grapheme con-
version.

Table 3 shows the G2P results on the test sets.
The DTLM models were trained without any syn-
thetic data or target language models. Although
DTLM results are generally lower than on P2G,
it outperforms FST in both settings.7 TRANS-
FORMER again fails in the low resource setting,
In the standard (high resource) setting, DTLM is
about 6% worse on average than TRANSFORMER

in terms of WER, but 10% better in terms of PER
(3.9% vs 4.3% according to the official results). In
addition, DTLM is much easier and faster to train.

The TRANSFORMER models trained on the data
6We note that the P2G accuracy is particularly high on

Georgian, which, unlike French, seems to be easier to write
than to read.

7 FST, which is not included in Table 3, obtains 22.0%
WER average in the standard setting according to the official
results, and 58.1% WER average in the low-resource setting,
as our submission with RunID=5.
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High Resource Low Resource
Language DTLM TF TF+ DTLM TF TF+
RunID 1 2 3 4 6 -
Adyghe 29.8 28.9 28.2 54.4 92.9 58.4
Armenian 16.9 13.1 16.0 36.4 82.9 36.2
Bulgarian 35.8 30.0 36.7 67.6 93.3 66.4
Dutch 19.6 19.3 16.9 58.7 93.6 57.6
French 7.6 6.4 6.4 53.3 94.9 44.9
Georgian 28.2 25.8 27.1 39.6 84.4 42.2
Greek 15.8 17.1 17.3 39.1 88.0 44.0
Hindi 12.2 10.7 8.7 48.2 89.8 43.1
Hungarian 5.3 6.0 5.3 27.6 87.6 22.7
Icelandic 13.1 10.2 11.3 61.6 90.9 62.0
Japanese 8.7 6.7 6.7 57.8 98.0 53.1
Korean 45.3 45.1 45.1 95.1 100 100
Lithuanian 21.8 22.7 24.4 62.7 90.7 64.0
Romanian 11.3 12.7 10.7 30.2 69.3 28.9
Vietnamese 7.8 7.3 8.7 75.3 95.3 87.3
Average 18.6 17.5 18.0 53.8 90.1 54.1

Table 3: WER on G2P test sets.

augmented with synthesized instances (labeled as
TF+ in Table 3) achieved consistently higher results
in our development experiments in the standard
(high resource) setting (Section 4.4). Unfortunately,
a corresponding improvement is not seen in the
official test results. Possible explanations include
the limit of 400 on the number of epochs made
by the task organizers, as well as the suboptimal
tuning procedure, which might have accidentally
resulted in the overfitting of the augmented model.
This is also suggested by the fact that the results of
our TRANSFORMER models are often better than
the official results on the test datasets.

On the other hand, the data augmentation ap-
proach is remarkably successful in the low-resource
setting, yielding an average WER improvement
over 35% with respect to base TRANSFORMER. We
interpret these results as a strong proof-of-concept
of the validity of our data augmentation approach;
when training data is limited, it can dramatically
improve the accuracy of neural models, without
any change to their architecture.

6 Conclusion

We have presented a novel data augmentation
method that combines the strengths of multiple
string transduction methods. We have also explored
both G2P and P2G tasks in both the standard high-
resource setting, and a low-resource setting of our
own design. The results demonstrate that the weak-
ness of neural systems in low-resource settings can
be mitigated through the application of data aug-
mentation.
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Abstract

In this paper, we describe two CU Boulder
submissions to SIGMORPHON 2020 Task 1
on multilingual grapheme-to-phoneme conver-
sion (G2P). Inspired by the high performance
of a standard transformer model (Vaswani
et al., 2017) on the task, we improve over this
approach by adding two modifications: (i) In-
stead of training exclusively on G2P, we addi-
tionally create examples for the opposite direc-
tion, phoneme-to-grapheme conversion (P2G).
We then perform multi-task training on both
tasks. (ii) We produce ensembles of our
models via majority voting. Our approaches,
though being conceptually simple, result in
systems that place 6th and 8th amongst 23
submitted systems, and obtain the best results
out of all systems on Lithuanian and Modern
Greek, respectively.

1 Introduction

This paper describes the CU Boulder submissions
to the SIGMORPHON 2020 shared task on mul-
tilingual grapheme-to-phoneme conversion (G2P).
G2P is an important task, due to its applications
in text-to-speech and automatic speech recognition
systems. It is explained by Jurafsky and Martin
(2009) as:

The process of converting a sequence
of letters into a sequence of phones is
called grapheme-to-phoneme conversion,
sometimes shortened g2p. The job of a
grapheme-to-phoneme algorithm is thus
to convert a letter string like cake into a
phone string like [K EY K].

While the earliest G2P algorithms have used
handwritten parser-based rules in the format of
Chomsky-Halle rewrite rules, often called letter-to-
sound, or LTS, rules (Chomsky and Halle, 1968),

later techniques have moved on to generating semi-
automatic alignment tables such as in Pagel et al.
(1998). Today, a lot of work aims at using machine
learning – in particular deep learning techniques –
to solve sequence-to-sequence problems like this.

We explore using a transformer model (Vaswani
et al., 2017) for this problem, since it has shown
great promise in several areas of natural language
processing (NLP), outperforming the previous state
of the art on a large variety of tasks, including ma-
chine translation (Vaswani et al., 2017), summariza-
tion (Raffel et al., 2019), question-answering (Raf-
fel et al., 2019), and sentiment-analysis (Munikar
et al., 2019). While previous work has used trans-
formers for G2P, experiments have only been per-
formed on English, specifically on the CMUDict
(Weide, 2005) and NetTalk1 datasets (Yolchuyeva
et al., 2020; Sun et al., 2019). Our approach
builds upon the standard architecture by adding
two straightforward modifications: multi-task train-
ing (Caruana, 1997) and ensembling. We find
that these simple additions lead to performance
improvements over the standard model, and our
models place 6th and 8th among 23 submissions to
the SIGMORPHON 2020 shared task on multilin-
gual grapheme-to-phoneme conversion. Our two
models further perform the best on the languages
Lithuanian and Modern Greek, respectively.

2 Task and Background

2.1 Grapheme-to-Phoneme Conversion

G2P can be cast as a sequence-to-sequence
task, where the input sequence is a sequence of
graphemes, i.e., the spelling of a word, and the
output sequence is a sequence of IPA-like symbols,
representing the pronunciation of the same word.

1https://archive.ics.uci.edu/ml/
datasets/Connectionist+Bench+(Nettalk+
Corpus)
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Formally, let ΣG be an alphabet of graphemes
and ΣP be an alphabet of phonemes. For a word w
in a language, G2P then refers to the mapping

g(w) 7→ p(w), (1)

with g(w) ∈ Σ∗G and p(w) ∈ Σ∗P being the
grapheme and phoneme representations of w, re-
spectively.

2.2 Related Work

Many different approaches to G2P exist in the
literature, including rule-based systems (Black
et al., 1998), LSTMs (Rao et al., 2015), joint-
sequence models (Galescu and Allen, 2002), and
encoder-decoder architectures, based on convolu-
tional neural networks (Yolchuyeva et al., 2019),
LSTMs (Yao and Zweig, 2015), or transformers
(Yolchuyeva et al., 2020; Sun et al., 2019). In this
paper, we improve over previous work by explor-
ing two straightforward extensions of a standard
transformer (Vaswani et al., 2017) model for the
task: multi-task training (Caruana, 1997) and en-
sembling. Multi-task training has been explored
previously for G2P (Milde et al., 2017), with the
tasks being training on different languages and al-
phabet sets. Sun et al. (2019) successfully used
token-level ensemble distillation for G2P to boost
accuracy and reduce model-size, ensembling mod-
els based on multiple different architectures.

3 Proposed Approach

We submit two different systems to the shared task,
which are based on the transformer architecture,
multi-task learning, and ensembling. We describe
all components individually in this section.

3.1 Model

Our model architecture is shown in Figure 1; the
vanilla transformer proposed by Vaswani et al.
(2017). In short, the transformer is an auto-
regressive encoder-decoder architecture, which
uses stacked self-attention and fully-connected lay-
ers for both the encoder and decoder. The decoder
is connected to the encoder via multi-head attention
over the encoder outputs. Details can be found in
the original paper.

3.2 Multi-task Training

We propose to train our model jointly on two tasks:
(i) G2P and (ii) phoneme-to-grapheme conversion

Figure 1: The transformer model architecture.

Hyperparameter Value

Batch Size 128
Embedding Dimension 256
Hidden Dimension 1024
Dropout 0.3
Number of Encoder Layers 4
Number of Decoder Layers 4
Number of Attention Heads 4
Learning Rate 1e-3
β1 0.9
β2 0.998
Label Smoothing Coefficient 0.1
Max Norm (Gradient clipping) 1

Table 1: The hyperparameters used in our experiments.

(P2G). Using our formalization from before, given
a word w, P2G corresponds to the mapping

p(w) 7→ g(w). (2)

We denote the set of our original G2P training ex-
amples as Dg2p and our P2G examples, which we
obtain by inverting all examples in Dg2p, as Dp2g.
We then aim to obtain model parameters θ that
maximize the joint log-likelihood of both datasets:

L(θ) =
∑

(w∈Dg2p)

log pθ(p[w] | g[w], λg) + (3)

∑

(w∈Dp2g)

log pθ(g[w] | p[w], λp)
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Grapheme Phoneme Phoneme Grapheme

! a a n d a c h t a: n d ! x t ? a: n d ! x t a a n d a c h t
! b a s s o n b ! s O n ? b ! s O n b a s s o n
! b e g i n t b @ G I n t ? b @ G I n t b e g i n t
! g i e r s t x i: r s t ? x i: r s t g i e r s t
! h e u p H ø: p ? H ø: p h e u p

Table 2: G2P (left) and P2G (right).

λg, λp /∈ ΣG ∪ ΣP are special symbols which
we prepend to each input. These so-called task-
embeddings indicate to our model which task each
individual input belongs to. Examples for both
tasks are shown in Table 2.

Intuition. By training our model jointly on G2P
and P2G, we expect it to learn properties that both
tasks have in common. First, both tasks require
learning of a monotonic left-to-right mapping. Sec-
ond, for some languages, ΣG ∩ ΣP 6= ∅, cf. Table
2 for Dutch as an example. Symbols in ΣG ∩ ΣP

are commonly mapped onto each other in both di-
rections, such that we expect the model to learn
this from both tasks.

3.3 Ensembling
Our second straightforward modification of the
standard transformer model is that we create en-
sembles via majority voting. In particular, each
of our two submitted systems is an ensemble of
multiple different models for each language, which
we generate using different random seeds. We then
create predictions with all models participating in
each ensemble, and choose the solution that occurs
most frequently, with ties being broken randomly.

Our first submitted model – CU-1 – is an ensem-
ble of 5 standard G2P transformers and 5 multi-task
transformers. Our second system – CU-2 – is an
ensemble of 5 multi-task transformers.

4 Experiments

4.1 Data
The datasets provided for the shared task spans 15
individual languages, with each training set consist-
ing of 3600 pairs of graphemes and their associated
phonemes. The datasets include an initial set of
core languages – Armenian (arm), Bulgarian (bul),
French (fre), Georgian (geo), Modern Greek (gre),
Hindi (hin), Hungarian (hun), Icelandic (ice), Ko-
rean (kor), and Lithaunian (lit) –, and a set of sur-
prise languages, which have been released shortly
before the shared task deadline – Adyghe (ady),
Dutch (dut), Japanese (hiragana) (jap), Romanian

CU-1 CU-2 CU-TB

WER PER WER PER WER PER

arm 13.56 2.75 14.22 2.94 16.10 3.37
bul 29.11 6.98 30.22 7.41 32.06 7.32
fre 8.00 2.00 8.00 1.84 10.29 2.65
geo 25.33 4.98 24.67 4.83 26.03 5.20
gre 17.56 3.05 17.78 3.14 17.92 3.40
hin 6.22 1.58 6.89 1.78 8.78 2.28
hun 2.89 0.66 3.11 0.60 4.52 1.03
ice 9.78 2.13 9.11 2.13 12.20 2.83
kor 23.11 6.83 24.22 6.61 26.61 7.43
lit 21.56 4.11 22.44 4.18 22.88 4.41
ady 22.89 5.68 23.11 5.68 24.66 6.33
dut 14.67 2.84 14.44 2.63 16.80 3.46
jap 6.67 2.14 6.67 2.18 7.23 2.42
rum 12.22 3.15 12.00 3.09 13.04 3.37
vie 2.89 1.07 2.89 0.99 4.70 1.60

avg. 14.43 3.33 14.65 3.34 16.25 3.80

Table 3: Development results in WER and PER; CU-
1=standard and multi-task transformer ensemble, CU-
2=multi-task transformer ensemble, CU-TB=standard
transformer ensemble.

(rum), and Vietnamese (vie). The data is primar-
ily extracted from Wiktionary using the wikipron
library (Lee et al., 2020).

4.2 Hyperparameters
Following the official shared task baseline, we em-
ploy the hyperparameters shown in Table 1. All
models are trained for 150 epochs. Starting from
epoch 100, we evaluate every 5 epochs for early
stopping. Encoder and decoder embeddings are
tied, and the maximum sequence length is 24. Our
system is built on the transformer implementation
by Wu et al. (2020), and our final code is available
on github.2

4.3 Metrics
Word error rate (WER). Word error rate is the
percentage of words for which the model’s predic-
tion does not exactly match the gold transcription.
Phoneme error rate (PER). Phoneme error rate is
the percentage of wrong characters in the model’s
prediction as compared to the gold standard.

Both metrics are calculated using the official
evaluation script3 provided for the shared task.

4.4 Development Results
The results on the development sets are shown in
Table 3. CU-TB represents a transformer baseline

2https://github.com/NikhilPr95/
neural-transducer

3https://github.com/sigmorphon/2020/
blob/master/task1/evaluation/evaluate.py
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CU-1 CU-2 SIG-TB SIG-LSTM

WER PER WER PER WER PER WER PER

arm 12.89 2.91 13.56 3.04 14.22 3.29 14.67 3.49
bul 26.89 5.65 29.78 6.30 34.00 7.89 31.11 5.94
fre 5.78 1.48 5.56 1.28 6.89 1.72 6.22 1.32
geo 25.78 4.83 27.11 5.08 28.00 5.43 26.44 5.14
gre 15.11 2.51 14.44 2.42 18.89 3.06 18.89 3.30
hin 6.67 1.58 6.44 1.55 9.56 2.40 6.67 1.47
hun 4.89 1.12 5.11 1.15 5.33 1.28 5.33 1.18
ice 9.56 2.11 9.78 2.14 10.22 2.21 10.00 2.36
kor 30.67 9.22 31.56 8.79 43.78 17.5 46.89 16.78
lit 18.67 3.53 20.00 3.93 20.67 3.65 19.11 3.55
ady 26.00 5.87 26.22 6.31 28.44 6.49 28.00 6.53
dut 16.00 2.92 15.78 2.86 15.78 2.89 16.44 2.94
jap 5.78 1.44 6.00 1.47 7.33 1.86 7.56 1.79
rum 10.44 2.35 10.89 2.41 12.00 2.62 10.67 2.53
vie 2.67 1.12 2.22 0.91 7.56 2.27 4.67 1.52

avg. 14.52 3.24 14.96 3.31 17.51 4.30 16.84 3.99

Table 4: Official Test results in WER and PER;
CU-1=standard and multi-task transformer en-
semble, CU-2=multi-task transformer ensemble,
SIG-TB=SIGMORPHON transformer baseline,
SIG-LSTM=SIGMORPHON LSTM baseline.

trained by us (an average of 5 models), while CU-1
and CU-2 are our submitted systems, which are de-
scribed in Section 3.3. CU-1 performs best with an
average performance of 14.43 WER and 3.33 PER,
followed by CU-2 with 14.65 WER and 3.34 PER,
respectively. Both CU-1 and CU-2 improve over
the baseline for each of the 15 languages, with an
average improvement of 1.82 WER and 1.6 WER,
respectively. Both systems show an average im-
provement of 0.47 PER over the baseline, perform-
ing better on all languages, with the sole exception
of Bulgarian, where the baseline slightly outper-
forms CU-2.

4.5 Official Shared Task Results

The results on the test set in Table 4 mirror our de-
velopment set results. Our systems CU-1 and CU-2
are compared with the two best official baselines:
a transformer (SIG-TB) and an LSTM sequence-to-
sequence model (SIG-LSTM). CU-1 gives the best
performance, with an average of 14.52 WER and
3.24 PER, followed by CU-2, with 14.96 WER and
3.31 PER. CU-1 shows an average improvement of
2.99 WER and 2.32 WER as well as 1.06 PER and
0.75 PER over SIG-TB and SIG-LSTM, respec-
tively. CU-2 shows an average of 2.55 WER and
0.99 PER and, respectively, 1.88 WER and 0.68
PER improvement. Compared to all system sub-
missions (Gorman et al.) CU-1 performs best on
Lithuanian, with 18.67 WER and 3.53 PER. CU-2

T T-E MT MT-E

arm 16.10 15.11 14.89 14.22
bul 32.06 28.22 31.82 30.22
fre 10.29 8.22 8.80 8.00
geo 26.03 25.78 25.29 24.67
gre 17.92 17.78 17.60 17.78
hin 8.78 6.67 7.20 6.89
hun 4.52 3.11 3.64 3.11
ice 12.20 10.00 10.53 9.11
kor 26.61 23.33 25.92 24.22
lit 22.88 21.56 23.02 22.44
ady 24.66 22.67 24.22 23.11
dut 16.80 15.33 15.11 14.44
jap 7.23 6.67 6.84 6.67
rum 13.04 12.89 12.31 12.00
vie 4.70 4.00 3.38 2.89

avg. 16.25 14.76 15.37 14.65

Table 5: Results of our ablation study in WER;
T=standard transformer, T-E=standard transformer en-
semble, MT=multi-task transformer, MT-E=multi-task
transformer ensemble.

performs best on Modern Greek, with 14.44 WER
and 2.42 PER.

4.6 Ablation Study
We further perform an ablation study to explicitly
investigate the impact of our two modifications –
multi-task training and ensembling – with results
shown in Table 5. T and MT are the standard and
multi-task transformer, while T-E and MT-E are
the ensembled versions of the same. The ensem-
bles obtain better results: T-E shows an average
improvement of 1.50 WER over T, and MT-E out-
performs MT by 0.72 WER. Multi-task training
also leads to performance gains, with MT improv-
ing over T by 0.88 WER and MT-E over T-E by
0.11 WER, showing that the effect of multi-task
training is not as strong as that of ensembling. We
conclude that both multi-task training and ensem-
bling boost performance overall.

5 Conclusion

We described two CU Boulder submissions to SIG-
MORPHON 2020 Task 1. Our systems consisted
of transformer models, some of which were trained
in a multi-task fashion on G2P and P2G. We further
created ensembles consisting of multiple individual
models via majority voting.

Our internal experiments and the official results
showed that these two straightforward extensions
of the transformer model enabled our systems to
improve over the official shared task baselines and
a standard transformer model for G2P. Our final
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models, CU-1 and CU-2, placed 6th and 8th out
of 23 submissions, and obtained the best results
of all systems for Lithuanian and Modern Greek,
respectively.
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Abstract

Morphological inflection in low resource lan-
guages is critical to augment existing cor-
pora in Low Resource Languages, which can
help develop several applications in these lan-
guages with very good social impact. We de-
scribe our attention-based encoder-decoder ap-
proach that we implement using LSTMs and
Transformers as the base units. We also de-
scribe the ancillary techniques that we experi-
mented with, such as hallucination, language
vector injection, sparsemax loss and adversar-
ial language network alongside our approach
to select the related language(s) for training.
We present the results we generated on the con-
strained as well as unconstrained SIGMOR-
PHON 2020 dataset (Vylomova et al., 2020).
One of the primary goals of our paper was to
study the contribution varied components de-
scribed above towards the performance of our
system and perform an analysis on the same.

1 Introduction

Morphological inflection is the process of generat-
ing varied representations of words based on sev-
eral linguistic properties(gender, tense,etc). Inflec-
tions of words retain their core meanings, however
they differ in their word structure. As mentioned
by (Faruqui et al., 2015), morphological inflections
can be generated from the root word through two
primary methods: concatenative measures and non-
concatenative measures. In the case of concatena-
tive measures, suffixes and prefixes are added to
the original word to generate various inflectional
forms of the word. Non-concatenative inflectional
forms are generated by changing the basic structure
of the original word. The generation of inflectional
forms of a word has proved to be an asset in a wide
array of NLP tasks.

Prominent languages like English, Spanish,
French, etc. have large corpora that can be utilised

to train large scale machine learning applications.
However there are several languages in today’s
world that are not as well documented. These lan-
guages are termed as “low resource” languages.
Morphological inflection has proven to be an effec-
tive tool to augment the datasets of “low resource”
languages, so that they corpora can be better mod-
eled using NLP techniques.

To this end, several studies have been done on
morphological inflection on monolingual high re-
source settings, such as in the SIGMORPHON
2016, 2017, 2018 challenges. However, the low
resource setting has been extensively studied in the
SIGMORPHON 2019 and 2020 shared task (Vylo-
mova et al., 2020). The data in these tasks consists
of the form of [I, O, T], where I, O, T stand for
input lemma, inflected form and tags respectively.
The inflected form is essentially the inflected form
of the input lemma upon applying the tags specified
by T.

In this paper, we present an overview of the
various techniques that we implemented to per-
form the task of Morphological Inflection in both
the constrained and unconstrained settings. We
start by describing the different models that we ex-
perimented with to improve our performance on
this dataset. Furthermore, we describe hallucina-
tion, sparsemax/sparseloss, adversarial language
network and language vector injection techniques
that we prototyped to improve the performance of
our system. In order to understand the impact of
each component on the performance of the system,
we perform a detailed analysis on the influence of
these techniques on varied set of languages.

2 Related Works

In recent years there has been an increase in work
in the field of extremely low resource languages.
The work recent work done in the field of mor-
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phological inflection can be divided into two main
categories: Non-neural approaches and Neural ap-
proaches.

The non-neural based approach proposed by
(Cotterell et al., 2017) has two stages, alignment
and rule generation. A prominent work that com-
bines neural and non-neural approaches is that of
(Wu and Cotterell, 2019), where they seek to incor-
porate monotonicity as an inductive bias in their
approach and develop a cubic-time based dynamic
programming approach with a greedy decoding
scheme. The paper hypothesizes that the mono-
tonic attention-based models perform worse off
because they were not jointly trained to incorporate
the alignments.

Neural based approaches have recently outper-
formed the non neural based approaches. (Faruqui
et al., 2015) introduces a neural network based strat-
egy, for the task of morphological inflection gener-
ation, for languages that are morphologically rich.
The authors introduce an encoder decoder based
architecture which makes use of character level
embeddings. (Çöltekin, 2019) on the other hand
adopts the idea from transition-based parsers where
the aim is to predict the parsing actions (copy, re-
place(c), insert(c), delete) in a given state of parser.
In the recent years attention based models have
gained huge popularity in Natural Language Pro-
cessing tasks. (Peters and Martins, 2019) intro-
duce a model inspired by sparse sequence to se-
quence models with a two-headed attention mech-
anism. The attention and output distributions are
computed with Sparsemax function and Sparsemax
loss is optimized. (Anastasopoulos and Neubig,
2019) introduce yet another attention based model
which is trained on multiple languages and tries
to leverage the knowledge learnt on high resource
languages for low resource languages. The authors
propose a novel two-step attention decoder archi-
tecture. Moreover, (Anastasopoulos and Neubig,
2019) augment low resource datasets with data hal-
lucination.

3 Methodology

We implemented four variants of Sequence to Se-
quence architectures to tackle the problem of mor-
phological injection. We primarily utilize LSTM
and Transformers (Vaswani et al., 2017) to con-
struct our models. Additionally we experimented
with four techniques Hallucination (Anastasopou-
los and Neubig, 2019), Sparse Max-Loss (Peters

and Martins, 2019), Language Adversarial Net-
work (Anastasopoulos and Neubig, 2019)(Chen
et al., 2019) and Language Vector Injection (Littell
et al., 2017).

3.1 LSTM Encoder Decoder (LSTM)

We prototyped an elementary LSTM sequence to
sequence model. We incorporated two LSTM en-
coders with each individual encoder taking the
input as the Lemma and Tags respectively. Fur-
thermore, we implemented two separate attention
heads one for the encoded representation of the in-
put Lemma and one for the encoded representation
Tags. The decoder was input the context vector and
the LSTM representations with the inflected form
being generated in an autoregressive manner. The
architecture can be seen in Figure 1.

Figure 1: Lstm Encoders Decoder (LSTM)

3.2 Transformer Encoders LSTM Decoder
(TELD)

Sequence Translation models such as Recurrent
Neural Networks or Convolutions Neural Networks
are typically trained in an encoder decoder config-
uration. Recently, the use of attention has shown
improvement in the performance of such models.
Thus we replace the LSTM encoders in the previ-
ous modules with Transformer encoder (Vaswani
et al., 2017). The rest of the architecture is the
same as presented in the LSTM model. We gen-
erate the output sequence using a LSTM Decoder.
The structure of the architecture is shown in Figure
2.
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Figure 2: Transformer Encoders LSTM Decoder
(TELD)

3.3 Transformer Encoders Transformer
Decoder (TETD)

We further replace the LSTM Decoder with a Trans-
former Decoder. The two Transformer Encoders
separate disparate encoder representations for the
Lemma and Tags respectively. We concatenate the
representations generated by the two Transformer
Encoders and feed it to the output Decoder. Since
the Transformer Decoder inherently has a multi-
head attention layer, we remove the explicit atten-
tion over the encoders. An outline of the model can
be seen in Figure 3.

Figure 3: Transformer Encoders Transformer Decoder
(TETD)

3.4 Joint Transformers (TJ)

The final architecture we implement is an end-
to-end Transformer model. We concatenate the
Lemma and the Tag and feed it to the Transformer.
The Transformer encoder learns a joint represen-
tation for the Lemma and Tag. And the decoder
generates the required output. A representation of
the architecture can be seen in Figure 4.

Figure 4: Joint Transformers (TJ)

3.5 Hallucination (HALL)

(Anastasopoulos and Neubig, 2019) incorporated
Hallucination techniques and observed a perfor-
mance boost in their system. Since the data for low
resource language is scarce, the distribution learnt
by the model for the language doesn’t match the
true distribution. To help alleviate this problem,
we use this data augmentation technique. In this
process each part is considered as a “stem”, char-
acters inside the region are randomly substituted
with other characters without changing the over-
all length. A detailed explanation can be found in
(Anastasopoulos and Neubig, 2019).

3.6 Sparse-Max and Sparse Loss (SPARSE)

Output vocabulary space can be potentially large
with some of the characters not being used as fre-
quently in the language. Sparsemax assigns exactly
zero attention weight to irrelevant source tokens
and implausible hypotheses and is shown to re-
turn sparse posterior distributions. This makes the
model output more interpretable and can also help
to filter out large output spaces. SparseLoss is the
loss typically associated with Sparsemax and is
known to be computationally very feasible. The
incorporation of Sparse-max and Sparse loss in a
manner similar to that of (Peters and Martins, 2019)
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can be seen in Figure 5.

Figure 5: Sparse-Max and Sparse Loss

3.7 Adversarial Language Network
(ADV-LANG)

In multilingual setting and in particular trying to
transfer knowledge between related language(s)
and a target language it is sometimes useful to
learn language agnostic representations. Thus we
implement a Language Adversarial Network which
encourages the same. We extract the representa-
tions generated at the first time step and the last
time step by the Lemma encoder and concatenate
these representations. This representation is then
passed through a linear layer and a softmax layer
which produces a prediction for the Language. We
then reverse the gradient while training. An illus-
tration of the same can be seen in Figure 6.

3.8 Language Vector Injection (LVI)

(Tsvetkov et al., 2016) show that vectors which
encode information about the genetics of language
outperform simple one-hot representations. The
lang2vec released by (Littell et al., 2017) repre-
sent languages using rich typological, geographical
and phylogenetic vectors. These vectors mainly
consist of binary language facts pertaining to the
language such as if negation precedes a verb, is
it represented as a suffix, if a language is part of
Germanic family, etc. with the value of each of

Figure 6: Adversarial Language Network

these facts represented between [0.0, 1.0]. We pro-
pose that the injection of these rich vectors into
our model may increase the performance for low
resource languages where training data is scarce
and all round characteristics of a language cannot
be learnt just from the training data.

To integrate language vectors we first extract the
lang2vec vector for a particular language. We pass
it through a two layer dense neural network. This
provides us a compact representation for the vec-
tor. We then concatenate this representation with
the output representation generated by the decoder.
We then pass this through a softmax layer and the
output character is evaluated. The integration can
be seen in figure 7.

Furthermore we conducted a set of experiments
by initializing the hidden and cell states of the
(LSTM) model with language vectors but did not
see promising results.

3.9 Selecting Related Language(s) for given
Target Language

To select the related language(s) and target lan-
guage pairs for training, we utilised the precom-
puted feature distance present in the Lang2Vec
library(Littell et al., 2017). This distance is the
cosine distance between the vectors obtained by
combining the Geographical, Phonological, Syn-
tactic, Inventory and Genetic features present in
the Lang2Vec database. We assume that this dis-
tance accurately represents a metric to measure the
similarity between language pairs.
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Figure 7: Language Vector Injection

4 Experimental Results

We performed our experiments on the data pro-
vided in the SIGMORPHON 2020 shared task. The
dataset consists of 90 languages. The data for each
language consisted of triplets in the {input, out-
put, tags} format, where the ‘output’ was the out-
put word generated after applying the morphologi-
cal tags as specified by ‘tags’ on the ‘input’ word.
The languages we split into two halves.The first
half consisted of 45 languages development lan-
guages and the latter half consisted of 45 surprise
languages.

We made submissions on all 90 languages for
two different settings, unconstrained and con-
strained. For the unconstrained setting we trained
our model in a cross-lingual manner. To comple-
ment the languages with a low number of training
examples we included genetically close languages
to augment the training process as explained above.
For the constrained setting we restricted our train-
ing to only a single language.

As explained above we implemented various
models such as (LSTM), (TELD), (TETD) and
(TJ) augmented with techniques such as (HALL),
(ADV-LANG), (SPARSE), (LVI). Since (HALL)
has proven to perform better than the original
setting we augment all languages with less then
10,000 training samples to a complete 10,000 train-
ing instances and thus all models and techniques
presented below are built on top of hallucinated
data. We present the results on a small subset of

languages (due to the space constraints) on the
development set (since we have results on all the
models we trained on the development set) for the
unconstrained and constrained settings in table 2
and table 3 respectively.

We did not experiment with hyperparameters
and had a constant set of hyperparameters for all
languages. We trained our models with the follow-
ing hyperparameters 1. A further fine-tuning per
language basis might have provided us with a more
competitive score. But since one of the primary
goals of our study was to understand the influence
of the various components on our system we did
not pursue this avenue in great detail.

We made a total of 5 submissions to the shared
task: 3 in the unconstrained settings and 2 in the
constrained setting. The submissions made to the
unconstrained section are the top 3 ranked results
we obtained on the development set and top 2 re-
sults for the constrained section.

Hyperparameter Value
Optimizer Adam

Initial Learning Rate 0.001
State Size 1024

Embedding Size 256
Number of Heads 4

Dropout 0.3
Batch Size 32

Table 1: Hyperparameters used for training the 4 mod-
els

5 Analysis

Our approach of generating morphological in-
flections, encapsulates several models namely:
LSTM Encoder Decoders, Transformer Encoder
LSTM Decoder(TELD), Transformer Encoder and
Transformer Decoder(TETD) and Joint Transform-
ers(TJ). To supplement these models, we have
utilised additional strategies namely Adversarial
Language Networks, Language Vector Injection
and Sparse Max and Sparse Loss.

5.1 Analysis of Models Used
In our experiments, we saw that the Transformer
based models, usually outperformed LSTM based
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Target Language
Related Language(s)

(ISO 639-3) Model L1+L2 ADV-LANG SPARSE LVI

Zulu gaa,lug,aka
LSTM 0.81 0.83 0.81 0.83
TELD 0.83 0.84 0.83 0.86
TETD 0.81 0.84 0.83 0.83

Chichicapan
Zapotec

azg,cly
LSTM 0.84 0.83 0.87 0.84
TELD 0.87 0.88 0.88 0.88
TETD 0.85 0.86 0.85 0.88

Yoloxóchitl
Mixtec

gmh,ang
LSTM 0.86 0.89 0.87 0.88
TELD 0.84 0.84 0.84 0.83
TETD 0.81 0.79 0.81 0.79

Sotho nya,dan
LSTM 1.0 1.0 1.0 1.0
TELD 0.98 1.0 0.96 1.0
TETD 0.94 0.96 0.90 0.96

Luganda lin,zul,ceb
LSTM 0.90 0.90 0.90 0.89
TELD 0.91 0.90 0.91 0.90
TETD 0.82 0.83 0.82 0.82

Livonian gmh,ang,kon,swa
LSTM 0.91 0.91 0.92 0.91
TELD 0.92 0.92 0.94 0.92
TETD 0.67 0.71 0.71 0.70

Classical
Syriac

ang
LSTM 0.94 0.92 0.83 0.94
TELD 0.92 0.91 0.93 0.94
TETD 0.93 0.92 0.94 0.93

Kannada nob
LSTM 0.79 0.78 0.83 0.80
TELD 0.79 0.79 0.79 0.80
TETD 0.77 0.75 0.79 0.57

Swiss
German

mlg,dan
LSTM 0.87 0.86 0.87 0.87
TELD 0.85 0.88 0.86 0.85
TETD 0.78 0.77 0.76 0.78

Table 2: Accuracy obtained on 6 languages from the SIGMORPHON 2020 dataset in the unconstrained setting,
where the languages were trained in conjunction with related language(s). Related language(s) have been presented
in their ISO 639-3 code format.

models in general for most language pairs. Specif-
ically, the Transformer encoder and LSTM de-
coder model showed the most optimal performance
across all the language pairs. The ability of Trans-
former based models to capture long-distance de-
pendencies, makes them more adept at generating
inflections for words that were longer in length.
This ensures that these models have a higher accu-
racy at the morphological inflection task as com-
pared to standard LSTM based models. We can
also observe that the joint transformer method was
the least optimal method for most language pairs.
We assume this is primarily because this method
encodes both the input lemma and tags together.
By encoding the lemma and tags together, we can-
not utilise the information present in the tags to
determine the next character to be generated during

the decoding process.

5.2 Utility of Adversarial Language Network
As mentioned in (Anastasopoulos and Neubig,
2019), in a multi-lingual setting it is essential to
ensure that the output of the encoder should be
independent of the input language. This is vital
in the task of morphological inflection generation
for low resource languages. The primary reason
behind this, is that while training inflection gener-
ation systems, low resource languages are trained
with related language(s) that has a similar structure,
due to paucity of training data.

In the context of our experiments, the adversarial
language network was applied with each model that
we trained, to ensure that the output of the encoder
was language invariant. For the SIGMORPHON
2020 dataset, the use of adversarial language net-
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Language Model SPARSE + LVI

Zulu
LSTM 0.81
TELD 0.86
TETD 0.83

Chichipan
Zapotec

LSTM 0.85
TELD 0.88
TETD 0.87

Yoloxóchitl
Mixtec

LSTM 0.87
TELD 0.84
TETD 0.79

Sotho
LSTM 1.0
TELD 1.0
TETD 0.94

Luganda
LSTM 0.91
TELD 0.90
TETD 0.80

Livonian
LSTM 0.91
TELD 0.91
TETD 0.82

Classical
Syriac

LSTM 0.94
TELD 0.93
TETD 0.93

Kannada
LSTM 0.80
TELD 0.80
TETD 0.80

Swiss
German

LSTM 0.90
TELD 0.89
TETD 0.80

Table 3: Accuracy obtained on 6 languages from the
SIGMORPHON 2020 dataset in the constrained set-
ting, where the languages were trained without using
any related language(s).

work was found to be beneficial for most of the
language pairs that we tested. However for some
of our models, performance remained unchanged
after the introduction of the adversarial language
network. We believe that the reason for this static
performance lies in the fact that the related lan-
guage(s) and target language we chose during train-
ing already possessed high structural similarity. We
hypothesize that this particular method would be
highly useful in cases where the related language(s)
and the target language pair differ widely in their
structure.

5.3 Use of SparseMax and Sparse Loss

In the SIGMORPHON 2020 challenge, this tech-
nique was useful for the Chichicapan Zapotec,Zulu
and Livonian languages. We hypothesize that this

improvement in performance due to the addition of
SparseMax is primarily because of the large vocab-
ularies of these language pairs. For all the other lan-
guages that we tested, we noticed that we achieved
a similar level of performance after the incorpo-
ration of SparseMax. The addition of SparseMax
and Sparse loss aided the LSTM encoder-decoder
models to a greater extent as compared to the Trans-
former based models that we proposed.

5.4 Utility of Language Vector Injection

We seek to use language vectors to improve perfor-
mance for low resource languages where we find a
paucity of data. These vectors contain embedded
information about the language that we hope will
be useful while generating inflectional forms of in-
put lemmas. For the SIGMORPHON 2020 dataset,
the use of language vectors helped us improve per-
formance in almost all the language pairs that we
tested. We believe the structural information em-
bedded in the language vectors helped our model
efficiently generate morphological inflections.

6 Future Work

Due to the time constraints we were not
able to search through all combinations of
the techniques that were mentioned such as
LVI+SPARSE+LANG-ADV+NO-HALL and var-
ious others. Moreover, further fine-tuning the
model hyperparameters for each language could
have yielded better results.

Additionally multiple approaches to language
vector injection can be explored. The vectors can
be fed to the model at every-time step of the en-
coder by concatenating the input with the vectors or
the decoder by concatenating the language vector
to the context vector. This form of early injection
of the vectors may help the system perform bet-
ter. Another approach can be feeding the language
vector to the system in place of the <sos> token.

The limited availability of supervised data for
low resource languages makes it difficult to train
the various data hungry Neural Network models.
It has been shown that incorporation of unlabelled
data can help improve the performance of such
models and thus we propose to integrate a semi-
supervised approach by learning Language Models
over these low resource languages.These language
models inherently contain information about the ap-
propriate character sequences in a given language
and thus provide valuable information for predict-
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ing the next character in the decoding process. We
propose to combine the probability generated by
the language model with the with probability gen-
erated by the inflection model and learn the interpo-
lation weights during training similar to the experi-
mental setup of that of (Faruqui et al., 2016).The
language model can be constructed using a basic
recurrent model or even complex models such as
BERT. (Devlin et al., 2018).

7 Conclusion

This paper presents a detailed description of the
models that we implemented to undertake the
“Typologically Diverse Morphological Inflection”
shared task. We describe our encoder-decoder
based approach using both LSTMs and Transform-
ers. We also describe the different supporting
techniques that we implemented, such as halluci-
nation, language vector injection, adversarial lan-
guage traning and sparsemax. We present a brief
subset of the results for the SIGMORPHON 2020
dataset. We also delve deeper and try to present
a detailed analysis of the different components of
our model and their influence on the performance.

References
Antonios Anastasopoulos and Graham Neubig. 2019.

Pushing the limits of low-resource morphological in-
flection. In Proc. EMNLP, Hong Kong.

Xilun Chen, Ahmed Hassan Awadallah, Hany Has-
san, Wei Wang, and Claire Cardie. 2019. Multi-
source cross-lingual model transfer: Learning what
to share. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 3098–3112, Florence, Italy. Association
for Computational Linguistics.
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Abstract

The objective of this shared task is to produce
an inflected form of a word, given its lemma
and a set of tags describing the attributes of
the desired form. In this paper, we describe
a transformer-based model that uses a bidirec-
tional decoder to perform this task, and evalu-
ate its performance on the 90 languages and 18
language families used in this task.

1 Introduction

The world’s languages vary greatly in the richness
and complexity of their morphological inflection
systems. Indo-European languages such as Latin
or German tend to inflect words by adding suffixes
to a meaning-bearing root, while Austronesian lan-
guages like Malay or Tagalog use circumfixes to
change the forms of nouns and verbs. It is im-
portant that Natural Language Processing (NLP)
systems be able to generate inflected forms for a
variety of languages, which can be used in down-
stream tasks such as language modeling or machine
translation.

Task 0 of the SIGMORPHON 2020 Shared Task
(Vylomova et al., 2020) encourages the develop-
ment of morphological transduction models for a
variety of the world’s language families. Since the
task features such a diverse set of languages, it is
important to create a generalized model that is not
overly biased toward certain language typologies.

In this paper, we present the University of Illi-
nois submission to the task. We have modified
the baseline transformer model (Wu et al., 2020)
to use bidirectional decoding, following the work
in Zhou et al. (2019). We believe the additional
attention provided by the right-to-left decoding di-
rection improves performance on many of the lan-
guages in the dataset. Our model outperforms the
baseline transformer model on average rank and

is among the best performing submissions for this
year’s task.

2 Task

The objective of Task 0 of the SIGMORPHON
2020 Shared Task (Vylomova et al., 2020) is to
build a system that learns to generate morpholog-
ical inflections. The model takes a lemma and a
group of morphosyntactic tags as input and outputs
the word inflected in the desired form. The follow-
ing example comes from the German dataset:

predigen + V;IMP;SG;2
↓

predig

Here, we want to inflect predigen in the form speci-
fied by the tags V;IMP;SG;2, a 2nd person singular
imperative verb. The desired output is predig.

2.1 Dataset
The organizers of the task provide datasets for 90
languages in total. 45 languages are treated as
development languages − these languages span
the Austronesian, Germanic, Niger-Congo, Oto-
Manguean, and Uralic families, and were available
for several months. The remaining 45 languages
were released one week before the test sets and
are considered surprise languages − they span 16
families, 13 of which are not represented by the
development languages. The late release of these
languages encourages the development of models
that do not overly favor the development languages.

Each language has training and development
files that consist of lemmata, morphosyntactic tags
in the Unimorph Schema (Kirov et al., 2018), and
inflected forms. A test set was released for each lan-
guage one week before the deadline that contains
only lemmata and morphosyntactic tags. The lan-
guages vary widely in the amount of data provided:
for example, Finnish has approximately 100,000

137

https://doi.org/10.18653/v1/P17


training examples, while the Iranian language Tajik
has only 53 training examples. This large disparity
underscores the need for models that are not biased
toward certain datasets or languages.

3 Method

3.1 Motivation

Recent work on morphological inflection has
shown that an encoder-decoder framework using
transformers produces state-of-the-art results (Wu
et al., 2020). In our study, we have modified the
baseline transformer model to use bidirectional de-
coding – that is, the prediction of a character is
conditioned not only on the characters preceding it
but also on those following it.

This approach is linguistically motivated, be-
cause it is common for an inflectional affix to be
phonetically conditioned on the phonemes in its en-
vironment. For example, the underlying morpheme
ā (a long a) marking the Latin present indicative
can be expressed as the allomorph a (a short a)
when followed by a stop consonant: laudās (2nd
sg.) vs. laudat (3rd sg.). Kazakh exhibits regres-
sive assimilation when adding the third person pos-
sessive suffix: the lemma kitap changes to kitabı.
Here, the vowel in the suffix precipitates the voic-
ing of the previous consonant.

It is standard to use bidirectional encoding to
capture context in the source word (Wu and Cot-
terell, 2019; Wu et al., 2018), but we believe that a
bidirectional decoder can better capture phonetic
and orthographic dependencies in inflected forms.
To our knowledge, no such method has been ap-
plied to a morphological transduction task before.

3.2 Previous Work

Neural models for morphological inflection have
been studied extensively in previous SIGMOR-
PHON Shared Tasks (Cotterell et al., 2017, 2018;
McCarthy et al., 2019). Successful approaches in-
clude encoder-decoder frameworks using recurrent
neural networks (RNN’s) with attention (Cho et al.,
2014; Wu and Cotterell, 2019; Wu et al., 2018).
Hard monotonic attention has been particularly suc-
cessful, due to the relatively rigid copy-like nature
of inflection. Recent advances in the transformer
architecture (Vaswani et al., 2017) have allowed
transformer-based encoder-decoder models to be-
come successful for inflection tasks as well (Wu
et al., 2020). Indeed, the organizers provide us
with two baselines: an RNN-based model with hard

monotonic attention and a transformer baseline.

There has been some work on bidirectional de-
coding in the machine translation literature; how-
ever, we are unaware of any such work in mor-
phological transduction tasks. Zhang et al. (2018)
introduce an asynchronous bidirectional deocder
based on RNN’s; this approach first predicts the
target sequence in reverse and then attends over
this result to predict the target sequence left-to-
right. Zhou et al. (2019) use a transformer model
to predict both directions of the target sequence
simultaneously, producing state-of-the-art results
on translation tasks.

3.3 Model Architecture

Our model uses the technique of synchronous bidi-
rectional decoding (Zhou et al., 2019). In this ap-
proach, the decoder pursues predictions of the in-
flected form in both the left-to-right (L2R) and
right-to-left (R2L) directions simultaneously; that
is, the first and last letters of the form are predicted
first, then the second and second-to-last letters, and
so on. At each step of decoding, each direction
attends to the predictions of the other direction, so
that an entire L2R prediction has been conditioned
not only on itself but also on the R2L prediction. At
inference time, the highest probability prediction in
either direction is selected; it is reversed in the case
that an R2L prediction has the highest probability.

In our implementation, the lemma and mor-
phosyntactic tags are first embedded and encoded
using the transformer-based encoder of the baseline.
The decoder has been modified from the baseline in
two ways. First, the decoder operates on previous
L2R and R2L outputs in parallel at each time step.
All weight matrices are shared between the two
directions, and so this model has the same number
of parameters as the baseline. Thus, the decoder
makes both an L2R and an R2L prediction at each
time step.

The second modification is the replacement
of the multi-head intra-attention mechanism with
a “Synchronous Bidirectional Attention” (SBAtt)
mechanism, which allows each direction to attend
to the opposite direction. The SBAtt mechanism
is mostly the same as the standard intra-attention
mechanism, except that the dot product attention
has been replaced with ”Synchronous Bidirectional
Dot Product Attention”. This can be summarized
as follows:
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−→
H history = Attention

(−→
Q,
−→
K,
−→
V
)

−→
H future = Attention

(−→
Q,
←−
K,
←−
V
)

−→
H = Fusion

(−→
H history,

−→
H future

)

A similar equation holds for calculating
←−
H .

Here, Q, K, and V are the output hidden-state
matrices of the previous layer, and the forward and
backward arrows indicate the L2R and R2L matri-
ces respectively. Zhou et al. (2019) provides three
options for the Fusion function; given the empiri-
cal results of their study, we have used nonlinear
interpolation in our implementation:

−→
H = (1− λ)−→H history + λ tanh

(−→
H future

)

We perform inference with a modified beam
search. The algorithm tracks the k best L2R hy-
potheses and the k best R2L hypotheses. At each
time step, the ith best L2R hypothesis is paired with
the ith best R2L hypothesis, and these are fed to the
decoder, which makes an L2R prediction and an
R2L prediction. In the end, we select the hypoth-
esis with the highest probability to length ratio; if
an R2L hypothesis is selected, it is reversed before
returning it.

3.4 Training & Model Configuration
Given training examples {x(i), y(i)}Ni=1, the model
is trained to maximize the likelihood of the training
data, accounting for both L2R and R2L probabili-
ties:

J(θ) =
1

N

N∑

i=1

M∑

j=1

[
log p

(−→y (i)
j

∣∣∣x(i),−→y (i)
<j ,
←−y (i)

<j ;θ
)

+ log p
(←−y (i)

j

∣∣∣x(i),←−y (i)
<j ,
−→y (i)

<j ;θ
)]

We train the model to minimize the negative
log-likelihood loss function with label smooth-
ing (Szegedy et al., 2016). We use an Adam op-
timizer with β1 = 0.9 and β2 = 0.98. We em-
ploy a warmup-decay strategy for the learning rate
as described in Vaswani et al. (2017) using 4000
warmup steps and initial learning rate of 0.001.
Furthermore, special start-of-sentence tags 〈l2r〉
and 〈r2l〉 are used as the input to the decoder at the
first step. A shared end-of-sentence token is used
for both directions.

We keep most hyperparameters fixed for all lan-
guages in the dataset and train a separate model for
each language. We use a batch size of 150, dropout
of 0.3, embedding dimension of 256, maximum
decoding length of 128, and gradient maximum `2
of 1.0. We tune the number of layers, the num-
ber of attention heads, the hidden dimension size,
the label smoothing parameter λsmooth, and the lin-
ear interpolation parameter for the Fusion function
λfusion. The selection of these hyperparameters is
described in Section 3.5.

Models were trained for 50,000 steps, or until
accuracy on the development set flattened. In some
cases, the accuracy curve was still rising, so some
languages were trained to around 100,000 steps.
We choose the model checkpoint with the highest
development set accuracy to be used on the test
data.

3.5 Hyperparameter Selection

We train a separate model for each language in the
dataset and choose the hyperparameters by fam-
ily. We perform a grid search for two languages in
each family and select the best combination of hy-
perparameters based on accuracy on both of these
languages. Where possible, we try to select two
languages from different genera within a family,
and in some families there is only one language
present in the dataset. After selecting the optimal
hyperparameters based on these results, we train
individual models on each language in the family.

The hyperparameters we consider in our grid
search are as follows:

• Num. Layers ∈ {4, 6}
• Num. Heads ∈ {4, 8}
• Hidden dimension ∈ {512, 1024}
• λsmooth ∈ {0.0, 0.1}
• λfusion ∈ {0.1, 0.5}

We chose these hyperparameters because they ap-
peared to cause variation in performance in our
initial experiments. After tuning the development
languages, it became clear that setting λfusion to 0.5
almost always degraded performance, and so this
was left out of the hyperparameter search on the
surprise languages. Setting λfusion = 0.1 is con-
sistent with the experimental results in Zhou et al.
(2019) on machine translation datasets. Table 3 in
Appendix A.1 shows the hyperparameters chosen
for each family.

There are some cases in which the languages
used for hyperparameter tuning achieve better per-
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Family Accuracy Edit-Distance
MONO TRM BI-TRM MONO TRM BI-TRM

Afro-Asiatic 92.93 95.67 96.37 0.11 0.05 0.05
Algic 67.20 68.70 70.30 1.26 1.20 1.16

Australian 61.40 90.00 87.80 0.92 0.27 0.26
Austronesian 77.66 81.28 82.30 0.58 0.44 0.41

Dravidian 86.05 87.10 85.30 0.48 0.46 0.54
Germanic 86.88 88.00 87.38 0.30 0.23 0.25

Indo-Aryan 97.78 98.02 98.18 0.05 0.05 0.04
Iranian 63.00 82.50 82.53 1.04 0.42 0.46

Niger-Congo 97.72 97.72 97.87 0.04 0.04 0.03
Nilo-Sahan 0.00 87.50 100.00 2.88 0.19 0.00

Oto-Manguean 82.71 86.59 87.49 0.49 0.32 0.28
Romance 95.51 99.25 98.72 0.12 0.02 0.03

Sino-Tibetan 83.20 84.40 84.40 0.22 0.20 0.21
Siouan 92.90 95.60 94.90 0.16 0.08 0.10

Tungusic 55.30 58.60 58.30 1.20 1.06 1.09
Turkic 95.33 95.96 95.80 0.13 0.10 0.11
Uralic 83.21 88.34 88.18 0.39 0.29 0.28

Uto-Aztecan 76.30 80.80 82.50 0.49 0.41 0.39

Table 1: Macro-averages of accuracy and edit distance by language family. MONO refers to the hard monotonic
baseline, TRM refers to the transformer baseline, and BI-TRM refers to our implementation using a bidirectional
decoder.

formance with hyperparameters other than those
selected for the family. In these cases, we used the
best-performing hyperparameters found during the
grid search. Table 4 in Appendix A.1 presents the
hyperparameters used for these languages.

4 Experimental Results

Table 2 shows the number of languages on which
our model is equal to or outperforms the baseline.

Acc. Avg. Edit Dist.
≥ > ≤ <

Development 27 18 30 14
Surprise 29 13 33 15

Table 2: The number of languages (out of 45) on which
our model equals or outperforms (≥ and ≤) or strictly
outperforms (> and <) the best of the two neural base-
line models. It should be noted that on 5 of the de-
velopment languages and 7 of the surprise languages,
the baseline achieves perfect or near-perfect accuracy,
making these languages impossible to outperform.

It is clear that by either metric, our model equals or
outperforms the baseline on more than half of the
languages, demonstrating that our model generally
does not perform worse than the baseline.

Table 1 shows macro-averages of accuracy and
edit distance by language family. For both metrics,
our model outperforms the baseline transformer on
9 of the 18 language families and equals it on only
one family. Interestingly, the two metrics do not

agree on which families our model is best; when
considering either metric, our model outperforms
the baseline on 12 of the families.

Tables 5 and 6 in Appendix A.2 present full
results on every language in the dataset. It is inter-
esting to consider the L2R column, which indicates
the percentage of test examples on which an L2R
hypothesis was selected over an R2L hypothesis.
There is considerable spread in the values of this
column; this demonstrates that some languages
strongly prefer one direction over the other, while
others do not favor one direction in particular. It is
important to remember that even though the infer-
ence algorithm returns only the best L2R or R2L
hypothesis, the chosen direction is conditioned on
the opposite direction; therefore, a language that
appears to strongly prefer one direction may still
gain important insight from the opposite direction.

5 Conclusion & Future Work

The promising results of our experiments demon-
strate that some languages may be amenable to
bidirectional decoding; however, more investiga-
tion is required to fully understand the merits of
such an approach. For example, our results show
that some languages strongly favor L2R or R2L
hypotheses while others are less preferential. We
would like to determine if there are particular lin-
guistic features that make one direction more valu-
able than the other − for example, do inflected
forms with suffixes prefer L2R decoding while in-
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flected forms with prefixes favor R2L decoding?
We propose performing this analysis by exploring
correlations with linguistic features in the WALS
database (Dryer and Haspelmath, 2013).

We would also like to investigate how often each
direction produces the correct form, as well as the
percentage of examples on which the two directions
agree with each other. A high disagreement could
indicate a higher value in one direction with respect
to the other for a particular language. It would
also be informative to compare the bidirectional
decoding approach with a purely R2L transformer
baseline, in addition to the L2R baseline provided
by the organizers.

We also suspect that the bidirectional beam
search algorithm can be improved if the hypothe-
ses in one direction are paired with each of the
hypotheses in the opposite direction when fed to
the decoder at each time step. Furthermore, once
the halfway-point of the target form is passed in the
decoding, we should expect lots of overlap between
the L2R and R2L forms. We would like to see if
this information can be used to join the L2R and
R2L predictions to produce a better inflected form.

In initial experiments we noticed that on some
languages the bidirectional decoding model con-
verges in considerably fewer epochs than the base-
line transformer model, despite the same number of
parameters. We want to fully investigate this phe-
nomenon because, if it holds for many languages, it
means that the model can gain insight more quickly
with both directions than with just one.

Finally, in this work our models were trained
from scratch on each individual language. We
would like to investigate multilingual approaches
by training separate models on individual language
families or a single model for every involved lan-
guage. In these ways, we hope to demonstrate the
merits of bidirectional decoding and its implica-
tions for a morphological transduction task.
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A Appendices

A.1 Hyperparameter Selection
In this section we present the hyperparameters used
for each language. Tables 3 and 4 contain informa-
tion about specific hyperparameter configurations
for each family and for specific languages.
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Family Languages # Layers Hidden Size # Heads λsmooth

Afro-Asiatic Oromo 6 512 4 0.0Syriac

Algic Cree 4 1024 4 0.0

Australian Murrinh-Patha 6 512 4 0.1

Austronesian Maori 6 1024 4 0.1Tagalog

Germanic Old English 4 1024 8 0.0Norwegian Bokmål

Indo-Ayran Sanskrit 4 512 8 0.0Bengali

Iranian Persian 4 1024 4 0.0Pashto

Niger-Congo Luganda 4 1024 4 0.0Zulu

Nilo-Sahan Zarma 4 1024 4 0.0

Oto-Manguean Yaitepec Chatino 4 1024 4 0.1Chichimeca-Jonaz

Romance Asturian 6 512 8 0.0Ladin

Sino-Tibetan Tibetan 6 1024 8 0.1

Siouan Dakota 4 1024 8 0.0

Tungusic Evenki 4 1024 4 0.1

Turkic Kazakh 4 1024 4 0.0Uyghur

Uralic Moksha 4 512 4 0.0Votic

Uto-Aztecan O’odham 6 1024 4 0.1

Table 3: Selected hyperparameters by family. The “Languages” column indicates the languages we used for
selecting the hyperparameters. The Dravidian family is not present, since it has exactly two languages; the hyper-
parameters for these languages can be seen in Table 4.

Family Languages # Layers Hidden Size # Heads λsmooth

Afro-Asiatic Oromo 4 512 4 0.0
Austronesian Tagalog 6 1024 8 0.0
Dravidian Kannada 4 1024 8 0.1
Dravidian Telugu 4 1024 4 0.0
Germanic Old English 4 512 8 0.0
Oto-Manguean Chichimeca-Jonaz 6 1024 8 0.1
Uralic Votic 6 512 8 0.0

Table 4: Selected hyperparameters for certain languages on which we performed a grid search. These languages
use different hyperparameters than their corresponding families, shown in Table 3, due to the fact that a more
optimal configuration was discovered.
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A.2 Complete Results Tables
In this section we show full results on each language.

Family Language Accuracy Edit Distance L2R
MONO TRM BI-TRM MONO TRM BI-TRM

Austronesian

Cebuano 83.80 83.80 87.40 0.31 0.33 0.26 57.66
Hiligaynon 92.40 97.90 96.60 0.22 0.09 0.10 26.47

Maori 47.60 52.40 52.40 1.10 1.02 0.95 52.38
Malagasy 99.20 100 100 0.01 0 0 9.45
Tagalog 65.30 72.30 75.10 1.27 0.78 0.73 33.89

Germanic

Old English 75.80 79.10 78.40 0.44 0.37 0.38 77.41
Danish 74.60 76.30 73.00 0.60 0.25 0.29 93.92
German 98.50 97.70 98.00 0.06 0.03 0.02 95.18
English 96.60 96.90 96.90 0.10 0.06 0.06 89.91

North Frisian 86.10 87.90 87.60 0.40 0.39 0.42 54.30
Middle High German 90.80 91.50 92.90 0.17 0.11 0.11 82.98

Icelandic 97.10 97.00 97.60 0.06 0.07 0.04 88.79
Dutch 98.90 99.00 99.50 0.02 0.02 0.01 79.48

Norwegian Bokmål 76.90 77.30 74.80 0.47 0.46 0.51 95.20
Swedish 98.80 98.70 99.00 0.08 0.02 0.02 92.04

Niger-Congo

Akan 100 100 99.90 0 0 0.00 67.23
Gã 100 97.60 97.00 0 0.04 0.05 52.66

Kongo 98.70 98.10 98.70 0.01 0.03 0.01 78.85
Lingala 100 100 100 0 0 0 67.39
Luganda 90.00 91.20 92.80 0.17 0.13 0.11 46.47
Chewa 100 100 100 0 0 0 98.01
Sotho 100 98.00 98.00 0 0.03 0.03 91.92

Swahili 100 100 100 0 0 0 72.64
Zulu 88.50 92.30 92.30 0.19 0.13 0.13 43.59

Oto-Manguean

San Pedro Amuzgos Amuzgo 93.50 94.70 95.20 0.17 0.13 0.12 21.12
Eastern Highland Chatino 78.70 91.40 91.80 0.39 0.15 0.16 22.14

Tlatepuzco Chinantec 89.00 91.60 92.30 0.16 0.12 0.12 64.64
Yaitepec Chatino 45.90 61.20 62.50 2.28 1.00 0.97 63.71

Zenzontepec Chatino 79.30 79.70 84.60 0.44 0.49 0.33 60.33
Mezquital Otomi 99.10 99.00 99.10 0.01 0.01 0.01 32.13

Sierra Otomi 97.90 98.20 98.00 0.06 0.05 0.05 82.91
Chichimeca-Jonaz 74.60 74.50 74.20 0.59 0.60 0.57 63.96
Yoloxóchitl Mixtec 90.70 91.00 91.70 0.23 0.22 0.16 69.33

Chichicapan Zapotec 78.40 84.60 85.50 0.55 0.39 0.32 75.44

Uralic

Estonian 95.10 95.60 95.20 0.19 0.17 0.18 68.04
Finnish 99.60 99.60 99.70 0.02 0.01 0.01 62.97
Ingrian 68.80 87.10 87.50 0.60 0.24 0.23 86.16

Karelian 99.30 99.30 99.50 0.04 0.01 0.01 50.79
Livonian 92.50 96.40 95.50 0.13 0.06 0.07 52.24
Moksha 92.80 93.90 93.60 0.24 0.18 0.19 81.11

Meadow Mari 93.30 92.90 92.60 0.19 0.15 0.16 85.81
Erzya 93.60 94.50 94.10 0.21 0.17 0.18 90.65

Northern Sami 99.60 99.60 99.70 0.01 0.01 0.01 69.86
Veps 82.70 84.80 83.30 0.45 0.25 0.27 84.56
Votic 69.40 86.10 84.30 0.49 0.21 0.24 51.25

Table 5: Results for individual languages in the development language set. MONO refers to the hard monotonic
baseline, TRM refers to the transformer baseline, and BI-TRM refers to our implementation using a bidirectional
decoder. The L2R column shows the percentage of words in each language for which our model selects a left-to-
right hypothesis as its final result. It should be noted that this column really indicates a “forwardness” percentage,
as languages with a right-to-left orthography are processed in a right-to-left manner.

144



Family Language Accuracy Edit Distance L2R
MONO TRM BI-TRM MONO TRM BI-TRM

Afro-Asiatic
Maltese 88.70 97.20 96.60 0.22 0.05 0.05 67.99
Oromo 98.30 99.00 98.00 0.03 0.02 0.04 30.86
Syriac 91.80 90.80 94.50 0.08 0.09 0.06 70.07

Algic Cree 67.20 68.70 70.30 1.26 1.20 1.16 69.34

Australian Murrinh-Patha 61.40 90.00 87.80 0.92 0.27 0.26 63.06

Dravidian Kannada 77.30 78.30 76.10 0.70 0.67 0.76 60.15
Telugu 94.80 95.90 94.50 0.25 0.24 0.32 42.49

Germanic
Middle Low German 60.60 63.50 58.40 1.03 0.84 1.10 52.16

Swiss German 90.10 92.70 93.20 0.18 0.11 0.10 68.83
Norwegian Nynorsk 84.60 86.40 86.60 0.24 0.21 0.20 85.76

Indo-Aryan

Bengali 98.80 99.40 99.90 0.03 0.05 0.00 93.54
Hindi 100 100 100 0 0 0 75.07

Sanskrit 92.90 93.40 93.40 0.16 0.15 0.14 65.77
Urdu 99.40 99.30 99.40 0.01 0.01 0.01 88.62

Iranian
Persian 100 100 99.90 0 0 0.00 45.26
Pashto 89.00 91.20 91.40 0.30 0.25 0.25 62.85
Tajik 0.00 56.30 56.30 2.81 1.00 1.12 75.00

Niger-Congo Shona 100 100 100 0 0 0 85.31

Nilo-Sahan Zarma 0.00 87.50 100 2.88 0.19 0 43.75

Romance

Asturian 98.50 99.40 99.30 0.03 0.01 0.01 46.88
Catalan 99.60 99.80 99.80 0.01 0.00 0.00 84.35

Middle French 99.50 99.80 99.80 0.01 0.00 0.00 83.48
Friulian 97.70 99.80 99.70 0.03 0.00 0.00 66.11
Galician 99.70 99.80 99.80 0.01 0.01 0.01 80.65

Ladin 99.00 99.50 99.50 0.02 0.01 0.01 61.38
Venetian 99.50 99.80 99.70 0.01 0.01 0.00 52.60

Anglo-Norman 70.60 96.10 92.20 0.82 0.10 0.18 60.78

Sino-Tibetan Tibetan 83.20 84.40 84.40 0.22 0.20 0.21 37.39

Siouan Dakota 92.90 95.60 94.90 0.16 0.08 0.10 71.20

Tungusic Evenki 55.30 58.60 58.30 1.20 1.06 1.09 65.55

Turkic

Azerbaijani 79.50 82.20 81.90 0.42 0.34 0.34 87.70
Bashkir 99.60 99.80 99.80 0.01 0.00 0.00 69.80

Crimean Tatar 98.80 99.10 99.30 0.10 0.01 0.01 78.05
Kazakh 97.40 97.90 98.00 0.15 0.12 0.11 63.46
Kyrgyz 97.90 98.30 98.80 0.04 0.03 0.02 67.95
Khakas 99.20 99.60 99.60 0.01 0.00 0.01 81.67

Turkmen 86.50 87.40 85.60 0.45 0.42 0.50 82.09
Uyghur 99.50 99.50 99.70 0.01 0.01 0.00 48.17
Uzbek 99.60 99.80 99.50 0.01 0.01 0.02 67.58

Uralic

Komi-Zyrian 96.30 96.90 96.90 0.11 0.07 0.07 75.61
Ludic 24.10 32.90 32.90 2.14 2.35 2.13 68.29
Livvi 94.50 94.30 94.50 0.14 0.09 0.09 82.53

Udmurt 97.80 98.40 98.40 0.06 0.03 0.03 74.02
Võro 32.00 61.20 63.10 1.27 0.66 0.62 63.11

Uto-Aztecan O’odham 76.30 80.80 82.50 0.49 0.41 0.39 62.42

Table 6: Results for individual languages in the surprise language set. MONO refers to the hard monotonic baseline,
TRM refers to the transformer baseline, and BI-TRM refers to our implementation using a bidirectional decoder. The
L2R column shows the percentage of words in each language for which our model selects a left-to-right hypothesis
as its final result. It should be noted that this column really indicates a “forwardness” percentage, as languages
with a right-to-left orthography are processed in a right-to-left manner.
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Abstract

The task of grapheme-to-phoneme (G2P)
conversion is important for both speech
recognition and synthesis. Similar to other
speech and language processing tasks, in
a scenario where only small-sized train-
ing data are available, learning G2P mod-
els is challenging. We describe a simple
approach of exploiting model ensembles,
based on multilingual Transformers and
self-training, to develop a highly effective
G2P solution for 15 languages. Our mod-
els are developed as part of our participa-
tion in the SIGMORPHON 2020 Shared
Task 1 focused at G2P. Our best models
achieve 14.99 word error rate (WER) and
3.30 phoneme error rate (PER), a sizeable
improvement over the shared task compet-
itive baselines.

1 Introduction

Speech technologies are becoming increasingly
pervasive in our lives. The task of grapheme-
to-phoneme (G2P) conversion is an important
component of both speech recognition and
synthesis. In G2P conversion, sequences of
graphemes (the symbols used to write words)
are mapped to corresponding phonemes (pro-
nunciation symbols, e.g., symbols of the In-
ternational Phonetic Alphabet). Members of
the Special Interest Group on Computational
Morphology and Phonology (SIGMORPHON)
have proposed a G2P shared task (SIGMOR-
PHON 2020 Shared Task 1) 1 involving multi-
ple languages. In this paper, we describe our
submissions to the shared task. Organizers
provide an overview of the task and submitted
systems in Gorman et al. (2020) (this volume).

1The shared task webpage is accessible at: https:
//sigmorphon.github.io/sharedtasks/2020/task1.

The task was introduced with data from
10 languages, with an additional 5 ‘surprise’
languages released during the task timeline.
Our goal was to develop an effective system
based on modern deep learning methods as a
solution. However, deep learning technologies
work best with sufficiently large training data.
Hence, a clear challenge we came across is the
limited size of the shared task training data
for each of the 15 individual languages. To
ease this bottleneck, we decided to view the
task through a multilingual machine transla-
tion lens where we build a single model map-
ping from input to output across all the lan-
guages simultaneously. In this, we hypothe-
sized that a multilingual model would allow for
shared representations across the various lan-
guages that may be more powerful than indi-
vidual representations of monolingual models.
Abundant evidence now exists for approaching
machine translation tasks from a multilingual
perspective (Johnson et al., 2017a; Dong et al.,
2015; Firat et al., 2016), which inspired our
choice.

In order to make use of unlabeled data, we
also explore a straightforward self-training ap-
proach. In particular, we employ our trained
models to convert sequences of multilingual
unlabeled graphemes, taken from Wikipedia
data, into multilingual phonemes. We then
select sequences of phonemes predicted with
our models above a certain confidence thresh-
old to augment the shared task training data,
thus re-training our models with larger (gold
and silver) training data from scratch. Our
models are based on the Transformer architec-
ture which exploits effective self-attention. We
show that both our multilingual model and
the self-trained variation outperform the re-
sults of the competitive baseline monolingual
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models provided by the task organizers. Ulti-
mately, we demonstrate how our simple mod-
eling choices enable us to provide an effective
solution to the problem in spite of the low-
resource challenge. Intrinsically, our approach
also enjoys the simplicity of a single model
rather than 15 different models.

The rest of the paper is organized as fol-
lows: Section 2 is a description of the shared
task data, evaluation metrics, and baselines.
Section 3 introduces both our fully super-
vised, multilingual models (Section 3.1) and
self-trained model (Section 3.2). We present
our results in Section 4. We provide an analy-
sis of results and report on an ablation study
in Section 5. We overview related work in Sec-
tion 6, and conclude in Section 7.

2 Task Data, Evaluation, and
Baselines

The data provided by the organizers of the
shared task are extracted from Wiktionary 2

using the WikiPron library (Lee et al., 2020),
and consist of 4,050 gold labeled grapheme-
phoneme pairs for each of 15 languages, split
into a training set (3,600 per language) and
a development set (450 per language). The
blind test data comprise 450 sources for each
language. The data involves languages in the
set {Adyghe (ady), Armenian (arm), Bulgar-
ian (bul), Dutch (dut), French (fre), Georgian
(geo), Modern Greek (gre), Hindi (hin), Hun-
garian (hun), Icelandic (ice), Japanese hira-
gana (jpn), Korean (kor), Lithuanian (lit), Ro-
manian (rum), Vietnamese (vie)}. 3 This set
of languages employ a variety of writing sys-
tems: alphabets (e.g. French), alphasyllabary
(e.g. Hindi), and syllabary (e.g. Japanese hira-
gana), thus introducing enough diversity and
modelling challenge. Table 1 shows sample
pairs from training data across 5 languages.

Evaluation. For evaluation, the task orga-
nizers use both Word Error Rate (WER) and
Phoneme Error Rate (PER). WER is the per-
centage of words whose predicted transcription
does not match the gold transcription; PER is
the micro-averaged edit distance between pre-
dicted and gold transcriptions. We follow this

2https://www.wiktionary.org/.
3We use three-character ISO-639-2 abbreviations as

not all of the task languages have ISO-639-1 codes.

Language Source Target (IPA)
Alphabet:

arm ահեղ A h E K
լիարժեք l j A R Z E kh

fre front f K O ̃
vêtu v e t y

Alphasyllabary:

hin ȟदखावा d I kh A: V A:
हटना H ə ú n A:

kor 개벽 k e̞ b j ʌ̹ k̚
오빠 o̞ p͈ a̠

Syllabary:

jpn いなり i n a̱ Rj i
やせん j a̠ s ẽ̞ ɴ

Table 1: Sample pairs from training data

set-up in evaluating our models on the devel-
opment data as well, as reported in this paper.

Baselines. Organizers provide a number
of monolingual baselines. The first is a pair
n-gram model encoded as a weighted finite-
state transducer (FST), implemented using
the OpenGRMtoolkit 4. The second is a bi-
LSTM encoder-decoder sequence model imple-
mented using the Fairseq toolkit 5. The third
is a Transformer model also implemented us-
ing the Fairseq toolkit. Organizer-provided
shared task baselines are shown in Table 2
as WER and PER averages over the 15 lan-
guages. We now introduce our models.

Avg over 15 langs
Model WER PER
FST 22.00 4.92
Bi-LSTM 16.84 3.99
Transformer 17.51 4.30

Table 2: Baseline performance as avg. WER and
PER over the 15 languages as provided by task
organizers. Baselines exploit monolingual models.

3 Models

As explained, our models are based on Trans-
formers and we offer two primary types of
models, depending on how we supervise each.
We first introduce fully supervised multilin-

4http://www.opengrm.org/twiki/bin/view/GRM.
5https://github.com/pytorch/fairseq.
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gual models, then we introduce our semi-
supervised models (also multilingual). Our
semi-supervised models follow a self-training
set up. We now explain each of these models.

3.1 Supervised, Multilingual Models
We use a multilingual approach where we train
a single model on data from all 15 languages.
For this purpose, we prepend a token com-
prising a language code (e.g. fre) to each
grapheme sequence source. For our implemen-
tation, we use the PyTorch Transformer ar-
chitecture in the OpenNMT Neural Machine
Translation Toolkit (Klein et al., 2017). We set
the model hyper-parameters as shown in Ta-
ble 3, which follows those adopted by Vaswani
et al. (2017).

Hyper-Parameter Value
Number of layers 6
Hidden state size 512
Word embedding size 512
Hidden feed-forward size 2,048
Number of self-attention heads 8
Optimizer Adam
Dropout probability 0.1
Number of training steps 200K

Table 3: Multilingual Transformer hyper-
parameters.

We train the model with 3 different random
seeds, and at inference we employ an ensemble
consisting of the models from 4 training check-
points (at 50k, 100k, 150k, and 200k steps)
for each of the 3 models generated by the
random seeds. We note that OpenNMT av-
erages individual models’ prediction distribu-
tions, which is how we deploy our ensemble.
We use beam search with the OpenNMT de-
fault beam width of 5. 6

3.2 Self-Trained Model
3.2.1 Wikipedia Data Augmentation
One of the models we submitted to the task
employs a self-training approach, as a way
to augment training data. The additional
data is sourced from Wikipedia articles from
12 of the 15 languages (excluding Adyghe,

6We also experimented with beam size 10, but did
not obtain improvements on the development set.

Japanese, and Vietnamese) 7. We download
the Wikipedia dumps from the Wikimedia
website 8 and use an off-the-shelf tool 9 for
extracting text. Further pre-processing in-
volved removing any remaining XML markup,
discarding leading and trailing punctuation
and numerals for each word, and ignoring any
words with remaining word-internal punctua-
tion or numerals.
Due to time constraints, only one million
words from each language were used, and from
those only unique entries were submitted to
the model for translation and subsequent eval-
uation as potential candidates for augmenting
training data. Table 4 summarizes the size of
the Wikipedia data used for each available lan-
guage. Selection methods and thresholds are
discussed in Section 3.2.2.

Language Translated Selected
arm 9,947 4,723
bul 9,999 3,197
dut 2,275 860
fre 9,985 2,888
geo 5,038 3,043
gre 9,949 3,419
hin 1,450 727
hun 10,000 3,444
ice 9,839 3,719
kor 4,282 2,681
lit 7,033 3,615
rum 9,785 3,102
Total 89,582 35,418

Table 4: Number of Wikipedia words translated
vs. number of words selected for self-training.

3.2.2 Procedure
As explained, self-training data is drawn from
the translations of Wikipedia text in 12 lan-
guages as predicted by an ensemble model. In
order to select pairs to augment the training
set, we first calculate the mean per-class soft-
max value in the development set (which we

7We note that there is no Adyghe Wikipedia. Also,
the Japenese Wikipedia is not strictly in Hiragana and
so we exclude it. By mistake, we did not include Viet-
namese either. Clearly, we average results from the
self-training models only on the languages for which
we augment the data.

8https://dumps.wikimedia.org/.
9https://github.com/attardi/wikiextractor
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find to be at 0.11). 10 Comparatively, the av-
erage per-class softmax value for the predicted
Wikipedia targets for each language ranges
from 0.12 to 0.30. Based on this analysis, we
select only those Wikipedia pairs whose pre-
dicted targets have a probability greater than
0.2. 11 The selected data are combined with
the original (i.e., from official task) training set
and the models are re-trained using the same
hyper-parameters as the fully-supervised set-
ting.

4 Results

Multilingual Self-trained
Lang WER PER WER PER
ady 25.56 6.40 25.11 6.47
arm 16.67 3.37 16.89 3.37
bul 28.44 7.30 27.33 7.12
dut 16.00 2.84 15.33 2.84
fre 8.22 1.96 8.44 1.92
geo 24.44 4.92 26.22 5.22
gre 15.11 2.72 16.22 3.00
hin 6.44 1.66 6.89 1.89
hun 2.89 0.54 3.56 0.66
ice 9.56 1.88 10.89 2.23
jpn 7.33 2.18 7.11 2.11
kor 24.22 6.54 26.00 6.50
lit 20.00 4.11 21.11 3.96
rum 12.00 2.94 11.78 2.97
vie 5.56 1.77 5.56 1.91
avg 14.83 3.41 15.23 3.48

Table 5: Development set results for fully-
supervised multilingual and self-trained multilin-
gual models.

Both models demonstrate lower word error
rates (WER) and phoneme error rates (PER),
averaged across languages, than the baseline
monolingual models provided by the task or-
ganizers (see Table 2 in Section 2). Error rates
per language are shown in Table 5 for the de-
velopment set and Table 6 for the blind test
set (results published by organizers). Table 7

10As is known, the softmax function produces a prob-
ability distribution over the classes.

11There could be different ways to select predicted
data for augmentation. For example, one can arbitrar-
ily choose the top n% most confidently predicted points
(with n being a hyper-parameter).

Multilingual Self-trained
Lang WER PER WER PER
ady 28.44 6.46 29.11 6.46
arm 13.11 2.98 12.89 3.07
bul 27.11 5.91 30.89 6.92
dut 15.78 2.98 16.89 3.07
fre 5.33 1.24 5.78 1.36
geo 26.00 5.25 26.67 5.23
gre 16.67 2.68 15.78 2.60
hin 6.44 1.58 6.67 1.66
hun 4.67 1.05 4.22 0.98
ice 9.56 2.11 9.11 1.83
jpn 6.00 1.44 6.00 1.40
kor 32.22 8.54 32.44 8.86
lit 19.33 3.63 20.00 3.68
rum 9.33 1.96 10.44 2.23
vie 4.89 1.66 4.00 1.28
avg 14.99 3.30 15.39 3.37

Table 6: Blind test set results for fully-supervised
multilingual and self-trained multilingual models.

shows examples of prediction errors, which
demonstrate some of the typical minor errors
in phenomena such as voicing (e.g. k vs. ɡ),
epenthesis and elision (e.g. p ʁ u vs. p ʁ u l),
and coarticulation (e.g. bʲ vs. b).

On average, the fully-supervised models per-
formed slightly better than the self-trained
model. We expected that the self-trained
model would see (at least slightly) better per-
formance than the fully supervised; however,
due to time constraints, we were not able to
augment the training data to such a degree
that this hypothesized improvement would be
tangible. We leave it as a question for the
future whether, and if so to what extent, self-
training can improve our models. We now pro-
vide an analysis of our findings and report on
an ablation study under a number of settings.

5 Analysis & Ablation Study
We suspected that languages with shared writ-
ing systems (in our multilingual models) would
benefit from the shared representation and
hence see better results, posing a challenges to
those languages with unique orthography (i.e.,
orthography not shared by o=any of the other
languages considered). However, our results
do not support this hypothesis; there did not
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Lang Source Target Prediction

arm զուգարան z u kh A R A n z u g A R A n
անխնա A ŋ X ə n A A ŋ X n A

fre full f u l f y l
proulx p K u p K u l

hin धęय dH ə n j ə dH ə n j
मेहरबानी m E:H R b A: n i: m e: H ə R b A: n i:

jpn こたま k o̞ d a̠ m a̠ k o̞ t a̠ m a̠
ひぞう ç i z oː ç i z o̞ː

rum ceri t S e rj >
Ù e rj

iubeau j u bj æ u j u b e̯ a w

Table 7: Sample prediction errors from development data.

appear to be a significant correlation between
writing system and results on G2P conversion.
For example, a total of 7 of the languages (i.e.,
dut, fre, hun, ice, lit, rum, vie) use the Roman
alphabet, but the WERs for these languages
cover a reasonably wide range (from first- to
eleventh-best) of the results. It is worth not-
ing, however, that the two languages that use
the Cyrillic alphabet (ady, bul) were the two
worst-performing languages of the set.

Both prior and subsequent to the task dead-
line, we performed several ablations in order to
assess the effectiveness of our approach. First,
we compare results based on single models vs.
those based on the ensemble. Table 8 shows
the error rates of development set translation
by the four training checkpoints used in the
ensemble, in this case trained with the default
(random) seed. Given that each of these re-
sults is poorer than our ensemble results for
the multilingual model (WER 14.83 / PER
3.41), it is clear that the ensemble approach
is superior. Clearly, the ensemble has the ad-
vantage of exploiting multiple predictions for
each word. This does result in reduced error
rates as compared to individual models.

We also compare our multilingual model’s
error rates on a given language to those ac-
quired by the respective monolingual models.
We note that each of the monolingual mod-
els is otherwise initialized with the same pa-
rameters as the multilingual model described
in Section 3.1. Results for the 15 mono-
lingual models are shown in Table 9. The
average WER across all languages is almost
twice as big as that of our multilingual model
(whether individual or ensemble), and the per-

Avg over 15 langs
Checkpoint WER PER
50k of 200k steps 16.70 3.93
100k of 200k steps 16.04 3.69
150k of 200k steps 16.25 3.78
200k of 200k steps 15.73 3.65
Ensemble 14.83 3.41

Table 8: Development set results for individual
models vs. our ensemble

language results are worse across the board
as well. The monolingual Georgian WER
(25.33) was the only result to approach its
multilingual counterpart (24.44). Our multi-
lingual approach is clearly a significant
improvement over otherwise equivalent
monolingually-trained models.

6 Related Work
Various data-driven models have been success-
fully applied to G2P conversion. In terms
of English conversion, Bisani and Ney (2008)
use co-segmentation and joint sequence mod-
els for early data-driven G2P. Novak et al.
(2016) employ a joint multigram approach to
generate weighted finite-state transducers for
G2P. Recently, neural sequence-to-sequence
models based on CNN and RNN architec-
tures have been proposed for the G2P task
delivering superior results compared to ear-
lier non-neural approaches (Chae et al., 2018;
Yolchuyeva et al., 2019a). Similar to our ap-
proach, Yolchuyeva et al. (2019b) use trans-
formers (Vaswani et al., 2017) to perform En-
glish G2P conversion.
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Monolingual
Lang WER PER
ady 33.56 9.31
arm 24.00 5.65
bul 41.33 12.07
dut 30.89 7.73
fre 34.89 12.69
geo 25.33 5.19
gre 24.00 5.13
hin 22.67 6.76
hun 20.89 5.30
ice 30.22 11.12
jpn 11.78 3.73
kor 30.67 9.17
lit 26.00 7.75
rum 20.00 5.52
vie 32.00 13.75
avg 27.22 8.06

Table 9: Development set results for monolingual
models.

Multilingual training is a crucial component
in our system. Our approach is closely re-
lated to multilingual neural machine transla-
tion (Johnson et al., 2017b), where a single
model is trained to translate between mul-
tiple source and target languages. Others
have also explored multilingual approaches to
G2P. Deri and Knight (2016) use multilingual
G2P conversion for the purpose of adapting
models from high-resource languages to train
weighted finite-state transducers for related
low-resource languages. Ni et al. (2018) ex-
periment with multilingual training for deep
learning models. They use pretrained charac-
ter embeddings with LSTM encoder-decoders
in order to train multilingual G2P models for
Chinese, Japanese, Korean and Thai. In con-
trast to Ni et al. (2018), we inspect multi-
lingual training in the context of transformer
models.

For our second model, whose training data
is augmented from Wikipedia, we use a self-
taining method. Sun et al. (2019) investi-
gate self-training together with ensemble dis-
tillation for English G2P conversion, using
transformer models. Their setting resembles
ours: A teacher model is first trained using a
gold standard labeled G2P training set. The

teacher model is then used to label additional
grapheme data, producing a silver standard
training set. Subsequently, a model ensemble
is trained on the combination of the gold and
silver data. Sun et al. (2019) train on nearly
200k gold standard examples and 2M silver
standard examples and report small improve-
ments. In contrast, we do not observe improve-
ments from self-training. This might be a con-
sequence of the small size of the shared task
datasets and our silver standard Wikipedia
data.

7 Conclusion
We introduced a multilingual approach to
G2P conversion, exploiting Transformers in a
fully supervised multilingual setting. Strik-
ingly, our choice to model all languages in a
shared, nultilingual space reduces error rates
(in WER and PER) by almost one half. We
also showed how an ensemble of individually-
trained multilingual Transformers, is an im-
provement over non-ensemble models. We
also leveraged multilingual Wikipedia data via
a self-training strategy, though due to time
constraints we were not able to incorporate
enough silver labeled data into training to see
the results we had hoped for12. Nevertheless,
the multilingual models successfully surpassed
all organizer-provided baselines on the task
and compared favorably to several other sub-
mitted models. Our future work includes scal-
ing up our self-training with larger Wikipedia
data and choosing fully-trained models (e.g.,
in our case ones at 200K steps) to include in
the ensemble.
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Abstract

This paper presents the submission by the CU
Ling team from the University of Colorado to
SIGMORPHON 2020 shared task 0 on mor-
phological inflection. The task is to generate
the target inflected word form given a lemma
form and a target morphosyntactic description.
Our system uses the Transformer architecture.
Our overall approach is to treat the morpholog-
ical inflection task as a paradigm cell filling
problem and to design the system to leverage
principal parts information indirectly for bet-
ter morphological inflection when the training
data is limited. We train one model for each
language separately without external data. The
overall average performance of our submission
ranks the first in both average accuracy and
Levenshtein distance from the gold inflection
among all submissions including those using
external resources.

1 Introduction

The task of morphological inflection is to gener-
ate a target inflected word form (henceforth tgt-
form) given a lemma form (henceforth lemma) and
a target morphosyntactic description (henceforth
tgtmsd). In the SIGMORPHON 2020 shared task
0 on morphological inflection (Vylomova et al.,
2020) and previous years’ SIGMORPHON shared
tasks on morphological inflection (Cotterell et al.,
2016, 2017a, 2018; McCarthy et al., 2019), the
training data is provided in the format of tab-
separated lemma-tgtmsd-tgtform triples, and partic-
ipating systems are expected to predict the missing
target forms in the test data released shortly before
prediction submission.

The sequence-to-sequence (henceforth seq2seq)
architecture has been very successful in dealing
with morphological inflection, especially when
there are abundant labeled data for training. The
accuracies and Levenshtein distances on the devel-

Transformer

lemma tgtmsd

tgtform

Transformer

srcform srcmsd # tgtmsd

tgtform

Transformer

srcform1 srcmsd1 # srcform2 srcmsd2 # tgtmsd

tgtform

(a) baseline (Fairseq) model (b) 1-src model

(c) 2-src model

Figure 1: Illustration of general model architectures.
All three of our models use the Transformer architec-
ture for inflection. They are different from each other
by the input to the Transformer model.

opment data inflected by 9 baseline models are pro-
vided for the 45 typologically and genealogically
diversified development languages: a non-neural
model based on lemma-tgtform alignment and
transformation, a per-language Transformer model,
a per-language-family Transformer model, a per-
language Transformer model with data augmen-
tation, a per-language-family Transformer model
with data augmentation, LSTM seq2seq models
with exact hard monotonic attention (Wu and Cot-
terell, 2019) trained per language, per language
family, per language with data augmentation, and
per language family with data augmentation respec-
tively. The data augmentation method used by the
baseline models is from Anastasopoulos and Neu-
big (2019). The baseline numbers indicate that the
Transformer model for character-level transduction
(Wu et al., 2020) is very competitive, achieving
the highest average accuracy and lowest average
edit distance and best performance on most lan-
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guages (33 out of 45) when the model is trained per
language. Therefore, we adopt the Transformer ar-
chitecture (Vaswani et al., 2017) for all three of our
models (see Figure 1) which are different from each
other by the input and output to the Transformer
model, as will be presented in section 3.

Though not explicitly organized as a paradigm
cell filling problem (PCFP) (Ackerman et al., 2009)
task, the shared task is closely related to and can
largely be seen as a computational instance of it
(Malouf, 2016, 2017; Cotterell et al., 2017a; Silfver-
berg et al., 2018; Silfverberg and Hulden, 2018),
where some slots are given in the paradigms as
training data and others are to be inflected as de-
velopment data or test data.1 The data format of
the shared task privileges the lemma as the source
form (henceforth srcform) which all tgtforms are
inflected from. However, the lemma form may not
be the only and the most informative srcform to
inflect all other slots from in the same paradigm.
Morphologists refer to a lexeme’s principal parts
(Finkel and Stump, 2007) as the minimum subset
of paradigm slots which, if known, provide all the
information needed to generate the other slots in its
paradigm. The principal parts which best predict
an inflected form in a lexeme’s paradigm do not
necessarily include the lemma, and more than one
of the principal parts may be needed to generate
an inflected form reliably (see examples in Table
1 analyzed in section 3.2). Considering this, we
convert the shared task of morphological inflection
to the paradigm cell filling problem, and incorpo-
rate the principal part intuition into the inflection
system. Our approaches achieve better or equally
good performance compared to the official base-
lines for most (19 out of 24) relatively low-resource
languages we experimented with.

To generate inflected forms for the test data
for submission, our system uses the same input-
output format as the baselines for high-resource
languages, and includes two slightly different ap-
proaches of leveraging principal parts information
for low-resource languages. The evaluation results
indicate that the Transformer model augmented
with principal parts information can handle mor-
phological inflection very well for typologically
and genealogically diverse languages, whether it

1This does not hold perfectly—some languages have held-
out data that come from paradigms where no form is ever
witnessed in the training data, but these are a minority. We
overcome this problem by adding an additional slot (tagged as
POS;CANONICAL) for the lemma in the paradigm.

has been tuned on the language or not, even when
the training data is limited.

2 Task and data description

The SIGMORPHON 2020 shared task 0 (Vylo-
mova et al., 2020) is a typical morphological inflec-
tion task. Compared to previous years’ SIGMOR-
PHON shared tasks on morphological inflection,
this year’s task highlights the distinction between
development languages and surprise languages and
the inflection model’s ability to generalize to new
languages that may be genetically related or un-
related to the languages according to which it is
developed. In the development phase, 45 languages
from 5 language families were provided, and these
languages are development languages. In the gen-
eralization phase, 45 surprise languages from 16
language families were released. In the evalua-
tion phase, test data include both development lan-
guages and surprise languages.

Deviating from previous years’ tasks, this year’s
task did not feature different (low/medium/high)
data settings for the languages (Cotterell et al.,
2017a, 2018) or manipulate the data size of ge-
netically related language pairs (McCarthy et al.,
2019). Instead, each language comes with differ-
ent amount of training, development and test data,
corresponding to the reality of data availability for
the language. Of the total 90 languages from 18
language families, 44 have 5,000 or more lemma-
tgtmsd-tgtform training triples and 46 have fewer
than 5,000. Of the 45 development languages, 24
have fewer than 5,000 training examples. In this
paper, we refer to languages with 5,000 or more
training triples as high-resource and those with
fewer than 5,000 training triples as low-resource.

3 System description

All our models use the self-attention Transformer
architecture (Vaswani et al., 2017) as implemented
in the Fairseq (Ott et al., 2019) tool, a PyTorch-
based sequence modeling toolkit. Both the encoder
and decoder have 4 layers with 4 attention heads,
an embedding size of 256 and hidden layer size of
1024. Models are trained with the Adam algorithm
(Kingma and Ba, 2014) for optimization with an
initial learning rate of 0.001, a batch size of 400,
0.1 label smoothing, the gradient clip threshold as
1.0, and 4,000 warmup updates. The models are
trained for a maximum of 20,000 or 30,000 opti-
mizer updates depending on the amount of input-
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ID MSD Lexeme1 Lexeme2 Lexeme3 Lexeme4 Lexeme5
1 V;CANONICAL pahinga bayad pukpok linlang gáling
2 V;AGFOC;LGSPEC1 – magbabayad manumukpok lanlilinlang gagáling
3 V;IPFV;AGFOC ? nagbabayad namumukpok nanlilinlang gumagáling
4 V;IPFV;PFOC ∗ binabayaran pinupukpok nililinlang iginagáling
5 V;NFIN pahinga bayad pukpok linlang gáling
6 V;PFOC;LGSPEC1 ∗ babayaran pupukpukin ? igagáling
7 V;PFV;AGFOC nagpahinga nagbayad namukpok nanlinlang gumáling
8 V;PFV;PFOC ∗ binayaran pinukpok nilinlang igináling

Table 1: Example of reconstructed paradigms from Tagalog data. - are slots in the development set, ? are slots
in the test set, ∗ are slots which didn’t appear in the shared task data, and other slots which are filled with inflected
forms are slots in the training set.

output tuples for training, with checkpoints saved
every 10 epochs. The checkpoint with the smallest
loss and the last checkpoint are also saved. The
model with the best parameters was selected from
all the saved checkpoints based on the accuracy
on the development data. Beam search is used at
decoding time with a beam width of 5.

Our submission is an ensemble of predictions
from three types of models: baseline (Fairseq), 1-
src, and 2-src. These three types of models have
identical model architecture for inflection and are
different from each other in the input and output.
As the varied baseline results trained per language
family provided by the organizers did not show
consistent improvements compared to training lan-
guages separately, we train all the models per lan-
guage without using external resources. We made
our code publicly available.2

3.1 Baseline (Fairseq) model
The baseline (Fairseq) model (see Figure 1(a))
is very similar to the unaugmented per-language
Transformer baseline (Wu et al., 2020) provided by
the shared task organizers, except that the Fairseq
implementation is used and that beam search rather
than greedy search is used at decoding time. The
inputs to this model are the individual characters
of the lemma followed by the individual subtags of
the tgtmsd. For example, for the English training
triple (look, looks, V;SG;3;PRS), the in-
put to the model is l o o k V SG 3 PRS and
the gold standard output is l o o k s. Our sub-
missions for languages with 5,000 or more training
triples are generated with this model. The model
is trained for a maximum of 20,000 optimizer up-
dates for languages with 5,000 to 20,000 training

2https://github.com/LINGuistLIU/
principal_parts_for_inflection

triples, and for a maximum of 30,000 updates for
languages with over 20,000 training triples.

3.2 Principal parts of a paradigm
The classical notion of “principal parts of a
paradigm” is the minimal subset of paradigm slots
that provides enough information according to
which the inflection forms for other slots in the
same paradigm can be correctly generated (Finkel
and Stump, 2007). The principal part may be dif-
ferent for different slots in the same paradigm, and
more than one principal part may be necessary in
order to inflect for some slots correctly. For exam-
ple, for each Tagalog lexeme in Table 1, slots 2
and 3 are very informative source forms for each
other, which are different by the first consonant, or
the presence or absence of um in the prefix. Slot
3 can predict slot 7 very well, and slot 8 can be
easily generated from slot 4. Inflection of slot 6
is the most complex in the paradigms, for which
slot 4 together with the lemma, i.e. slot 1, can
be informative but not sufficient. Therefore, the
lemma is not always a good choice as the source
to generate all other slot forms from, and we can
expect the morphological inflection system to be
more effective and efficient if the principal parts
information is incorporated.

The 1-src model (see Figure 1(b)) and the 2-
src model (see Figure 1(c)) leverage the idea of
paradigm principal parts. To do this, we first recon-
struct the paradigm for each lexeme in the shared
task data, from which we prepare input and output
data for the inflection models.

We assume that each part-of-speech (henceforth
POS) in a language has its own set of morphosyn-
tactic descriptions (henceforth MSDs), which can
be obtained by collecting the tgtmsd types in the
training, development and test data for the lan-
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guage. Each slot in the paradigm of a lexeme
locates an inflected word form, which can be con-
sidered a combination of a lexeme and an MSD. In
this paper, slot is used to refer to both the inflected
form and the corresponding MSD it locates, slot
form refers to the inflected forms only, and slot
MSD refers to the corresponding morphosyntactic
description. If a slot contains both the MSD and
the inflected form, it is a filled slot, while an empty
slot needs to be filled with the corresponding in-
flected form. The slot MSD can be determined by
the set of MSDs we collect for each POS, and we
can fill in the slot if it appears in the training data
and mark it if the inflected form is to be generated
in the development or test data, or does not appear
in the shared task data at all. In addition, the shared
task data format has the first element in the triple
as the lemma form, i.e. the canonical, or citation,
form of the lexeme. We add an additional slot in
the paradigm for the lemma form, and tag the slot
as POS;CANONICAL where the POS in the tag
is determined by the POS of the lemma. As a re-
sult, we create a paradigm for each lexeme in the
shared task data and the reconstructed paradigm
for each lexeme has at least one filled slot. Ta-
ble 1 provides 5 example paradigms reconstructed
from the Tagalog data, where - marks slots with
tgtforms to be predicted in the development set, ?
are slots in the test data and ∗ indicates slots which
are not found in the shared task data,3 and other
slots which are filled with inflected word forms
are data in the training set. In cases where slots
have alternative forms in the data, only one form is
kept. For example, there are two alternative forms
for thanda V;SG;1;PRS in the Zulu training
data: ngithanda and ngiyathanda, and our
conversion only kept ngiyathanda.

1-src model In order to train the 1-src model,
the reconstructed paradigm is organized so that
each of the known slots is given as a srcform
from which we predict every other known slot as
the tgtform. The symbol # is inserted between
the srcmsd and tgtmsd. For example, six input-
output tuples (see Figure 2) are constructed from
the Tagalog Lexeme1 paradigm example provided
in Table 1. When only one slot is filled in the re-
constructed paradigm, we make the slot predict

3The ∗ slots may be invalid in the language. For example,
the English noun cattle does not have a single form, and
the single slot would be marked by ∗ in the paradigm for the
lexeme cattle reconstructed by our method.

p a h i n g a V NFIN # V CANONICAL p a h i n g a

n a g p a h i n g a V PFV AGFOC # V CANONICAL p a h i n g a

p a h i n g a  V CANONICAL # V NFIN p a h i n g a

n a g p a h i n g a V PFV AGFOC # V NFIN p a h i n g a

p a h i n g a  V CANONICAL # V PFV AGFOC n a g p a h i n g a

p a h i n g a V NFIN  # V PFV AGFOC n a g p a h i n g a

INPUT, i.e. srcform srcmsd # tgtmsd OUTPUT, i.e. tgtform

Figure 2: Input-output tuples for the 1-src model for
Tagalog Lexeme1 (pahinga “rest”) example paradigm

p a h i n g a V NFIN # n a g p a h i n g a V PFV AGFOC # V CANONICAL p a h i n g a

p a h i n g a V CANONICAL # n a g p a h i n g a V PFV AGFOC # V NFIN p a h i n g a

p a h i n g a V CANONICAL # p a h i n g a V NFIN # V PFV AGFOC n a g p a h i n g a

INPUT, i.e. srcform1 srcmsd1 # srcform2 srcmsd2 # tgtmsd OUTPUT, i.e. tgtform

Figure 3: Input-output tuples for the 2-src model for
Tagalog Lexeme1 (pahinga “rest”) example paradigm

itself (i.e. input as lemma POS;CANONICAL
# POS;CANONICAL and output as lemma) for
training. All given srcform-srcmsd slots are used
to predict the tgtform for each tgtmsd in the devel-
opment and test data respectively. Consequently,
for the Tagalog Lexeme1 example, each tgtsmd in
the development and test sets will be predicted by
three different source forms with the correspond-
ing morphosyntactic description specified, rather
than being predicted only by the lemma. This is
the model we use to generate our submission pre-
dictions for 39 languages with fewer than 5,000
training triples. The languages aka, ben, cly, cre,
kan, kir, kon, liv, lld, lug, nya, pus, sna, and swa are
trained for 30,000 maximum updates, and other lan-
guages are trained for 20,000 maximum updates.

2-src model The 2-src model generates predic-
tions for the remaining 7 low-resource languages
(czn, frr, gsw, izh, mlt, mwf, zpv), because we
only trained the 2-src model for languages with
fewer than 2,000 training examples due to time con-
straints and because the 2-src model generates sig-
nificantly better predictions for these 7 languages
on the development data than the 1-src model. Dur-
ing training, the inputs to the 2-src model are all
possible known two-slot combinations followed by
the MSD for the slot to be filled; the output is the
known inflected form for the target slot. The sym-
bol # is inserted between the first srcmsd and the
second srcform as well as between the second sr-
cmsd and tgtmsd. For example, three input-output
tuples (see Figure 3) are constructed from the Taga-
log Lexeme1 example. When only one slot form
is given in the paradigm, the given slot is made
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to predict itself by taking as input the lemma and
POS;CANONICAL repeated twice together with
the tgtmsd as POS;CANONICAL, and the output
is the lemma form. When only two slots are filled
in the paradigm, each slot form is treated as the tgt-
form and the other slot is repeated twice together
with the MSD for the slot to be predicted as input
to the model. For the development and test data,
every two-slot combination of given slots is used
as input to predict the tgtform corresponding to
the tgtmsd. Therefore, each test and development
tgtmsd in the Tagalog Lexeme1 example will be
predicted by three different inputs, respectively.

Prediction selection Because of the input and
output construction for the 1-src and 2-src models,
each tgtmsd may be predicted multiple times by
different inputs which may generate more than one
inflected form for the same tgtmsd. Two mech-
anisms are employed to pick the best prediction,
both of which implicitly employ the principal parts
intuition. The first mechanism is to select the pre-
diction generated by most inputs, i.e. by majority
vote for predictions by different inputs. The sec-
ond mechanism is to select the prediction which
gets the highest average log-likelihood, i.e. by av-
eraging the scores for each prediction by different
inputs. The intuition behind this mechanism is
that the most informative source slots should be
most confident about the inflection for the target
slot. Unless the majority vote mechanism produces
significantly higher accuracy on the development
data for the language, the prediction with the high-
est average log-likelihood is selected as the final
prediction for the target slot.

4 Experiments

Considering the time constraints and the al-
ready strong performance of the baseline models—
especially when training data is abundant—we fo-
cused our experiments on the 24 low-resource de-
velopment languages in the development phase, for
which we attempted to augment the Transformer
model for inflection by reorganizing the data into
paradigms and making use of the principal parts
morphology idea in different ways.

In addition to the 1-src and 2-src models de-
scribed in section 3.2, other approaches we experi-
mented with included 2-random-src, 3-random-src
and 4-random-src models where we randomly pick
two, three or four given slots as input which will
be translated to the tgtform corresponding to the

tgtmsd, as well as all-src-tgtform and all-src-all-
form models, where the concatenation of all given
slots followed by the tgtmsd are input to the inflec-
tion model which predicts the corresponding tgt-
form or all srcforms and the tgtform. Though these
models produced better performance for one or two
languages that we experimented with initially, we
did not see consistent performance improvement
proportional to the increasing model complexity
over the 1-src and 2-src models. We also exper-
imented with warming up the 1-src model with
an additional copying task following the practice
suggested by Anastasopoulos and Neubig (2019),
but did not see improvements. Therefore, we fo-
cused exclusively on the 1-src and 2-src models
after initial experiments.

Further experiments with the 1-src model were
conducted on the 24 development languages with
fewer than 5,000 training triples, and further ex-
periments with the 2-src model were conducted on
the 17 development languages, each of which has
fewer than 2,000 training triples. The performance
of the two selected models will be presented and
discussed in the next section.

5 Results and discussion

The average inflection accuracy of development
data for the 24 languages by the 1-src model is
91.72%, which is 1.3% higher than the unaug-
mented per-language Transformer baseline and
0.55% higher than the best performance of all base-
line models. The 1-src model achieved higher or
equal accuracy on 18 languages compared to the
unaugmented per-language Transformer baseline
and 17 languages compared to the best performance
of all baselines. The 2-src models for the 17 lan-
guages we experimented with achieve an average
accuracy of 91.63% and their performance on 7 lan-
guages (czn, frr, gsw, izh, mlt, mwf, zpv) is better
than the 1-src model.

Figure 4 plots the difference in the accuracy on
the development set for each language by the 1-src
for 2-src model from that by the unaugmented per-
language Transformer baseline. Figures 4(a) and
4(c) depict the relationship between this difference
and the number of training triples. Figures 4(b)
and 4(d) show the relationship between this differ-
ence and the completeness of the paradigms seen
in training. The filled percentage of each paradigm
is calculated by dividing the number of given slots
by the number of all slots in the paradigm, and the
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Figure 4: Scatter plots with trend lines for the difference in accuracy between the 1-src or 2-src model and the
per-language Transformer baseline without data augmentation on low-resource dev languages: (a) 1-src vs 2-
src: Size vs ∆acc1 or ∆acc2, (b) 1-src vs 2-src: Percentage vs ∆acc1 or ∆acc2, (c) 1-src and genealogy: Size vs
∆acc1, (d) 1-src and genealogy: Percentage vs ∆acc1. (Size: training data size, Percentage: average percentage of
slots per paradigm in training data, ∆acci1 = acci1-src − acciper-lang-unaug-transformer-baseline, ∆accj2 = accj2-src −
accjper-lang-unaug-transformer-baseline )
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Figure 5: Scatter plots with trend lines for the difference in accuracy between the 1-src or 2-src model and the
best performance of all baselines on low-resource dev languages: (a) 1-src vs 2-src: Size vs ∆acc3 or ∆acc4, (b)
1-src vs 2-src: Percentage vs ∆acc3 or ∆acc4, (c) 1-src and genealogy: Size vs ∆acc3, (d) 1-src and genealogy:
Percentage vs ∆acc3. (Size: training data size, Percentage: average percentage of slots per paradigm in training
data, ∆acci3 = acci1-src − accibest-baseline, ∆accj4 = accj2-src − accjbest-baseline )
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paradigm completion rate of a language is calcu-
lated by taking the average of the filled percent-
ages of all the reconstructed paradigms. For in-
stance, the completion rate of the Tagalog Lex-
eme1 paradigm is 37.5%, and the average comple-
tion rate of all the Tagalog example paradigms in
Table 1 is 85%. The low-resource development
languages have average completion rates between
54.16% (frr) and 79.81% (mao). Figure 5 plots the
same relationships, but the difference is between
the 1-src or 2-src model and the best performance
of all baseline models. Languages for which both
the baseline models and our models achieve 100%
accuracy are excluded from the plots, because such
languages have the potential to skew the perfor-
mance comparison. Such languages include one
Austronesian language: mlg and six Niger-Congo
langauges: gaa, kon, lin, nya, sot and swa.

Model performance and training data size
The improvements by the 1-src and 2-src models
over the unaugmented Transformer baseline trained
per language show the same tendency with relation-
ship to the training data size: The more training
data there is available, the less advantage our mod-
els have. This is shown in Figure 4(a). The baseline
model begins to catch up with these improvements
as is shown in Figure 5(a), where the 1-src model
accuracy still has a decreasing trend as the train-
ing data increases while the 2-src model accuracies
turn into a slightly increasing trend.

Model performance and paradigm completion
rate The good performance of our models relies
on the high completion rate of paradigms. The
performance for both the 1-src and 2-src models
tends to be better if the reconstructed paradigm con-
tains a higher proportion of known slots. This is
true whether our models are compared to the single
unaugmented per-language Transformer baseline
model or to the ensemble of all baseline models.
This relationship is illustrated in Figure 4(b) and
Figure 5(b). An extreme case of a low paradigm
completion rate in the shared task languages is
Ludic, where only 5.64% of the slots are known,
and our best model for this language is the 1-src
approach with average score selection, which gen-
erates an accuracy of 48.78% on the development
data. This relationship supports the use of principal
parts for morphological inflection, because given a
random sampling, the more complete a paradigm
is, the more likely it is that the principal parts are

included in the paradigm.

Model performance and genealogy Subplots
(c) and (d) in Figure 4, and subplots (c) and (d) in
Figure 5, show the performance of the 1-src model
on languages with language family information.
Uralic languages are challenging to our models.
This is to be expected from the fact that Uralic lan-
guages usually have large inflection paradigms and
therefore tend to have more incomplete slots on
average given the same amount of data, and may
hence be missing a principal part.

6 Related work

Morphological inflection is one of the natural lan-
guage processing tasks which achieve great im-
provement by applying neural network models, es-
pecially sequence to sequence models, which ini-
tially outperformed other approaches by a large
margin on high-resource languages (Cotterell et al.,
2016; Kann and Schütze, 2016; Aharoni et al.,
2016) and have been improved and augmented
later to achieve state-of-the-art performance on
low-resource languages as well (Aharoni and Gold-
berg, 2017; Cotterell et al., 2017a; Makarov and
Clematide, 2018; Wu et al., 2018; Cotterell et al.,
2018; Wu and Cotterell, 2019; McCarthy et al.,
2019; Anastasopoulos and Neubig, 2019).

Subtask 2 of the CoNLL-SIGMORPHON 2017
shared task (Cotterell et al., 2017a) was about
paradigm cell filling, and received submissions of
neural network systems (Kann and Schütze, 2017;
Silfverberg et al., 2017). There is also other work
which targets the paradigm cell filling problem
(Cotterell et al., 2017b; Silfverberg et al., 2018; Sil-
fverberg and Hulden, 2018). Cotterell et al. (2017b)
models the principal parts idea with graphical mod-
els to generate all the missing slots in paradigms.
Our 1-src model has an input-output format simi-
lar to Silfverberg and Hulden (2018). Our work is
also closely related to Kann et al. (2017) on multi-
source inflection which is also motivated by a prin-
cipal parts analysis. Cotterell et al. (2019) use an
explicit neural model that organizes paradigm slots
in their most predictable order to investigate mea-
sures of morphological complexity, an instantiation
of the principal parts idea in another context.

7 Conclusion

We have presented the system for our submission
to the SIGMORPHON 2020 shared task 0 on mor-
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phological inflection. It achieved the highest aver-
age accuracy and smallest average Levenshtein dis-
tance across all the 90 languages from 18 language
families. The standard deviation of our submission
is the lowest for accuracy and the second lowest
(0.004 higher than the lowest) for edit distance.

Our work indicates that the self-attention Trans-
former architecture can perform well for the mor-
phological inflection task for a genealogically and
typologically diverse group of languages. The ar-
chitecture has a strong generalization ability and
can inflect new languages as effectively as the lan-
guages it is tuned on. We augment the Transformer
model by converting the morphological inflection
task to the paradigm cell filling problem and lever-
aging the principal parts of paradigms in indirect
ways, which turns out to be helpful, especially
when the training data is limited and the recon-
structed paradigms have a high completion rate.
Our primary strategy to incorporate principal parts
information in this work is to use each given slot
in the reconstructed paradigm to predict the target
form and select the final prediction from predic-
tions generated by different slots by highest aver-
age score or majority vote. Another strategy is to
use all possible two-slot combinations to predict
the target form.

According to principal parts morphology, the
number of principal parts may vary between
paradigms and languages, and different slots may
require different numbers of principal parts to in-
flect correctly, indicating that uniformly using ev-
ery slot individually or every two-slot combination
may not always be the best choice. Future work is
needed to explore how to use principal parts infor-
mation more effectively, perhaps tuning the number
and choice of forms on a per-language basis or de-
veloping strategies to explicitly determine principal
parts for the paradigms.
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Abstract

Sequence-to-sequence models have proven to
be highly successful in learning morphological
inflection from examples as the series of SIG-
MORPHON/CoNLL shared tasks have shown.
It is usually assumed, however, that a linguist
working with inflectional examples could in
principle develop a gold standard-level mor-
phological analyzer and generator that would
surpass a trained neural network model in ac-
curacy of predictions, but that it may require
significant amounts of human labor. In this pa-
per, we discuss an experiment where a group
of people with some linguistic training de-
velop 25+ grammars as part of the shared task
and weigh the cost/benefit ratio of develop-
ing grammars by hand. We also present tools
that can help linguists triage difficult complex
morphophonological phenomena within a lan-
guage and hypothesize inflectional class mem-
bership. We conclude that a significant devel-
opment effort by trained linguists to analyze
and model morphophonological patterns are
required in order to surpass the accuracy of
neural models.

1 Introduction

Hand-written grammars for modeling derivational
and inflectional morphology have long been seen
as the gold standard for incorporating a word in-
flection aware component into NLP systems. How-
ever, the recent successes of sequence-to-sequence
(seq2seq) models in learning morphological pat-
terns, as seen in multiple shared tasks that ad-
dress the topic (Cotterell et al., 2016, 2017, 2018;
McCarthy et al., 2019), have raised the question
whether there is any advantage in developing hand-
written grammars for performance reasons. This
question has special relevance with regard to low-
resource languages when there is a desire to quickly
develop fundamental NLP resources such as a mor-
phological analyzer and generator with minimal

bus;N;PL sheep;N;PL

Lexicon (lexc) Guesser

blarg;N;PL

Morphophonological FST cascade

bus+s sheep blarg+s

buses sheep blargs

Figure 1: Basic FST grammar design used in this
project which combines a lexicon-based model with a
guesser to handle unseen lemmas.

resource expenditure (Maxwell and Hughes, 2006).
It is clear that there is a need for hand-written

morphological grammars, even if neural network
models approach the performance of carefully
hand-crafted morphologies. Normative and pre-
scriptive language models, such as those needed
by language academies in many countries—e.g.
RAE in Spain, Académie Française in France, or
the Council of the Cherokee Nation in the U.S.—
would need to rely on explicitly designed models
for providing guidance in word inflection, spelling
rules, and orthography if they were to be imple-
mented computationally. Currently, neural models
trained on examples provide no verifiable guaran-
tees that certain prescriptive phenomena have been
learned by a trained model and can be reliably used.

In this paper1 we document an experiment where
a number of morphological grammars were hand-
written by a group of 19 students enrolled in the
class “LING 7565—Computational Phonology &
Morphology” at the University of Colorado, each

1All tools and grammars developed are available on
https://github.com/mhulden/7565tools.
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Tagalog inflectional strategies

Agent AGFOC

Ptv IPFV LGSPEC1
um Rtum R I

hag hag R mas R II

hang hang R Mang R III
na na R ma R II

Thaha haha R maka R
nag many R many R VI
nan han R man R VII
Patient PFOC 2also hah

PFV IPFV LGSPEC1 Cepenthetich

in R in R sin II
in an in R an R an I

in R in R I

ni ni R i R II
Jhaha an hahaha ah

ni an ni R an R an VI
i in i R in i R VI
in R in i r VIII
an R in an R ah III
ni ni R R in F
ni ni R R Xi

Figure 2: Old-school pencil-and-paper Linguistics: hy-
pothesizing the possible inflectional patterns for Taga-
log Actor Focus and Object Focus verb forms (from
project notes). The symbol R represents reduplication
of the first CV(V) in the stem.

student having training in either computer sci-
ence or linguistics, and some previous training in
writing finite-state morphological grammars. The
languages were chosen from the 2020 SIGMOR-
PHON shared task 0 (Vylomova et al., 2020), and
the grammars were designed so as to be able to
inflect unseen forms. The design was also such that
the grammars were able to function as “guessers”
and inflect lexemes never seen in the training data.

2 Finite-State Grammars

Finite-state Transducer (FST) solutions have long
been the foremost paradigm in which to develop
linguistically informed large-scale morphological
grammars (Koskenniemi, 1983; Beesley and Kart-
tunen, 2003; Hulden, 2009). The availability of a
variety of tools (Hulden (2009); Riley et al. (2009);
Beesley (2012) inter alia) has also supported this
mode of development, and by now hundreds of lan-

guages have grammars developed by linguists in
this paradigm.

The usual approach to developing morphological
analyzers is to model the mapping from a lemma
(citation form) and a morphosyntactic description
(MSD) into an inflected form (target form) as a two-
step process. The first step maps the lemma+MSD
into an intermediate form that represents a combina-
tion of canonical morpheme representations, while
the second step employs a cascade of transducers
which handle morphophonological alternations. It
is customary to handle inflectional classes by ex-
plicitly dividing lemmas into groups in the first
step so that correct morphemes are chosen for each
lemma. Analyzers built in such a way generally are
not capable of inflecting lemmas that are not explic-
itly encoded in a lexicon. However, it is common
to integrate an additional “guesser” component that
can handle any valid lemma in a language, and pass
it through the relevant morphophonological com-
ponent only (Beesley and Karttunen, 2003). Basic
finite-state calculus is then used to construct a sin-
gle FST that “overrides” outputs from the guesser
whenever a known lexeme is inflected, so conflict-
ing outputs are avoided. The basic design is illus-
trated in Figure 1.

3 Approach

All of the grammars were built with the foma finite-
state tool (Hulden, 2009). Before grammar writing
commenced, the participants were urged to spend
roughly 1 hour in groups of 3 to quickly analyze
all the languages in the development and surprise
groups as follows:

• Triage: the training sets for all languages
in the shared task were rapidly analyzed for
difficulty, and possible complex inflectional
classes. Following this, a selection of lan-
guages were chosen by the participants to
model. This was done once for the devel-
opment languages, and through an additional
round of triage for the surprise languages.

• Each language was scored for difficulty
based on familiarity with the writing system,
paradigm size, complexity, and the apparent
number of inflectional classes; naturally the
actual number was not known, and this repre-
sented an educated guess. Participants were
asked to informally rate the difficulty of a lan-
guage on a 1(easy)–5(very difficult) before
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choosing languages to work on. The partici-
pants were not explicitly instructed to pick an
easy language, but rather, to choose one that
would provide an interesting experience and
would be feasible to complete.2

• Computational tools (discussed below) were
used to reconstruct the partial paradigms given
in the training data, to extract the alphabets
used in the languages, to canonicalize the Uni-
Morph tag order (Kirov et al., 2018) used in
the data, and to provide a rapid development
environment that could give instant feedback
on accuracy on the training and dev sets after
compilation of FSTs.

• A template grammar was used as a starting
point; it provided both the possibility of de-
veloping a morphophonology-only grammar,
or a grammar where all lemmas needed to be
divided into inflectional classes.

Through the above process, a number of lan-
guages were selected as the primary targets, and
development was launched for some 40 languages
in total—roughly 20 for the development languages
and a similar number for the surprise languages, as
they were published. In the end, the output of 25
languages was submitted to the shared task. The
criterion for actually submitting a language was
that the grammar was mature enough, judged by
examining whether accuracy on the development
set was within 5% of the neural baseline models
(Wu et al., 2020) provided by the organizers.

4 Tools

As mentioned above, a number of tools for the sup-
port of rapid grammar writing were also developed.
These included the tools to reconstruct the partial
inflection tables from the data and various analysis
tools for accuracy and error reporting.

Apart from that, a separate tool for inflection
table clustering and a non-neural tool for hypoth-
esizing forms for missing slots in paradigms were
also developed. This latter tools’ output was also
submitted as a second system (CU-7565-02) to the
shared task for nearly all languages. These two
tools were more involved and are discussed in de-
tail below.

2On average, the surprise languages were deemed consid-
erably more difficult, largely because of paradigm size.

4.1 Inflection Table Clustering
Crucial in the development of a grammar from raw,
partial inflection table data is the ability to hypothe-
size if lexemes fall into different inflectional classes
quickly, and if so, how. This is non-trivial to de-
termine, especially with large amounts of lexemes
represented in the various data sets. It is also es-
sential to disentangle phonological regularity from
inflectional classes which may be significant red
herrings in the analysis of a language. For example,
while cat in English pluralizes as cats, bus plural-
izes as buses—by an epenthetic e inserted between
sibilants. A naive analysis would postulate that
the two lexemes behave differently and place them
in separate inflectional classes, although a prop-
erly designed phonological component could avoid
this unnecessary complexity in the morphological
component.

4.1.1 Lexeme similarity measure
To facilitate providing a linguist with a quick
overview, we developed a model to perform rapid
hierarchical clustering of all lexemes in a lan-
guage’s data set. To this end, we developed a metric
for lexeme similarity with respect to inflectional
behavior. This metric is calculated by a two-step
process. First, all pairs of word forms for a lexeme
(within a paradigm) are aligned using an out-of-
the-box Monte Carlo aligner (Cotterell et al., 2016)
written by the last author. This is shown in figure
3 (a). Following this alignment procedure, we au-
tomatically produce a crude approximation of the
string transformation implied by the alignment as
a regular expression, which is then compiled into
an FST.

In the conversion process, matching input se-
quences in the alignment are modeled by ?+ (re-
peat one or more symbols3) and non-matching sym-
bols are replaced by the symbol-pair found in the
alignment: i:o. For example, the aligned pair runs
↔ ran in Figure 3 (b) is converted into the regular
expression

?+ u:a ?+ s:0 (1)

which can be compiled into a transducer in Figure
3 (c). This transducer generalizes over the matched
elements in the input-output pair and can be ap-
plied to other third-person present forms, such as
outruns to produce outran. Obviously, this exam-
ple transformation only applies to this particular

3We use foma regular expression notation.
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inflectional class and will give incorrect transfor-
mations such as pulls→ pall for words that do not
have the same inflectional behavior. The purpose
of calculating all-known-pairs mappings for each
lexeme is to provide a similarity measure between
lexemes. In particular, we use the following mea-
sure for two lexemes l1 and l2, which compares the
overlap of all transformation rules found between
the forms in l1 with the transformation rules in l2:

sim(l1, l2) =
2×#shared(l1, l2)

#shared(l1, l1) + #shared(l2, l2)
(2)

Here, #shared(l1, l2) is the simple count reflect-
ing how many of the slot-to-slot transformation
rules in l1 are identical for l2.

We subsequently convert this similarity score
into a distance for the purposes of clustering:

distance(l1, l2) = 1− sim(l1, l2) (3)

Note that the denominator in the similarity cal-
culation in effect expresses the maximum possible
similarity scores for l1 and l2 by calculating the sim-
ilarity with themselves, resulting in a range of [0, 1]
for the overall similarity and distance measures.
Since many given paradigms contain missing forms
and are therefore missing pair-transformations as
well, this maximum score will vary from lexeme to
lexeme.

With this similarity in hand between all lexemes,
we can perform a (single-link) agglomerative hi-
erarchical clustering of all lexemes in the training
data of a language.

Example results of the clustering are shown in
Figure 4 for Ingrian (the full training set which con-
tained partial inflectional tables for 50 lexemes),
and English (a small subset). Included in the In-
grian clustering are our final linguist-hypothesized
inflectional class numbers for each lexeme for com-
parison.

4.2 Inflection with transformation FSTs
As a byproduct of the clustering distance measure
that uses slot-to-slot transformation FSTs, we can
also address the shared task itself. Since the de-
velopment and test sets largely contain unknown
inflections from lexemes where some forms have
been seen, we can make use of the learned trans-
formation rules from other lexemes that target an
unknown form asked for in the development or

run

ran

running runs

?+ 0:s

?+ u:a ?+ s:0

?+ {ning}:s

?+ 0:{ning}

?+ u:a ?+ {ning}:0 ?+ u:a ?+

run 
ran

run0000 
running

run0 
runs

running 
runs000

running 
ran0000

runs 
ran0

(a)

(b)

0 1@ s a u 

@ s a u 

2<u:a> 3@ s a u 

@ s a u 

4<s:0> 

(c)

Figure 3: Generating transformation rules for each pair-
wise slot for a lexeme: (a) we perform alignment of all
pairs, (b) a regular expression is issued to model the
transformation which is compiled into an FST (c).

test sets. To this end, we collect all known source
→ target transformation rules from all other tables
where the target form is the desired slot (MSD). We
then apply all of these transformations, generating
potentially hundreds of inflection candidates for
the missing target slot of a lexeme. From among
the candidates, we perform a majority vote. For
all languages, we experimented with weighting
the majority vote so that transformation rules that
come from paradigms that share many transforma-
tion rules with the target lexeme’s paradigm get a
multiplier for the vote using the similarity measure
in (2). This strategy produced slightly superior re-
sults throughout, as analyzed by performance on
the development set, and was hence used in the
final submission for our system CU-7565-02.

5 Results

The results for the hand-written grammars (CU-
7565-01) and the non-neural paradigm completion
model (CU-7565-02) are given in Table 1. We note
that we were able to match or surpass the strongest
neural participant in the task on 13 languages with
the hand-written grammars. Several of these, how-
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Ingrian English

Figure 4: Hierarchical clustering of lexemes by apparent inflectional behavior based on string transformations
between inflectional slots for Ingrian (left) and English (right). The numbers in parentheses in Ingrian refer to the
Linguist-derived inflectional class number after developing a grammar. The Ingrian data is the output from the full
training data while the English is a small selection of verbs to illustrate clustering behavior.

ever, were relatively “easy” languages and often
did not contain any significant morphophonology
at all. On two languages, Ingrian (izh) and Taga-
log (tgl), we were able to significantly improve
upon the other models participating in the task.
These languages had a fairly large number of in-
flectional classes and very complex morphophonol-
ogy. Ingrian features a large variety of consonant
gradation patterns common in Uralic languages,
and Tagalog features intricate reduplication pat-
terns (see Figure 2).

We include results for train, dev, and test as we
used tools to continuously evaluate our progress
during development on the training set. It is worth
noting that the linguist-driven development process
does not seem to be prone to overfitting—accuracy
for several languages on the test set was actually
higher than on the training set.

The non-neural paradigm completion model
(CU-7565-02), which was submitted for nearly
all 90 languages performed reasonably well, and
is to our knowledge the best-performing non-
neural model available for morphological inflection.
Never outperforming the strongest neural models;
it nevertheless represents a strong improvement
over the baseline non-neural model provided by the
organizers. Additionally, it provides another tool
to quickly see reasonable hypotheses for missing
forms in inflection tables.

6 Discussion

6.1 Earlier work

To our knowledge, no extensive comparison be-
tween well-designed manual grammars and neural

Language trn1 dev1 tst1 tst2

aka 100.0 100.0 100.0 89.8
ceb 85.2 86.2 86.5 84.7
crh 97.5 97.0 96.4 97.7
czn 79.0 76.0 72.5 76.1
dje 100.0 100.0 100.0 100.0
gaa 100.0 100.0 100.0 100.0
izh 93.4 91.1 92.9 77.2
kon 100.0 100.0 98.7 97.4
lin 100.0 100.0 100.0 100.0
mao 85.5 85.7 66.7 57.1
mlg 100.0 100.0 100.0 -
nya 100.0 100.0 100.0 100.0
ood 81.0 87.5 71.0 62.4
orm 99.6 100.0 99.0 93.6
ote 91.2 93.5 90.9 91.3
san 88.5 89.7 89.0 88.3
sna 100.0 100.0 100.0 99.3
sot 100.0 100.0 100.0 99.0
swa 100.0 100.0 100.0 100.0
syc 89.3 87.3 88.3 89.1
tgk 100.0 100.0 93.8 93.8
tgl 77.9 75.0 77.8 -
xty 81.1 80.0 81.7 70.3
zpv 84.3 77.9 78.9 81.1
zul 82.9 88.1 83.3 88.5

Table 1: Results for the train, dev, and test sets with our
handwritten grammars (1) and our non-neural learner
(2). The non-neural model also participated in addi-
tional languages not shown here. Languages with ac-
curacies on par with or exceeding the best shared task
participants are shown in boldface.
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network models for morphology have been pro-
posed. Pirinen (2019) reports on a small exper-
iment that compares an earlier SIGMORPHON
shared task winner’s results to a Finnish hand-
written morphological analyzer (Pirinen, 2015),
with the seq2seq-based participant’s model yield-
ing higher precision than the rule-based FST ana-
lyzer. In another related experiment, Moeller et al.
(2018) train neural seq2seq models from an exist-
ing hand-designed transducer acting as an oracle
and note that the seq2seq model begins to converge
to the FST with around 30,000 examples in a very
complex language, Arapaho (arp).

The non-neural inflection model (CU-7565-02)
builds upon paradigm generalization work by Fors-
berg and Hulden (2016), which in turn is an
extension of Hulden et al. (2014) and Ahlberg
et al. (2015). An earlier non-neural model for
paradigm generalization is found in Dreyer and
Eisner (2011).

6.2 Human Resources
We did not record the exact amounts of time spent
on the project individually for each participant.
However, we can estimate this based on previous
years’ class surveys in the same course (LING
7565—Computational Phonology and Morphol-
ogy) as regards the number of hours per week stu-
dents spend working on course projects. Each stu-
dent on average in the course spends 6.6 hours per
week; as the project ran for 5 weeks with 19 partic-
ipants, we roughly estimate a total of 627 person-
hours spent on the task of developing grammars.
As reflected in the results, we considered 13–15
languages to have largely completed grammars, or
very nearly completed. The remainder of the 25
languages submitted were known to require further
work, but very little work to reach accuracies be-
yond or at the best-performing neural models for
the task. These estimates do not include student
training in morphology, finite-state machines, and
grammar writing. Likewise, some languages with
very large number of forms per lexeme—such as
Erzya (myv) with 1,597 forms and Meadow Mari
(mhr) with 1,597 forms—were deemed outside the
realm of realistic analysis and linguist-driven gram-
mar writing within a scope of 5 weeks that were
allotted to the work.

6.3 Neural or Human?
Given the above estimates, we can provide a conser-
vative estimate of at least 40 person-hours of work

on average—not counting infrastructure develop-
ment and strategizing—to develop a hand-written
morphological analyzer and generator that is on
par with a model learned by state-of-the-art neural
approaches. There is large variance around this
figure, however, as some very regular languages
only required 30 minutes of work and a dozen-or-
so lines of code to produce a model that captures all
the morphology and morphophonology involved.
Others required a much greater and more intense
effort in analyzing the partial inflection tables given
in the training data, classifying lemmas into inflec-
tional classes and modeling morphophonological
rules as FSTs. Additionally, we note that all the
participants had already been trained in this kind
of analysis and grammar writing, a factor that our
estimate does not take into account.

6.4 Language Notes

In the course of the development of the grammars,
we observed that many languages had a skewed
selection of data, or inconsistencies that would not
be fruitful to model in a hand-written grammar.
This also meant that in such cases it was unlikely
that the hand-written grammar would ever attain the
performance of a neural model, which can better
handle the inconsistencies described below. We
hope to be able to clean up the data as the test data
is released to re-evaluate our grammars for these
languages, without this additional noise.

Maori (mao) is an example of a language where
the given data set provides a hard ceiling on how
much can be inferred either by a linguist or a
machine learning model. The data provided con-
tains only maximally two forms for each verb—
the active and the passive. Some examples of
active-passive alternations include: neke ∼ neke-
hia, nehu ∼ nehua, kati ∼ katia. In this data
set, the passive form is utterly unpredictable from
the active form (but not vice versa). The standard
phonological analysis of the data (Kiparsky, 1982;
Harlow, 2007)—familiar to many from phonology
textbooks—is that the underlying stem contains
a consonant which is removed by a phonological
rule that deletes word-final consonants in the lan-
guage. The traditional phonological analysis is that
the lemma listed as neke, for example, is underly-
ingly /nekeh/, and the passive suffix is regularly
-ia, while the active suffix is the zero morpheme
-0. The consonant-deletion rule applies to the ac-
tive form, which surfaces as neke, but not to the
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MacGyvering   abominating   rendering   V.PTCP;PRS 
?             abominated    rendered    V.PTCP;PST 
-             -             -           V;NFIN 
MacGyvers     abominates    renders     V;SG;3;PRS

MacGyver abominate render

Candidates for ?: [MacGyvered, MacGyverd, MacGyvered, MacGyvered]

1

1

2

2 3 4

3

4

Figure 5: Generating candidate inflections for V.PTCP.PST for the verb “to MacGyver”. We use all the can-
didates generated by known transformation rules from all other tables (only 2 other tables shown here). A list of
candidate inflections is produced, where the final inflection is decided by majority vote.

passive form nekehia, where the added suffix pre-
vents the consonant from deleting. There is also an
additional hiatus-avoiding rule—deleting a vowel—
seen in e.g. /nehu/+/ia/→ nehua. Obviously, the
consonant which is not seen in the active form
given in the training data can not be used to pre-
dict the passive form. The best one can do is to
guess the most likely consonant in the language as
being present in the underlying stem. Had the train-
ing data contained a third form which maintains
the consonant—e.g. the Maori gerundive suffix
/-aNa/—the missing consonant of the passive could
be predicted from the gerundive and vice versa.4

Hiligaynon (hil) contained several lemmas listed
with multiple alternate forms, such as:

bati/batian/pamatian ginpamantian V;PROG;PST

It is very challenging to account for the occasional
lemma being listed in two or three parts in a stan-
dard FST design, and so this kind of transformation
was not attempted.

Syriac, Sanskrit, Oromo, Tohono O’odham
(syc,san,orm,ood) contained multiple lines where
the lemma and MSD were identical, but the out-
put was not. In some languages this was pervasive
enough to cause us to exclude them (ctp,pei) from
our selection of attempted languages.

Chichicapan Zapotec (zpv) contained several
inflected forms where the target form actually
contained two alternatives separated by a slash.
Predicting and modeling when this happens was
deemed to be irregular and was not attempted.

4“If we wanted an A on our [phonology] exam, we would
of course say the underlying forms are [the ones with the
consonant] . . . If someone were to say that the underlying
forms are [consonantless] he’d flunk.” (Kiparsky, 1982)

Zenzontepec Chatino (czn) contained a mixture
of hyphens (-) and en-dashes (–) where presumably
only one of them should have been used. Again,
this was deemed hard to predict manually and no
obvious pattern was found.

7 Conclusion

We have done a preliminary investigation in pit-
ting neural inflection models against more tradi-
tional hand-written grammars, designed by non-
naive grammar developers with some training in
the field of linguistics and computational modeling.
The results point to two main directions.

First, it is very difficult in many cases to outper-
form a state-of-the-art neural network model with-
out significant development effort and attention
to nuanced morphophonological patterns. Indeed,
some data sets in the task were very simple, and
in such cases, it is quite trivial to develop a high-
accuracy grammar. This advantage is somewhat
nullified by the apparent ability of neural seq2seq
models to also model such morphologies with high
accuracy, despite little data.

The second observation is the following: for lan-
guages where the group was able to significantly
outperform neural models (such as Tagalog and In-
grian), success did not come cheaply. We estimate
that for any language with high morphophonologi-
cal complexity and a variety of inflectional classes,
possibly hundreds of hours of development effort
is required even by a trained linguist to surpass the
performance of a current state-of-the-art seq2seq
model. But it is also precisely in this latter case
of high-complexity languages where linguists can
still prevail with a margin.
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Carthy, Sandra Kübler, David Yarowsky, Jason Eis-
ner, and Mans Hulden. 2018. UniMorph 2.0: Uni-
versal morphology. In Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation (LREC-2018), Miyazaki, Japan. Eu-
ropean Languages Resources Association (ELRA).

Kimmo Koskenniemi. 1983. Two-level morphology: A
general computational model for word-form recog-
nition and production. Publication 11, Univer-
sity of Helsinki, Department of General Linguistics,
Helsinki.

Mike Maxwell and Baden Hughes. 2006. Frontiers in
linguistic annotation for lower-density languages. In
Proceedings of the Workshop on Frontiers in Lin-
guistically Annotated Corpora 2006, pages 29–37,
Sydney, Australia. Association for Computational
Linguistics.

Arya D. McCarthy, Ekaterina Vylomova, Shijie Wu,
Chaitanya Malaviya, Lawrence Wolf-Sonkin, Gar-
rett Nicolai, Christo Kirov, Miikka Silfverberg, Se-
bastian J. Mielke, Jeffrey Heinz, Ryan Cotterell, and
Mans Hulden. 2019. The SIGMORPHON 2019
shared task: Morphological analysis in context and
cross-lingual transfer for inflection. In Proceedings
of the 16th Workshop on Computational Research in
Phonetics, Phonology, and Morphology, pages 229–
244, Florence, Italy. Association for Computational
Linguistics.

Sarah Moeller, Ghazaleh Kazeminejad, Andrew Cow-
ell, and Mans Hulden. 2018. A neural morphologi-
cal analyzer for Arapaho verbs learned from a finite
state transducer. In Proceedings of the Workshop
on Computational Modeling of Polysynthetic Lan-
guages, pages 12–20, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Tommi A Pirinen. 2015. Omorfi — free and open
source morphological lexical database for Finnish.
In Proceedings of the 20th Nordic Conference

169



of Computational Linguistics (NODALIDA 2015),
pages 313–315, Vilnius, Lithuania. Linköping Uni-
versity Electronic Press, Sweden.

Tommi A Pirinen. 2019. Neural and rule-based Finnish
NLP models—expectations, experiments and expe-
riences. In Proceedings of the Fifth International
Workshop on Computational Linguistics for Uralic
Languages, pages 104–114, Tartu, Estonia. Associa-
tion for Computational Linguistics.

Michael Riley, Cyril Allauzen, and Martin Jansche.
2009. OpenFst: An open-source, weighted finite-
state transducer library and its applications to speech
and language. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, Companion Volume: Tutorial
Abstracts, pages 9–10, Boulder, Colorado. Associa-
tion for Computational Linguistics.

Ekaterina Vylomova, Jennifer White, Elizabeth
Salesky, Sabrina J. Mielke, Shijie Wu, Edoardo
Ponti, Rowan Hall Maudslay, Ran Zmigrod, Joseph
Valvoda, Svetlana Toldova, Francis Tyers, Elena
Klyachko, Ilya Yegorov, Natalia Krizhanovsky,
Paula Czarnowska, Irene Nikkarinen, Andrej
Krizhanovsky, Tiago Pimentel, Lucas Torroba
Hennigen, Christo Kirov, Garrett Nicolai, Adina
Williams, Antonios Anastasopoulos, Hilaria Cruz,
Eleanor Chodroff, Ryan Cotterell, Miikka Silfver-
berg, and Mans Hulden. 2020. The SIGMORPHON
2020 Shared Task 0: Typologically diverse mor-
phological inflection. In Proceedings of the 17th
Workshop on Computational Research in Phonetics,
Phonology, and Morphology.

Shijie Wu, Ryan Cotterell, and Mans Hulden. 2020.
Applying the transformer to character-level transduc-
tion. arXiv:2005.10213 [cs.CL].

170



Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages 171–176

Online, July 10, 2020. c©2020 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17

CLUZH at SIGMORPHON 2020 Shared Task on Multilingual
Grapheme-to-Phoneme Conversion

Peter Makarov Simon Clematide
Institute of Computational Linguistics

University of Zurich, Switzerland
makarov@cl.uzh.ch simon.clematide@cl.uzh.ch

Abstract

This paper describes the submission by the
team from the Institute of Computational
Linguistics, Zurich University, to the Mul-
tilingual Grapheme-to-Phoneme Conversion
(G2P) Task of the SIGMORPHON 2020 chal-
lenge. The submission adapts our system from
the 2018 edition of the SIGMORPHON shared
task. Our system is a neural transducer that op-
erates over explicit edit actions and is trained
with imitation learning. It is well-suited for
morphological string transduction partly be-
cause it exploits the fact that the input and out-
put character alphabets overlap. The challenge
posed by G2P has been to adapt the model and
the training procedure to work with disjoint al-
phabets. We adapt the model to use substitu-
tion edits and train it with a weighted finite-
state transducer acting as the expert policy. An
ensemble of such models produces competi-
tive results on G2P. Our submission ranks sec-
ond out of 23 submissions by a total of nine
teams.

1 Introduction

G2P requires mapping a sequence of characters
in some language into a sequence of International
Phonetic Alphabet (IPA) symbols, which represent
the pronunciation of this input character sequence
in some abstract way (not necessarily phonemic,
despite the name of the task) (Figure 1).

Multilingual G2P is Task I of this year’s SIG-
MORPHON challenge. It features fifteen languages
from various phylogenetic families and written in
different scripts. We refer the reader to Gorman
et al. (2020) for an overview of the language data.
Each language comes with 3,600 training and 450
development set examples. It is permitted to use
external resources as well as to build a single mul-
tilingual model.

We participate in this shared task with an adapta-
tion of our SIGMORPHON 2018 system (Makarov

fathaigh 7→ /fa:/ (“giants”)
Irish of Cois Fhairrge (de Bhaldraithe, 1953)

Figure 1: Example of G2P.

and Clematide, 2018b), which was particularly suc-
cessful in type-level morphological inflection gen-
eration. Our system is a neural transducer that oper-
ates over explicit edit actions and is trained with im-
itation learning (Daumé III et al., 2009; Ross et al.,
2011; Chang et al., 2015, IL). It has a number of
useful inductive biases, one of which is the familiar
bias towards copying the input (implemented as the
traditional copy edit). This is particularly useful for
morphological string transduction problems, which
typically involve small and local edits and where
most of the input is preserved in the output. This
contrasts with models that rely purely on gener-
ating characters such as generic encoder-decoder
models, which as a result suffer, particularly on
smaller-sized datasets.

Copying requires that the input and output char-
acter alphabets overlap, preferably substantially.
This also allows our IL training to leverage a
simple-to-implement expert policy (which during
training provides demonstrations to the learner of
how to optimally solve the task). The optimal com-
pletion of the target given the prediction gener-
ated so far during training requires finding edits
that would extend the prediction so that the Lev-
enshtein distance (Levenshtein, 1966) between the
target and the partial prediction + the future suffix
is minimized. Unfortunately, this objective alone
would not discriminate between multiple edit ac-
tion sequences that relate the input and the partial
prediction + the future suffix. To address this spuri-
ous ambiguity, our IL training adds edit sequence
scores, computed using traditional costs,1 into the

1Copy costs zero, all other edits cost one.
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objective. This naturally encourages the system to
copy, however this would fail on any editing prob-
lem with disjoint alphabets.

G2P poses an interesting challenge for a sys-
tem like ours. On the one hand, G2P shares many
similarities with morphological string transduction:
The changes are mostly local, it would suffice to
perform traditional left-to-right transduction, and
a substantial part of the work is arguably applying
equivalence rules (e.g. the German letter “g” most
often converts to /g/, “a” to /a/ or /a:/), which is
similar to copying. Yet, a general solution to G2P
cannot rely on overlapping alphabets since many
scripts do not share many symbols, if any at all,
with IPA (e.g. Korean or Georgian).

Our solution adapts the model to use substitu-
tion edits and trains it with a weighted finite-state
transducer acting as the expert policy.

2 Model description

The underlying model is a neural transducer in-
troduced in Aharoni and Goldberg (2017). It de-
fines a conditional distribution over traditional edits
pθ(y,a | x) =

∏|a|
j=1 pθ(aj | a<j ,x), where x is

an input sequence of graphemes and a = a1 . . . a|a|
is an edit action sequence. (The output sequence
of IPA symbols y is deterministically computed
from x and a.) The model is equipped with a long
short-term memory (LSTM) decoder and a bidi-
rectional LSTM encoder (Graves and Schmidhu-
ber, 2005). The challenge is training this model:
Due to the recurrent decoder, it cannot be trained
with exact marginal likelihood unlike the more
familiar weighted finite-state transducer (Mohri,
2004; Eisner, 2002, WFST) or its neuralizations
(Yu et al., 2016). For a more detailed description
of the model, we refer the reader to Makarov and
Clematide (2018a).2

IL training Makarov and Clematide (2018a) pro-
pose training the model using IL, a general model
fitting framework for sequential problems over
exponentially sized output spaces. IL has been
applied successfully to natural language process-
ing (NLP) problems, e.g. transition-based parsing
(Goldberg and Nivre, 2012) and language genera-
tion (Welleck et al., 2019). IL relies on the availabil-
ity of demonstrations of how the task can optimally

2The model uses shared input character / action embed-
dings of size 100 and one-layer LSTMs with hidden-state size
200.

p(#)

Σ : ε / p(DEL(Σ)) ε : Ω / p(INS(Ω))

Σ : Ω / p(SUB(Σ, Ω))

Figure 2: Stochastic edit distance (Ristad and Yianilos,
1998): A memoryless probabilistic FST. Σ and Ω stand
for any input and output symbol, respectively.

be solved given any configuration. Due to the na-
ture of many NLP problems, such demonstrations
can often be provided by a rule-based program
(known as expert policy).

Makarov and Clematide (2018a) use a combina-
tion of Levenshtein distance and edit sequence cost
as the task objective (β ED(ŷ,y) + ED(x, ŷ), β ≥
1) and devise an expert policy for it. Given a tar-
get sequence y, a partially completed prediction
ŷ1:n, and the remaining input sequence xk:l, the
expert needs to (1) identify the set of target suffixes
yj:m that when appended to ŷ1:n, lead to a predic-
tion with minimum Levenshtein distance from the
target, and (2) check which of the edit sequences
producing those suffixes have the lowest cost, i.e.
minimum Levenshtein distance from the remaining
input.

The second part is crucial for training accurate
models especially in the limited resource setting,
as it reduces spurious ambiguity arising under the
first part of the objective alone. It is also the sec-
ond part of the training objective that hinges on
the overlap of the input and output alphabets, as
this permits minimization using the edit distance
dynamic program with traditional costs.

2.1 Adaptation to G2P

The adaptation is two-fold: First, we introduce sub-
stitution edits, which have previously not been em-
ployed to keep the total number of edit actions to a
minimum. For each output character c, there is now
a substitution action SUBS[c] which substitutes c
for any input character x.

When the alphabets are disjoint, the complet-
ing edit sequences cannot be very informatively
scored using traditional edit costs. For exam-
ple, for the data sample кит 7→ /kjit/ (Rus-
sian: “whale”), we would like the following most
natural edit sequence to attain the lowest cost:
SUBS[k], INS[j], SUBS[i], SUBS[t]. Yet, it is clear
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that under traditional costs, this sequence attains
the same cost as any other that consists of three
substitutions and one insertion. Our solution to this
is to learn costs from the training data to ensure an
intuitive ranking of edit sequences.

SED policy Learning costs as well as computing
string distance can be achieved with a very simple
WFST: Stochastic Edit Distance (Ristad and Yian-
ilos, 1998, SED), which is a probabilistic version
of Levenshtein distance (Fig. 2). We use traditional
multinomial parameterization.

Before starting training the neural transducer,
we train a SED model using the Expectation–
Maximization algorithm (Dempster et al., 1977).
We use the following update in the M-step:
θ(t+1) ∝ max(0, θ̃ + α), where θ̃ is the unnormal-
ized weight computed in the E-step and 0 < α < 1
is a sparse Dirichlet prior parameter associated with
this edit. This corresponds to sparse regularization
via Dirichlet prior (Johnson et al., 2007), which
results in many edits having zero probability. We
found this training to lead to more accurate SED
models. Furthermore, it dramatically reduces the
size of the edit action set that the neural transducer
is defined over.

SED is integrated into the expert policy. During
training, given a configuration consisting of a par-
tial prediction, a remainder of the input, and the
target, we query the expert policy for next optimal
edits. We minimize the first part of the objective
much like before, and we minimize the second part
by decoding SED with the Viterbi algorithm.

Suppose we transduce the French word x =
abject (“vile”) into the target y = a b Z E k t. Sup-
pose also that the neural transducer currently at-
tends to character x4 = e and the prediction built
so far during training is ŷ1:7 = a b Z e (note the
error). We query the SED policy to get the op-
timal edit action whose likelihood we will max-
imize. First, much like before, we find that the
following edits are optimal with respect to the
first term of the training objective (call them per-
missible) as they do not increase the Levenshtein
distance of the prediction from the target (as-
suming all subsequent edits are permissible too):
SUBS[E], INS[E], DEL, SUBS[ ], INS[ ]. (This can be
verified by looking at the Levenshtein distance pre-
fix matrix for strings ŷ1:7 and y.) Each such edit
starts a suffix that completes the target, e.g. it is “E k
t” for SUBS[E] and “ k t” for SUBS[ ]. Next, we use
SED to rank the permissible edits by cost-to-go. For

each of the edits and their corresponding suffixes,
the expert needs to execute the edit (e.g. SUBS[E]
writes E and moves the attention to x5 = c) and
then decode SED with Viterbi on the the remaining
input and the suffix (both possibly modified by the
edit). In this way, we obtain that SUBS[ ] is the op-
timal action with the lowest cost-to-go (=negative
sum of the log probabilities of the edit and of the
Viterbi path) of 15.28 (vs 17.65 for SUBS[E], 21.09
for INS[E], 17.31 for DEL, and 17.31 for INS[ ]).3

Exploration This time, we also train the trans-
ducer with an aggressive exploration schedule:
psampling(i) = 1

1+exp(i) , where i is the training
epoch number. After a couple of training epochs,
training configurations are generated entirely by
executing edit actions sampled from the model.

3 Submission details

We train separate models for each language on the
official training data and use the development set
for model selection.4 Our submission does not use
any additional lexical resources.

For most of the models, we employ Unicode
decomposition normalization (NFKD)5 as a data
preprocessing step. Importantly, this helps decom-
posing Unicode syllable blocks used e.g. in Hangul.

The size of the development set is rather small
(450 examples), and having examined the data, we
suspect that overly relying on the development set
for model selection might hurt generalization. For
example, the French development set contains three
exceptions to the “ill”–/j/ equivalence; thus, a sin-
gle model that achieves a high score on the devel-
opment set might, in fact, be overfitting. To counter
this, we build an eleven-model–strong majority-
vote ensemble. Fortunately, training a neural trans-
ducer is fast as one epoch takes just about four
minutes on average on a single CPU, due to the
relatively small number of model parameters.

3This particular SED is trained on the French training data
for 3 EM epochs with Dirichlet prior α = 1e-05 for all edits.

4We train the SED model for 20 epochs of EM with α =
0.25 for insertions and 0.5 for all other edits. We train the
neural transducer for a maximum of 60 epochs with a patience
of 12 epochs. We use mini-batches of size 5. We decode using
beam search with beam width 4.

5Using NFKD instead of NFD was a bit unfortunate be-
cause some superscript diacritics get normalized to their regu-
lar size. Luckily, as pointed out to us by Kyle Gorman, there is
a unique mapping from NFKD to NFC for the spaced output
format of this task. See http://www.unicode.org/reports/tr15/
for Unicode normalization forms.
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CLUZH ENS. CLUZH WER AVG LSTM TF BEST BY OTHERS

LNG WER PER #C #D WER ± ∆,% ⊥ WER WER WER ∆,% PER ∆,%

ady 27.11 6.27 0 11 30.32 1.97 -12 16.89 28.00 28.44 24.67 9 5.76 8
arm 12.22 2.82 0 11 14.73 0.76 -21 8.89 14.67 14.22 12.67 -4 2.91 -3
bul 23.33 4.70 0 11 30.81 2.78 -32 13.78 31.11 34.00 22.22 5 4.70 0
dut 14.44 2.51 9 2 18.30 1.44 -27 9.33 16.44 15.78 13.56 6 2.36 6
fre 6.89 1.56 2 9 8.12 0.54 -18 3.56 6.22 6.89 5.11 26 1.16 26
geo 27.33 4.83 0 11 29.11 0.86 -7 8.89 26.44 28.00 24.89 9 4.57 5
gre 16.44 2.68 11 0 19.60 1.80 -19 7.33 18.89 18.89 14.44 12 2.42 10
hin 5.11 1.20 0 11 7.13 0.55 -40 2.67 6.67 9.56 5.11 0 1.20 0
hun 4.00 1.02 0 11 4.77 0.60 -19 2.89 5.33 5.33 4.00 0 0.92 10
ice 9.11 1.90 0 11 10.00 0.53 -10 5.78 10.00 10.22 9.11 0 1.83 4
jpn 6.00 1.58 0 11 7.19 0.30 -20 4.89 7.56 7.33 4.89 19 1.16 27
kor 28.44 4.88 0 11 28.26 1.39 1 11.78 46.89 43.78 24.00 16 4.05 17
lit 18.67 3.27 0 11 21.54 0.82 -15 14.22 19.11 20.67 18.67 0 3.38 -3
rum 11.33 2.68 0 11 13.66 1.11 -21 7.11 10.67 12.00 9.78 14 2.23 17
vie 1.56 0.35 0 11 1.60 0.21 -2 0.89 4.67 7.56 0.89 43 0.27 23
AVG 14.13 2.82 1.5 9.5 16.34 1.05 -16 7.93 16.84 17.51 12.93 8 2.59 8

Table 1: Overview of the test results. ∆ gives relative error difference compared to our submission CLUZH.
#C=number of NFC models in the ensemble. #D=number of NFKD models in the ensemble. CLUZH WER
AVG=average WER, standard deviation, and relative error difference of the average computed over individual mod-
els.⊥=lower-bound on WER: correct if predicted by any individual model. LSTM=official seq2seq LSTM baseline.
TF=official seq2seq Transformer baseline. BEST BY OTHERS=best results of other systems for each language.

4 Results and Discussion

Our system ranks second among 23 submissions
by a total of nine teams (Table 1). It ties for first
place on four languages (Hindi, Hungarian, Ice-
landic, Lithuanian) and outperforms every other
submission for Armenian. It achieves strong gains
over the neural baselines.

Ensembling gains us 16% in error reduction com-
pared to test set averages—a substantial improve-
ment. We leave it for future work to see whether
dropout and a larger model size could be used in-
stead as effectively as ensembling. Unicode decom-
position normalization boosts the performance of
our Korean models.6 On average, at least one model
predicts the output correctly for all but 7.93% of
all the words (⊥)—Adyghe, Lithuanian, and Bul-
garian being the most difficult languages. For some
languages, WER standard deviation is high, likely
confirming our hypothesis that model selection on
the small-sized development set would lead to poor
generalization.

Error analysis Table 2 shows the most frequent
errors of our system for each language and helps to

6In fact, in a post-submission analysis, we see a strong gain
from decomposition only for Korean (17 percentage points
on average). For the other languages, it has no impact on
performance on average.

qualitatively assess their strongly varying error pro-
files. We take a closer look at the errors in French
and Korean. Additional lexical information could
improve our French models. E.g. the word’s lexical
category feature and/or morphological segmenta-
tion would probably help correctly transduce the
word-final “-ent” (adverb “vraiement” (truly) /...Ã/
vs verb “viennent” (they come), where the ending
is silent). Many errors in French are in English
borrowings.

We look in some detail at the errors on the Ko-
rean test data that all or almost all of the individ-
ual models of the ensemble make. As expected,
lexicalized phenomena contribute most of the er-
rors: vowel length (which is neither phonemic nor
phonetically realized in the speech of all except
elderly speakers (Sohn, 2001)) and tensification.
Vowel length is not indicated in Korean orthogra-
phy, and neither is tensification (with some excep-
tions). Knowing whether a word is an English bor-
rowing (e.g.섹스 seksŭ7 (sex)) or whether a word
is a compound and where the morpheme bound-
ary lies (초승달 ch’osŭng-tal (new moon)) could
help predict non-automatic tensification correctly
in a small number of cases ([s

""
eflks

""
W] vs ∗[sh...] and

[
>
t Chofls

hWNt
""
aí] vs ∗[...daí]).

7This uses McCune-Reischauer transliteration of Korean.
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ady ʼ/ϵ/17 ə•/ϵ/9 ʃ/ʂ/8 ϵ/•ə/7 j•/ϵ/6 ϵ/ʼ/6 ϵ/ə•/5 ɮ/l/5 ː/ϵ/5 a/ə/5
arm ɔ/o/17 ϵ/ə•/12 ◌͡/•/12 ə•/ϵ/3 t/d/3 ɡ/kʰ/2 ʃʰ/ʒ/2 ɛ/j/2 χ/ʁ/2 t͡ʃ/d•ʒ/1
bul r/ɾ/26 o/ɔ/22 ə/a/14 a/ə/12 ◌/̪ϵ/9 ϵ/◌/̪9 a/ɐ/7 ɫ/l/5 ɐ/ə/5 ϵ/ʲ/5
dut ə/ɛ/9 ϵ/j•/4 aː/ɑ/4 eː/ə/4 ə/eː/3 t/d/3 ː/ϵ/3 oː/ɔ/2 ϵ/ɛ•/2 n/m/2
fre ϵ/•ɑ̃/2 ϵ/•s/2 a/ɑ/2 o/ɔ/2 w/ɔ/2 •j•ɑ̃/ϵ/1 ϵ/•k•s/1 ɔ•p/o/1 •ɑ̃/ϵ/1 e/ɛ•ʁ/1
geo ɪ/i/103 i/ɪ/48 χ/x/5 ɣ/ʁ/4 ʁ/ɣ/3 x/χ/3 ɑ/a/2 •s/ϵ/1
gre ɾ/r/27 o/ɔ/19 r/ɾ/15 e/ɛ/9 ʝ/i/3 n•/ϵ/2 ç/i/2 m/ɱ/2 •m•e/ϵ/1 ϵ/s•/1
hin ϵ/ə•/10 ə•/ϵ/5 ϵ/•ə/2 ɛː/ə/2 ϵ/‿•/2 ɑ/a/2 ɪ/iː/1 •ɦ/ʱ/1 ɪ/i/1 ə/j/1
hun ʃ/ʒ/3 ϵ/ː/3 eː/i•n•t/1 ϵ/ɱ•v•/1 m/eːʲ/1 t͡s/xː/1 sː/ʃ•s/1 h•/ϵ/1 •h/◌͡ʃ/1 ◌͡/•/1
ice ː/ϵ/11 ϵ/ː/9 t•/ϵ/4 v/f/3 ϵ/◌/̥3 t/d/2 ʰ/ϵ/2 ϵ/ʰ/2 ʏ•ʏ/uː/1 cʰ/k/1
jpn ϵ/◌/̊8 ϵ/◌/̥6 ϵ/ː/3 ː/•ɯ̟ᵝ/2 ː/•o̞/2 ɯ̟ᵝ/j•o̞/1 ϵ/•e/̞1 ɯ̟ᵝ/e/̞1 o̞ː/ã/̠1 s•ɨ/ɯ̟̃/1
kor ϵ/ː/72 ː/ϵ/18 ɘː/ʌ/̹11 ʑ/ɕ/͈4 ʌ/̹ɘː/4 d/t/4 ɡ/k/͈3 ϵ/ɲ•/3 d/t/͈2 ɭ/n/2
lit ϵ/◌/̪15 n/ŋ/14 ɐ/aː/12 ː/ϵ/8 ʲ/ϵ/7 o/ɔ/7 ϵ/ː/6 ϵ/ʲ/5 ɛ/æː/3 aː/ɐ/3
rum ◌͡/•/8 •/◌͡/8 e/̯j/6 r/ɾ/5 ʲ/•i/4 ː/•j/3 i/j/3 ϵ/e•/2 o/e/2 j/i/2
vie ϵ/ː/2 ˧˧ ˧•/ϵ/1 ϵ/e•/1 w•/ϵ/1 ̚•/ϵ/1 ◌͡m/ϵ/1 ə/e/1 ʔ/n/1 ˦/ϵ/1 a/ɔ/1

1

Table 2: Ten most frequent errors per language. Notation: prediction / gold / error frequency. • denotes whitespace.
Computed using the UTF-8 aware version of the ISRI Analytic Tools for OCR Evaluation.8

How good is SED policy? Somewhat surpris-
ingly, using SED as part of the expert policy results
in competitive performance. Yet, SED is a very
crude model (e.g. because of the lack of context,
when used as a conditional model, SED assigns
less probability to any edit sequence containing
insertions than the same sequence but with all the
insertions removed; this e.g. makes it unusable as a
standalone model for G2P). On top of this, we also
do not use learned roll-out, which would be recom-
mended when training with a sub-optimal expert
(Chang et al., 2015). We leave it for future work
to examine whether the neural transducer’s perfor-
mance on G2P would improve from replacing SED
with a more powerful model.

5 Conclusion

This presents the approach taken by the CLUZH
team to solving the SIGMORPHON 2020 Multi-
lingual Grapheme-to-Morpheme Conversion chal-
lenge. Our submission is based on our successful
SIGMORPHON 2018 system, which is a majority-
vote ensemble of neural transducers trained with
imitation learning. We adapt the 2018 system to
work on transduction problems with disjoint input
and output alphabets. We add substitution actions
(not available in previous versions of the system)
and employ a memoryless probabilistic finite-state
transducer to define the expert policy for the imi-
tation learning. We use majority-vote ensembling
to counter the overfitting to the small development
sets. These simple modifications result in a highly

8https://github.com/eddieantonio/ocreval

competitive performance even without the use of
any exernal resources or learning a single multi-
lingual model. Our ensemble ranks second out of
23 submissions by a total of nine teams. Our error
analysis indicates that addressing many of the er-
rors requires additional information such as know-
ing the word’s lexical category, morphological seg-
mentation, or etymology. We will make our code
publicly available.
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Abstract

The paper describes the University of Mel-
bourne’s submission to the SIGMORPHON
2020 Shared Task 0: Typologically Diverse
Morphological Inflection. Our team submit-
ted three systems in total, two neural and one
non-neural. Our analysis of systems’ perfor-
mance shows positive effects of newly intro-
duced data hallucination technique that we em-
ployed in one of neural systems, especially in
low-resource scenarios. A non-neural system
based on observed inflection patterns shows
optimistic results even in its simple implemen-
tation (>75% accuracy for 50% of languages).
With possible improvement within the same
modeling principle, accuracy might grow to
values above 90%.

1 Introduction

According to WALS database 80% of the world’s
languages morphologically mark verb tense and
65% mark grammatical case (Dryer et al., 2005).
Still, until recently most research in natural lan-
guage processing was focused on a few well-
documented languages with modest amount of
morphological marking. A great variety of typo-
logically diverse low-resource languages were left
outside of NLP investigation and modeling. At
the same time, neural systems outperformed non-
neural ones onmany benchmarks(cite) while being
evaluated on a limited (and often not typologically
representative) sample of languages. Nevertheless,
some of such systems or architectures were stated
as “universal”. But are they universal? How well
models trained a certain sample of language fam-
ilies can generalize outside of it? For instance, a
model trained on Indo-European languages might
be biased towards suffixing and will be working
less well on languages that use infixing or prefix-
ing. The SIGMORPHON 2020 Shared task 0 (“Ty-
pologically diverse morphological inflection”; Vy-

lomova et al. (2020)) aims at evaluation of the gen-
eralization ability of models. It continues recent
trend of increasing linguistic diversity: starting
with 10 well-documented languages in Cotterell
et al. (2016) up to 103 in Cotterell et al. (2018).
These shared tasks demonstrated that neural mod-
els outperform non-neural ones but generally strug-
gle in low-resource settings. Therefore, the 2019
Shared Task focused on cross-lingual transfer (Mc-
Carthy et al., 2019) and explored transfer of mor-
phological information from a high-resource to a
low-resource language. In this paper, we describe
three models submitted to the shared task 0. We
investigate both generalization ability of models
and their performance in low-resource languages.
We propose a variation of data hallucination tech-
nique that significantly improves the results of neu-
ral models in low-resource settings.

2 Task Description

The task was organized in three stages: develop-
ment, generalization and evaluation. In the devel-
opment stage participants were provided with ini-
tial set of 45 development languages that were used
to develop their systems. In the next stage, gener-
alization, an extra and more diverse set of 45 lan-
guages was released, and participants were asked
to fine-tune and optimize their systems on these
languages. In both stages, only training and devel-
opment datasets were released. Test splits for both
development and generalization languages were
provided in the final, evaluation, stage.
Systems were then evaluated and ranked based

on the test set predictions.

3 Data

3.1 Data Format
All shared task data are in UTF-8 and follow
UniMorph annotation schema (Sylak-Glassman,
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2016). Training and developments samples con-
sist of a lemma, an inflected (target) form, and its
morphosyntactic description (tags). Test samples
omit the target form.

3.2 Languages
Forty-five languages representing Austronesian,
Niger-Congo, Oto-Manguean, Uralic and Indo-
European language families were provided in
the development stage. Another forty-five (sur-
prise) languages from Afro-Asiatic, Algic, Altaic1,
Dravidian, Indo-European, Niger-Congo, Sino-
Tibetan, Siouan, Songhay, Southern Daly, Uralic,
and Uto-Aztecan families were provided in the
generalization phase one week before the evalua-
tion phase started. Importantly, the dataset sizes
are highly imbalanced, ranging from tens of thou-
sand of samples in some Uralic languages to a few
hundreds in the Niger-Congo family.

4 Baseline Systems

Two types of baseline systems were provided: neu-
ral and non-neural. The non-neural baseline was
essentially the same as in previous years’ tasks
(Cotterell et al., 2017, 2018). More specifically,
it first extracts possible lemma–form alignments
and associates themwith corresponding target tags,
then majority classifier chooses the most frequent
transformation and applies it to a given lemma.
The neural baselines include a hard monotonic

attention model (Wu and Cotterell, 2019) and
a character level transformer (Wu et al., 2020).
Both were trained in monolingual and multilingual
modes. Organizers also provide a variation of the
model that uses data hallucination technique from
Anastasopoulos and Neubig (2019) to improve per-
formance in low-resource languages.

5 Evaluation

The systems were evaluated in terms of test
accuracy and Levenstein distance between pre-
dicted and gold forms. Unlike in earlier shared
tasks where systems were ranked based on macro-
averaging, here systems were ranked based on sta-
tistical significance of differences in their perfor-
mance.

6 System Description

In terms of the shared task, we experimented with
three systems, two neural and one non-neural. Sub-

1Tungusic and Turkic

sections below provide a short description of each.

6.1 A non-neural system based on differently
refined alignment patterns

First, we implemented a non-neural system
(flexica01) where possible patterns of lemma-
to-inflected form transformation are generated di-
rectly by the following simple process:
1) We find all maximal continuous matches

between lemma and inflected form; while doing
this, we start with the longest possible match and
then find matches across the remaining unmatched
fragments, recursively. We replace the matches
found with groups denoted as \number, like
in regular expression syntax. Swapped order of
groups in inflected forms is allowed. For the
simplicity of implementation, we assumed that the
number of group is increasing along the lemma
word. If multiple matches of the same group
lengths are possible for a given lemma - inflection
pair, we produce all the respective transformations.
However, for the vast majority of samples only a
single variant is produced at this stage.
For example, for the past tense of “to
understand”:
understand → understood
we extract the following transformation rule:
\0an\1 → \0oo\1,
where \0=underst and \1=d are groups.
Group substitutions are not stored leaving a trans-
formation as abstract as possible. However, some
statistics about group content is used to evaluate
the confidence of substitution (see below).
2) Starting with previously generated trans-

formation pattern(s) of maximal abstraction,
we generate a set of patterns more specific
to a given training word by treating a limited
number (0..ConcreteLetterLimit, where
ConcreteLetterLimit is a hyperparameter)
of characters as concrete (i.e. standing out-
side any group). For our previous example
given ConcreteLetterLimit = 1 we would
finally produce the following set of matching
transformations: \0an\1 → \0oo\1;
u\0an\1 → u\0oo\1; \0n\1an\2
→ \0n\1oo\2, ... (3 more),
\0s\1an\2 → \0s\1oo\2, \0tan\1
→ \0too\1, \0and → \0ood.
All patterns generated for training samples are

stored in a trie, which is separate for each combi-
nation of grammatical features. The resulting set
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of tries acts as a model.2 At prediction phase, a
multi-variant search against a given lemma is at-
tempted over the trie for a respective grammatical
tag combination. Here, multi-variance means that
the search procedure both allowswildcards for pos-
sible groups and concrete characters to be matched
against. After the search completes, all the candi-
date transformations found are then sorted by their
associated score in order to find the best fit. In the
version used to produce prediction submitted to the
contest, the score was based on the following three
components:

1. A (squashed) frequency f of transformation
occurrence in a training set;

2. The diversity d of marginal (the first one
and the last one) letters in groups as they
occurred in different fits of a given transfor-
mation found in the training set. To grasp
the underlying idea, take, for example, a \0
→ \0s transformation producing plural
nouns in English that is considered as highly
confident for any possible \0 value because
\0 was observed to match various strings
starting and ending with many different
letters in a training set. In contrast, \0a\1
→ \0oo\1 matches a very limited set
of examples such as stand→stood,
understand→understood, where
the last character of \0 is always 'd' and
the first character of \1 is 'n'. Such a
poor diversity of characters should signal
the predictor that the transformation pattern
is not likely to be usable at different group
values and it may be better to focus at more
specific transformation patterns instead.
Technically, we counted d as a product of the
number of distinct characters over all start
and end positions of groups. Still, if we have
an exact match between currently considered
substitution letter and one observed at the
same position in a training sample, we
consider this position exempt from scrutiny
by assuming it as having a high “effective”
diversity (currently, of 10).

3. Specificity s which here means the number
2To simplify the implementation, a transformation pattern

was stored as a mapping between two plain strings, one for
the lemma and another one for the inflected form. Group ref-
erences were represented by special characters added to the
alphabet.

of concrete characters in the pattern (without
counting characters falling into groups).

In the submitted version, the score was calculated
by the following empirical formula:

G =
1

2
log2 f + 6 log2 d+ 12s (1)

Note that in contrast to a conceptually similar
approach proposed by Hulden et al. (2014), we
didn’t encourage the most general paradigms. In-
stead, we used a trade-off criterion that prefers bet-
ter confidence but lower amount of abstraction in
patterns. Also, we didn’t attempt to build whole
paradigms. We used an independent alignment
process for each form.
Fig. 1 displays accuracy for the model measured

across all 90 languages. We additionally show the
accuracy that would be achieved in a case of ideal
selection criteria (labelled as “+ Ideal Transform
Choice” category) for every language. The accu-
racy equals to the proportion of test samples which
succeeded in matching at least one transformation
pattern that produces correct prediction. We also
note that the proposed scoring formula (mostly in-
spired by Indo-European languages) does not fit
well the Oto-Manguean family. If to speak about
the potential ability to cover inflections by directly
observable patterns, Finnic languages with their
tricky morphology appear to be the most challeng-
ing ones.
We also roughly measured potential improve-

ment that may arise from considering correlations
between inflection patterns for different grammat-
ical forms of a single lemma (in other words, from
paradigm clustering). We trained embeddings for
the generated transformations using lemmas as
context markers. Then, we used cosine similarity
between such embeddings as a candidate transfor-
mation selection criterion in cases when a lemma
is both present in the train and in the test sets.
The proportion of samples where application of
such a criterion allowed to turn an incorrect predic-
tion into a correct one, is labelled as ”+ Paradigm
Search” in Fig. 1.
Generally, the experiments with pattern-based

inflection prediction were proposed to verify the
following two hypotheses, (1) that it is sufficient
to reuse observed substitution patterns for proper
modeling of inflection in a wide range of lan-
guages, and (2) that candidate inflection pattern
selection may be based on a simple statistical
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Figure 1: Accuracy for the non-neural flexica01 solution based on immediately observed transform patterns.
Accuracy for the flexica02 hard attention neural system is also given for comparison (in white points).

criterion (frequency, entropy etc.) While a sim-
ple pattern selection rule hasn’t yet been discov-
ered, the experimental results largely support the
first hypothesis. However, it should be noted
that learnt patterns are often too sparse due to
the lack of compositionality and abstraction in
the initial system design. When an inflection
involves complex, phonotactical transformations,
it is unlikely to match a quite “similar” sample
in a train set. It is especially true if the inflec-
tion is irregular which usually implies extreme
sparsity of its domain. Another issue that lim-
its pattern search capacity is related to the model
size. The experiments have shown that greater val-
ues of ConcreteLetterLimit enable greater ac-
curacy figures. However, we had to stick with
ConcreteLetterLimit = 2 because the choice
of greater value led to unacceptably high mem-
ory consumption for most of training sets provided.
Though, this issue is likely to be addressed by
using of ongoing pruning procedures over learnt
transformations.

6.2 Neural systems

Multilingual (family-based) learning The neu-
ral system (flexica02; multilingual) is based
on hard monotonic attention model proposed in
Aharoni and Goldberg (2017), with the same loss
function, but with the following differences:

• We combined all the languages belonging to
a given family3 into a single dataset, having
added two extra features such as language
and genus. The idea was to let the model in-
fer common cross-lingual inflection patterns
when a resource for a particular language is
low.

• We also made a minor modification of pre-
processing. We used maximal continuous
sub-string search to organize alignment be-
tween lemma and its inflected form in order to
advance hard attention state during the learn-
ing phase. Compared to the original system,

3An exception was Uralic family. Due to excessively high
volume of training data, we split this family into 5 subfami-
lies.
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Figure 2: Comparison of accuracy for the proposed neural system with hallucinated data (green or red points for
greater or lower accuracy, respectively) and one without hallucinated data (black points)

we abolished one-by-one alignment of mis-
matching characters, instead letting each mis-
matching segment to be put into correspon-
dence to a single attention state as a whole.

Hyperparameters are set as follows: hidden and
input dimensionality is set to 100, feature dimen-
sionality is 20, the number of layers is 2. The
model is trained with AdaDelta (Zeiler, 2012) for
100 and 20 epochs for small-sized and large-size
families, respectively.

Adding Hallucinated Data Inspired by Anas-
tasopoulos and Neubig (2019), our last model

(flexica03) is a variation of the above model
that uses extra hallucinated samples. We added
200 samples4 per language per part-of-speech
(POS) in order to produce hallucinated inflec-
tion samples that look like real. We reused the
predictor from flexica01 (presented earlier)
with the only difference that now it acts in the
reverse direction predicting the best fitting tag–
lemma combination for a given inflected form.
We also enriched the model with word-generator

4We chose this number as an empirical approximation of
minimum amount of training data required for the predictor
to display stable convergence.
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(Shcherbakov et al., 2016) to produce more phono-
tactically plausible forms. This works in the fol-
lowing way: 1) Word generator trained on in-
flected forms for a given POS produces sam-
ples of hallucinated inflected forms (without dis-
tinction of grammatical features); 2) The reverse
flexica01 predictor produces tag–lemma for
each hallucinated inflected form.
As Fig. 2 shows, supplementing training data

with hallucinated samples significantly improved
accuracy in low-resource languages (such as
Maori, Zarma, Tajik, Anglo-Norman, Middle
High/Low German) while for medium to high
sized resources we observe less consistency in pos-
itive effects.

7 Conclusion

We proposed and tested (1) multilingual training,
and (2) pattern-based hallucinated inflections as
possible enhancements of sequence-to-sequence
morphology modeling for diverse low-resource
languages. We also developed a simple non-neural
approach based on multi-variant search of com-
mon inflection patterns. We explored its suitability
for different language families and proposed fur-
ther improvement options.
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Abstract

The Transformer model has been shown to out-
perform other neural seq2seq models in sev-
eral character-level tasks. It is unclear, how-
ever, if the Transformer would benefit as much
as other seq2seq models from data augmenta-
tion strategies in the low-resource setting. In
this paper we explore methods for data aug-
mentation in the g2p task together with the
Transformer model. Our results show that
a relatively simple alignment-based approach
of identifying consistent input-output subse-
quences in grapheme-phoneme data combined
with a subsequent splicing together of such
pieces to generate hallucinated data works
well in the low-resource setting, often deliver-
ing substantial performance improvement over
a standard Transformer model.

1 Introduction

The Transformer model (Vaswani et al., 2017) has
recently been shown to be robust for character-level
translation tasks, outperforming other recurrent
sequence-to-sequence (seq2seq) models in a wide
range of tasks, including morphological inflection,
grapheme-to-phoneme (g2p), and text normaliza-
tion (Wu et al., 2020). A transformer-based model
also served as the baseline system for both the
SIGMORPHON 2020 shared tasks on grapheme-
to-phoneme conversion (Gorman et al., 2020) and
low-resource morphological inflection (Vylomova
et al., 2020), delivering substantially better perfor-
mance than other models.1

A common thread in research with character-
level seq2seq has been that, for situations where
few training examples are available, alternative
strategies to produce more robust performance
must be taken. For morphology tasks, this has
included strategies such as instructing the model

1Our code is available at https://github.com/
LonelyRider-cs/sig_shared_tasks.

#camerounais#
#kam_ʁu_nɛ__#

#différence#
#di_feʁɑ̃_s_#

nais#
nɛ__#

#diffé
#di_fe

...

Align Augment

VC

Figure 1: Augmentation strategy: after aligning all
grapheme-phoneme pairs, we use input subsequences
that are reliably mapped to the same output in the whole
data set in creating an augmented data set from the
pieces. We also enforce—using an unsupervised algo-
rithm for detecting consonants and vowels—that only
CV or VC is allowed at the boundary of the pieces
spliced together.

to copy input symbols to the output (Makarov
et al., 2017; Makarov and Clematide, 2018; Anas-
tasopoulos and Neubig, 2019), which may require
alignment of the input and output in the training.
Another strategy is data augmentation (Bergma-
nis et al., 2017; Silfverberg et al., 2017), whereby
some mechanism is employed to generate addi-
tional training examples from the few available
ones. Pointer-generator networks (Vinyals et al.,
2015), which facilitate copying of the input, have
also been employed (Sharma et al., 2018). Perhaps
since no low-resource g2p task has previously been
organized, the performance of standard models of
seq2seq in settings with limited training data have
not been explored as much as in morphological
inflection, where data augmentation has proven to
be a successful strategy.

The Transformer model, as opposed to other
seq2seq models such as bidirectional LSTM
encoder-decoders, however, seems to be more ro-
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bust by itself in the low-resource setting, at least
for morphology tasks. The multiple Transformer-
based baselines in the SIGMORPHON 2020 mor-
phological task did not provide any consistent im-
provement by data augmentation. Also, the best-
performing systems did not seem to use this strat-
egy, even in low-resource cases. For the grapheme-
to-phoneme task, it is therefore unclear if the Trans-
former would also benefit from one of these strate-
gies in low-resource scenarios. The SIGMOR-
PHON g2p task (task 1) featured uniform amounts
of training data of 3600 g/p word pairs, and so can
not be considered a low-resource task.

The different strategies to fortify seq2seq models
in the low-resource setting in other character-level
tasks are not all applicable to the g2p task, how-
ever. The array of mechanisms for learning to copy
the input—special copy symbols, pointer-generator
networks— favored by many low-resource mor-
phology systems do not naturally transfer to the g2p
task since the input and output pairs use different
alphabets. Data augmentation, however, remains a
potentially viable strategy.

In this paper we discuss experiments on the SIG-
MORPHON 2020 task 1 data sets where we ex-
plored data augmentation strategies for the g2p
setting. Our actual submission (team CU-Z) to the
task was a bidirectional LSTM encoder-decoder
which later turned out to perform much worse than
the Transformer model described in this paper. We
did not finish training the Transformer models be-
fore the submission deadline, and only submitted
the BiLSTM. In this paper we only discuss data
augmentation and the Transformer model.

2 Data Augmentation

We experimented with two strategies of data aug-
mentation: our first strategy was to identify in the
training data grapheme sequences in the beginning
of words and at the ends of words that (almost)
always map to the same phoneme sequence, such
as a word-initial c consistently mapping to k. Sub-
sequently we generated new training data by swap-
ping such sequences across words, generating new
words. This initial strategy failed to provide im-
provements on the development set, and we moved
to a more refined version of this idea, discussed in
more detail below.

procurions p K O k y K j Õ
reconnaituer K @ k O n E t 4 e
brancétude b K Ã S e t y d
davasonnage d a v Ã s O n a Z
magazoulevard m a g a z u l v a K
oucoutume w E k u t y m
socendredi s O s Ã d K @ d i
thapu t a p y
sedi s @ d i
sagementsier s a Z m Ã z j e

Table 1: Example augmented French data from the orig-
inal min data set that contains 100 examples. In total,
50,000 examples such as the ones shown here are cre-
ated from each data set.

2.1 Slice-and-shuffle

In our main strategy, we first perform a 1-to-1
alignment of the input-output data, yielding align-
ments such as are shown in Figure 1. For the align-
ment, we use an MCMC-algorithm originally devel-
oped by the second author for the SIGMORPHON
2016 shared task baseline for morphological in-
flection (Cotterell et al., 2016), largely similar to
Expectation-Maximization based models (Ristad
and Yianilos, 1998; Novak et al., 2012), but us-
ing an MCMC sampler instead. After the align-
ment, we investigate how consistently some part of
the word-initial substring graphemes #i1, . . . , im
maps to the same phonemes #o1, . . . , on, and
likewise for the word-final parts i1, . . . , im# and
o1, . . . , on#. We use # here as a symbol to
denote either beginning-of-word or end-of-word.
Whichever is intended should be clear from the
context.

For example, in French, the initial grapheme
sequence #poin, whenever found in the data, is
always aligned with #pwẼ, and the final grapheme
sequence parer# is consistently aligned with
the phoneme sequence paKe#. Such pieces can
then be used to create new grapheme/phoneme
pairs in an augmented training data set, such as
poinparer → pwẼpaKe. See Figure 1 for an-
other example.

In particular, for an input subsequence i, we
estimate its reliability as being associated with an
output subsequence o as the conditional probability
of the output, given the input in the usual way as:
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p(o|i) = count(i : o) + α∑
ANY

count(i : ANY) + α|ANY| (1)

Here α is a smoothing parameter and ANY—
through a slight notational abuse—represents all
the witnessed different output alignments for a par-
ticular input subsequence i. For example, if we
are calculating the conditional probability of some
output sequence, conditioned on an initial #pho-
sequence, and #pho has been aligned in the train-
ing data with #p, #f, and #fo, then ANY repre-
sents the set {#p, #f, #fo}.

To select which beginning and ending pieces can
be reliably used for creation of augmented data, we
declare a cutoff probability c = 0.98 and only use
those pieces i : o where p(o|i) > c. This yields a
large number of usable pieces for each language,
even in the lowest-resource setting of 100 training
examples.2 Note that the number of actual poten-
tial augmented input-output mappings corresponds
to roughly the square of the number of discovered
reliable beginning and ending pairings. We gener-
ate augmented words completely at random from
all the pieces available to us, except we limit the
output sequence length to 15 by excluding longer
sequences, and put an additional restriction on the
juncture where the splices come together regarding
consonants and vowels, discussed below.

2.2 Consonants and Vowels
After estimating p(o|i) for each seen subsequence
in the training data the resulting “reliable” pieces
can be spliced together to augment the data set,
by combining word-initial and word-final pieces.
Since phonological assimilations and coarticu-
lations are very common in vowel-vowel and
consonant-consonant sequences, and since we wish
to avoid generating unnatural syllables, we do not
splice together pieces where a slice ending in a
phoneme-side consonant would be paired up with
another one that begins with a vowel and vice versa.
This is also shown in the example Figure 1. To de-
termine which symbols on the phoneme side are
consonants and vowels, we use the unsupervised

2ady: 2933 (100), 11358 (500); arm: 2789 (100), 11840
(100), bul: 2862 (100), 10657 (500), dut: 4422 (100), 19058
(500); fre: 3005 (100), 11996 (500); 3089 (100), 13698
(500); gre: 3667 (100), 16341 (500); hin: 2073 (100), 8141
(500); hun: 3282 (100), 13748 (500); 2438 (100), 9556 (500);
jpn: 725 (100), 3252 (500); kor: 331 (100), 1280 (500);
lit: 4328 (100), 15414 (500); rum: 3330 (100) 12360 (500);
vie: 2567 (100), 12309 (500).

algorithm in Hulden (2017) to divide the set of
phonemes seen in the training data for a language
into consonants and vowels. Table 1 shows a selec-
tion of French “words” generated by this complete
process of aligning, determining useful pieces, and
splicing them together while avoiding CC or VV
sequences at the juncture of splicing.

For each language and each original-size data
set (100, 500, 3600) we generate 50,000 additional
training examples from the original training data.
To create the low-resource data training sets from
the shared task training sets, we randomly select
100 (min), or 500 (med) examples from the origi-
nal training data consisting of 3,600 examples. To
determine the cutoff where the data-augmentation
strategy stops paying dividends, we also create an
augmented data set of 50,000 examples from the
original data (we call the original task data the full)
data set.

2.3 Training details

Following Wu et al. (2020), we use a relatively
small transformer model (the Fairseq implemen-
tation; Ott et al. (2019)) with 4 encoder-decoder
layers, and 4 attention heads. The embedding size
is 256 and hidden layer size 1024. We use dropout
(0.3) during training and a batch size of 400, a
learning rate of 0.001. We train the models until no
improvement is seen on the dev-set for 5 epochs.

3 Results

The main results are shown in Table 2 and Figure 2.
As can be seen, there is a consistent pattern of
diminishing returns as more training data becomes
available, with word error rates being significantly
lower for almost all the augmented cases where
100 or 500 examples were used.

4 Related Work

Recurrent neural networks in a variety of models
have been applied to the g2p problem, including
LSTMs and bidirectional LSTMs (Rao et al., 2015),
as well as convolutional networks (Yolchuyeva
et al., 2019). The Transformer for g2p is inves-
tigated in Wu et al. (2020) and Yolchuyeva et al.
(2020), showing improvements over previous mod-
els, at least in high-resource settings. Low-resource
settings for g2p in general are examined in Jyothi
and Hasegawa-Johnson (2017), and a number of pa-
pers have experimented with high-resource to low-
resource transfer learning (Schlippe et al., 2014;
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augmented from 100 examples

unaugmented, 500 examples

augmented from 500 examples

unaugmented, 3600 examples
augmented from 3600 examples

Figure 2: Main WER results on the SIGMORPHON test sets with augmented and unaugmented data.

Lang 100 100aug 500 500aug full fullaug

ady 90.22 64.67 45.33 39.78 27.33 27.78
arm 82.89 45.33 33.11 24.89 14.89 13.33
bul 93.56 64.89 53.78 48.44 30.22 32.22
dut 95.33 69.11 50.67 42.00 18.22 19.11
fre 91.56 56.22 41.78 22.00 6.00 6.22
geo 79.78 40.89 37.33 38.89 27.78 33.33
gre 86.00 44.89 32.00 26.67 16.67 20.67
hin 90.44 46.22 34.44 21.33 9.56 9.11
hun 84.89 37.33 31.78 17.11 4.67 4.44
ice 91.11 66.89 39.33 33.78 9.56 10.67
jpn 95.56 62.22 28.22 22.00 6.67 8.67
kor 100.0 100.0 95.78 79.78 46.22 39.78
lit 94.89 70.89 42.89 46.44 21.78 26.22
rum 70.67 28.67 31.56 17.11 12.22 11.33
vie 96.44 74.89 37.33 30.89 7.11 11.78

Table 2: Word error rate (WER) results on the test set
when trained with 100 examples, 500 examples, and
the full data set, compared to augmentation (aug) for
(100,500,3600)→ 50,000 synthetic examples.

Deri and Knight, 2016), an avenue we did not ex-
plore in this work.

5 Conclusion

We have developed a method for data augmenta-
tion for the g2p task based on a 1-to-1 alignment of
input/output strings together with a confidence cal-
culation of what parts of the aligned strings can be
used to splice together an augmented dataset. Used
together with the popular Transformer seq2seq
model, we see significant and consistent improve-
ments on very small datasets of 100 examples, mod-
erate improvements on medium-size datasets (500
examples), with the advantage tapering off and
mostly disappearing completely with the shared
tasks’ datasets of 3,600 examples.
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Abstract

Cross-lingual transfer between typologically
related languages has been proven successful
for the task of morphological inflection. How-
ever, if the languages do not share the same
script, current methods yield more modest im-
provements. We explore the use of translit-
eration between related languages, as well as
grapheme-to-phoneme conversion, as data pre-
processing methods in order to alleviate this is-
sue. We experimented with several diverse lan-
guage pairs, finding that in most cases translit-
erating the transfer language data into the tar-
get one leads to accuracy improvements, even
up to 9 percentage points. Converting both
languages into a shared space like the Interna-
tional Phonetic Alphabet or the Latin alphabet
is also beneficial, leading to improvements of
up to 16 percentage points.1

1 Introduction

The majority of the world’s languages are synthetic,
meaning they have rich morphology. As a result,
modeling morphological inflection computation-
ally can have a significant impact on downstream
quality, not only in analysis tasks such as named
entity recognition and morphological analysis (Zhu
et al., 2019), but also for language generation sys-
tems for morphologically-rich languages.

In recent years, morphological inflection has
been extensively studied in monolingual high re-
source settings, especially through the recent SIG-
MORPHON challenges (Cotterell et al., 2016,
2017, 2018). The latest SIGMOPRHON 2019
challenge (McCarthy et al., 2019) focused on low-
resource settings and encouraged cross-lingual
training, an approach that has been successfully ap-
plied in other low-resource tasks such as Machine

1Our code and data are available at https://github.
com/nikim99/Inflection-Transliteration.

Transfer lang. Test lang.
Acc.

(L1) (script) (L2)

Urdu (Arabic) 42
Sanskrit (Devanagari) Bengali 44
Hindi (Devanagari) (Bengali) 49
Greek (Greek) 42

Arabic (Arabic)
Maltese

18
Hebrew (Hebrew)

(Roman)
22

Italian (Roman) 34

Table 1: The languages’ script can affect the effective-
ness of cross-lingual transfer (using L1 data to train a
L2 inflection system). Bengali results display low vari-
ance, as all transfer languages differ in script. Maltese
is typologically closer to Arabic and Hebrew than Ital-
ian, but accuracy is higher when transferring from a
same-script language.

Translation (MT) or parsing. Cross-lingual learn-
ing is a particularly promising direction, due to
its potential to utilize similarities across languages
(often languages from the same linguistic family,
which we will refer to as “related") in order to
overcome the lack of training data. In fact, lever-
aging data from several related languages was cru-
cial for the current state-of-the-art system over the
SIGMORPHON 2019 dataset (Anastasopoulos and
Neubig, 2019).

However, as Anastasopoulos and Neubig (2019)
point out, cross-lingual learning even between
closely related languages can be impeded if the
languages do not use the same script. We present a
few examples taken from Anastasopoulos and Neu-
big (2019) in Table 1. The first example presents
cross-lingual transfer for Bengali, with the trans-
fer languages varying from very related (Hindi,
Sanskrit, Urdu) to only distantly related (Greek).
Nevertheless, there is notably little variance in the
performance of the systems. We believe that the
culprit is the difference in writing systems between
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all the transfer and test languages, which does not
allow the system to easily leverage cross-lingual in-
formation: the Bengali data uses the Bengali script,
the Urdu data uses the Nastaliq script (a derivative
of the Arabic alphabet), the Hindi and Sanskrit data
uses Devanagari, and the Greek data uses the Greek
alphabet. In the second example, with transfer from
Arabic, Hebrew, and Italian for morphological in-
flection in Maltese, we note that although Maltese
is much closer typologically to Arabic and Hebrew
(they are all Semitic languages), the test accuracy
is higher when transferring from Italian, which de-
spite only sharing a few typological elements with
Maltese happens to also share the same script.

The aim of this work is to investigate this po-
tential issue further. We first quantify the effect of
script differences on the accuracy of morphological
inflection systems through a series of controlled
experiments (§2). Then, we attempt to remedy
this problem by bringing the representations of the
transfer and the test languages in the same, shared
space before training the morphological inflection
system. In one setting, we achieve this through
transliteration of the transfer language into the test
language’s script as a preprocessing step. In an-
other setting, we convert both languages into a
shared space, using grapheme-to-phoneme (G2P)
conversion into the International Phonetic Alphabet
(IPA) as well as romanization. We discuss both set-
tings and their effects on morphological inflection
in low-resource settings (§3).

Our approach bears similarities to pseudo-corpus
approaches that have been used in machine transla-
tion (MT), where low-resource language data are
augmented with data generated from a related high-
resource language. Among many, for instance,
De Gispert and Marino (2006) built a Catalan-
English MT by bridging through Spanish, while
Xia et al. (2019) show that word-level substitutions
can convert a high-resource (related) language cor-
pus into a pseudo low-resource one leading to large
improvements in MT quality. Such approaches typ-
ically operate at the word level, hence they do not
need to handle script differences explicitly. NLP
models that handle script differences do exist, but
focus mostly on analysis tasks such as named en-
tity recognition (Bharadwaj et al., 2016; Chaudhary
et al., 2018; Rahimi et al., 2019) or entity link-
ing (Rijhwani et al., 2019), whereas we focus in a
generation task. Character-level transliteration was
typically incorporated in phrase-based statistical

MT systems (Durrani et al., 2014), but was only
used to handle named entity translation. Notably,
there exist NLP approaches such as the document
classification approach of Zhang et al. (2018) show-
ing that indeed shared character-level information
can facilitate cross-lingual transfer, but limit their
analysis to same-script languages only. Specific
to the the morphological inflection task, (Hauer
et al., 2019) use cognate projection to augment
low-resource data, while (Wiemerslage et al., 2018)
explore the inflection task using inputs in phono-
logical space as well as bundles of phonological
features from PanPhon (Mortensen et al., 2016),
showing improvements for both settings. Our work,
in contrast, focuses on better cross-lingual transfer,
attempting to combine the phonological and the
orthographic space.

2 Quantifying the Issue

In Table 1 we offered a few examples from the liter-
ature to indicate that differences in script between
the transfer and test language in a cross-lingual
learning setting can be a potential issue. In this
section, we provide additional evidence that this is
indeed the case.

The intuition behind our analysis is that a model
trained cross-lingually can only claim to indeed
learn cross-lingually if it ends up sharing the repre-
sentations of the different inputs, at least to some
extent. This observation of a learned shared space
has also been noted in massively multilingual mod-
els like the multilingual BERT (Pires et al., 2019),
or for cross-lingual learning of word-level represen-
tations (Wang et al., 2020). For a character-level
model, such as the ones typically used for neu-
ral morphological inflection, this implies a learned
mapping between the characters of the two inputs.
Our hypothesis is that such a learned character map-
ping, and in particular between related languages,
should resemble a transliteration mapping, assum-
ing that both languages use a phonographic writing
system (such as the Latin or the Cyrillic alphabet
and their variations), to use the notation of Faber
(1992).2

To verify whether this intuition holds, we trained

2In contrast, one should not expect this to hold if one of
the scripts is logographic, like the Chinese one, or if the two
languages are coded differently, e.g. one script is syllabic and
segmentally coded, like the Japanese kana, but the other is
segmentally linear using a complete alphabet like the Latin
script. If both scripts use the same level of coding, then the
intuition holds (i.e. between Hebrew and Arabic).
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Figure 1: 2-D projection of the character embeddings learned after cross-lingual learning in two settings
(Armenian–Kabardian and Bashkir–Tatar). The shaded area denotes the mean ± three standard deviations.

models on Armenian–Kabardian and Bashkir–Tatar
(see details in Section §3). In the first setting, the
transfer language (Armenian) uses the Armenian
alphabet, while the test language (Kabardian) uses
the Cyrillic one. In the second, we are transferring
from Bashkir, which currently uses the Cyrillic
alphabet, to Tatar, which is written with the Latin
alphabet. We obtain the character representations
from the final trained models, and we perform a
simple search over the embedding space, returning
for each of the transfer language characters the
nearest neighbor from the test language alphabet.
Our findings are that this type of mapping does not
resemble a transliteration one, at all.

For example, one would expect that the Bashkir
characters е, ә, or э would map to the Tatar e char-
acter, or at least to another vowel. Bashkir е indeed
maps to Tatar e, but ә maps to Tatar i (which might
be somewhat fine since they are both vowels), while
Bashkir э maps to Tatar r. After a manual annota-
tion of the mappings in both language pairs, we find
that the absolute accuracy is less than 5% in both
settings (2 of 54 are correct in Bashkir–Tatar, and
1 of 47 in Armenian–Kabardian). We also present
a visualization (obtained through PCA (Wold et al.,
1987)) of the character embeddings in Figure 1
for these two settings, which shows that the two
languages are still, to an extent, separable.

In an attempt to also take into account poten-
tial slight differences in pronunciation, which are
common across related languages, we also count
mappings that agree in coarse phonetic categories
as correct. We obtain rough grapheme-to-phoneme
mappings from Omniglot3 (Ager, 2008) which al-
lows us to classify each character as mapping to
a vowel, or a consonant category (we devise cate-
gories across both manner and place). For instance,
the Bashkir characters с,ҫ,һ,ҙ,ш map to sibilant

3https://omniglot.com/

fricatives, so we count any mapping to Tatar charac-
ters that also map to sibilant fricatives (ç,z,s,ş)
as correct. Overall, however, even this more flex-
ible evaluation only leads to an accuracy of less
than 30% (16 out of 54 characters for Bashkir–
Tatar, 12 of 47 in Armenian–Kabardian).

3 Methodology

The previous section (§2) showcases that different
scripts can inhibit the model’s ability to represent
both languages in a shared space, which can be
damaging for downstream performance in cross-
lingual learning scenarios. In order to bring the
transfer and test languages into a shared space we
explore two straightforward approaches:

1. We first transliterate the transfer language data
into the script of the test language, and then
use the data to train an inflection model. As
our baseline or control experiment, we use the
exact same data, model, and process, only re-
moving the transliteration preprocessing step.

2. We convert both languages into a shared space,
such as the International Phonetic Alphabet
(IPA) or the Latin alphabet. In this case,
we use both the converted and the original
datasets during training. We note that this
approach is perhaps the most viable one, for
cases in which a transliteration tool between
the transfer and the test scripts is not available.

The following sections provide details on translit-
eration, grapheme-to-phoneme conversion, the in-
flection model, and the data that we use for training
and evaluation.

Transliteration In the absence of some sort of a
universal transliteration approach, we rely on vari-
ous libraries for our experiments. For transliterat-
ing between the Indic scripts (Devanagari, Bengali,
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Transfer Test Baseline with Transliteration Baseline with Transliteration
L1 L2 L1+L2 L1 Conversion Tr(L1)+L2 L1+L2+H Tr(L1)+L2+H

Hindi
Bengali

33 Devanagari 42 47 56
Sanskrit 27 → 32 66 65

both 39 Bengali 41 58 63

Arabic 18 Arabic→Roman 27 29 27
Hebrew Maltese 22 Hebrew→Roman 27 29 33

both 18 21 25 28

Kannada Telugu 66 Kannada→Telugu 66 70 62

Bashkir Crimean Tatar 73
Cyrillic→Roman

69 70 73
Bashkir Tatar 74 59 73 74

Russian Portuguese 34 Cyrillic→Roman 43 61.5 63.5

(*) Adyghe 90 no conversion – 96 –
(*)Armenian Kabardian 80 Armenian→Roman 78 86 86

Table 2: Transliteration of the transfer language (L1) into the test language (L2) improves accuracy in some cases
(top), with and without hallucinated data (H). In some language pairs (bottom) it can be harmful. We report exact
match accuracy on the test set. We highlight statistically significant improvements (p < 0.05) over the baseline.
“both" denotes that both L1 languages are used for transfer. * marks an additional control experiment.

Kannada, and Telugu in our experiments) we rely
on the IndicNLP library.4 We also use the URo-
man5 library (Hermjakob et al., 2018) to transliter-
ate into the Roman alphabet for the Arabic, Hebrew,
Armenian, and Cyrillic scripts.

The lack of resources and transliteration tools
for some directions severely limited the extent of
the experiments that we could conduct. Notably,
even though romanization is fairly well-studied
and are easily attainable through tools like URo-
man, the opposite direction is fairly understudied.
Most of the related work has focused on either
to-English transliteration specifically (Lin et al.,
2016; Durrani et al., 2014) or on named entity
transliteration (Kundu et al., 2018; Grundkiewicz
and Heafield, 2018). Even then, the state-of-the-art
results on the recent NEWS named entity translit-
eration task (Chen et al., 2018) ranged from 10%
to 80% in terms of accuracy across several scripts.
The high variance in expected quality depending on
the transliteration direction showcases the need for
further work towards tackling hard transliteration
problems.

Grapheme-to-Phoneme Conversion For
G2P conversion, we used the Epitran6 library

4https://github.com/anoopkunchukuttan/
indic_nlp_library

5https://github.com/isi-nlp/uroman
6https://github.com/dmort27/epitran

(Mortensen et al., 2018) for transliteration into IPA.
Since the library’s script coverage is not extensive,
it imposed another limitation on the amount of
experiments we could conduct. Also, note that
the library does not account for vowelization
phenomena in Perso-Arabic scripts such as Arabic,
Persian, and Urdu, which presents an avenue for
further work.

Inflection Model We use the morphological in-
flection model of Anastasopoulos and Neubig
(2019) which achieved the highest rank in terms
of average accuracy in the SIGMORPHON 2019
shared task, using the publicly available code.7 The
neural character-level LSTM-based model uses de-
coupled representations of the morphological tags
and the lemma learned from separate encoders. To
generate the inflected form, the model first attends
over tag sequence, before using the updated de-
coder state to attend over the character sequence of
the lemma. In addition to standard cross-entropy
loss, the model is trained with additional adversar-
ial objectives and heavy regularization, in order to
encourage attention monotonicity and cross-lingual
learning. The authors also use a data hallucination
technique similar to the one of Silfverberg et al.

7https://github.com/antonisa/
inflection
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Grapheme-to-Phoneme Conversion

Transfer Test Baseline with g2p Baseline with g2p
L1 L2 L1+L2 +g2p(L1) +g2p(L2) L1+L2+H +g2p(L1)+ g2p(L2) +H

Hindi Bengali 33 47 47 55
Arabic Maltese 18 20 29 27

Russian Portuguese 33.5 53.9 61.5 66.2

Romanization

Transfer Test Baseline with Romanization Baseline with Romanization
L1 L2 L1+L2 +Rom(L1)+Rom(L2) L1+L2+H +Rom(L1)+Rom(L2)+H

Hindi Bengali 33 41 47 59
Kannada Telugu 66 84 70 72

Portuguese Russian 14.6 23 42.7 45.9

Table 3: G2P Conversion of both the transfer (L1) and the test languages (L2) into IPA improves accuracy in
almost all cases, with and without hallucinated data (H). Romanization of the both languages improves accuracy
in all cases, with and without hallucinated data. We report exact match accuracy on the test set, and highlight
statistically significant improvements (p < 0.05) over the baseline.

(2017), which we also use in ablation experiments.8

Data and Evaluation We use the data from the
SIGMORPHON 2019 Shared Task on Morpho-
logical Inflection (McCarthy et al., 2019). We
stick to the transfer learning cases that were stud-
ied in the shared task, but limit ourselves to
the language pairs where (1) the two languages
use different writing scripts, and (2) we have ac-
cess to a transliteration model from the trans-
fer to the test language. As a result, we eval-
uate our approach on the following language
pairs: {Hindi,Sanskrit}–Bengali, Kannada–Telugu,
{Arabic,Hebrew}–Maltese, Bashkir–Tatar, Bashkir–
Crimean Tatar, Armenian–Kabardian, and Russian–
Portuguese. We compare our systems’ performance
with the baselines using exact match accuracy over
the test set. We also perform statistical significance
testing using bootstrap resampling (Koehn, 2004).9

4 Experiments and Results

We perform experiments both with single-language
transfer as well as transfer from multiple related
languages, if available. We also perform ablations
in two settings, with and without hallucinated data.

Transliterating the Transfer into the Test lan-
guage We first focus on the setting where a

8We direct the reader to (Anastasopoulos and Neubig,
2019) for further details on the model.

9We use 10,000 bootstrap samples and a 1
2

ratio of samples
in each iteration.

transliteration tool between the transfer and the
target language is available (in all cases, the tar-
get language data do not get converted – only the
transfer language data are transliterated). Table 2
presents the exact match accuracy obtained on the
test set for a total of 12 language settings. In 7 of
them, we observe improvements due to our translit-
eration preprocessing step, some of them statisti-
cally significant.

Specifically, in the top two cases (for Bengali
and Maltese as test languages) where the trans-
fer and test languages are closely related, we see
improvements across the board. In fact, for Hindi–
Bengali and Arabic–Maltese the improvement is
statistically significant with p < 0.05. Interest-
ingly, the improvements are significant also when
we use hallucinated data, which indicates that our
transliteration preprocessing step is orthogonal to
monolingual data augmentation through hallucina-
tion. For the case of Kannada–Telugu, despite the
exact match accuracy being the same (66%) for the
case without hallucinated data, we observed small
improvements on the average Levenshtein distance
between the produced and the gold forms.

On the other hand, when transferring from
Bashkir to Tatar and Crimean Tatar, even though
all three languages belong to the same branch
(Kipchak) of the Turkic language family, translit-
erating Bashkir into the Roman alphabet that Tatar
and Crimean Tatar use leads to performance degra-
dation. In the case of Bashkir–Tatar, the degrada-
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Transliteration of Transfer Language
(Russian to Latin)

RUS–POR RUS–POR +H
MASC 40.9 MASC 18.2

FUT 24.7 NFIN 14.8

V.PTCP 21.7 PFV 14.3

POS 19.2 COND 13.3

FEM 18.2 IPFV 8.7

Romanization of Test Language
(Russian to Latin)

POR–RUS POR–RUS +H
ANIM 46.9 INAN 21.4

MASC 28.7 DAT 16.7

GEN 18.3 FUT 9.0

ADJ 16.7 PST 7.4

INS 14.6 V 6.5

Grapheme-to-Phoneme of both Languages
RUS–POR RUS–POR +H

MASC 63.6 PFV 14.3

FUT 54.8 MASC 13.6

V.PTCP 43.3 NFIN 12.5

COND 31.3 COND 10.8

POS 29.5 PST 9.4

Table 4: The top 5 tags on which performance was im-
proved the most, compared to the simple cross-lingual
transfer baseline, in our Portuguese–Russian experi-
ments. The number reflects the proportion of forms
that were improved in the Russian-Portuguese combi-
nations using each of our techniques under each setting.

tion is statistically significant. It is of note, though,
that hallucination also does not offer any improve-
ments in these language pairs.

In a surprising result, transliterating Russian into
the Roman alphabet, and using it for cross-lingual
transfer to Portuguese also leads to statistically sig-
nificant improvements. Both languages are Indo-
European ones, but belong to different branches
(Slavic and Romance). Nevertheless, both with
and without hallucinated data the performance im-
proves with transliteration, a finding that surely
warrants further study.

Last, we discuss the control experiment of
Armenian–Kabardian. Kabardian (and Adyghe,
displayed for comparison) belong to the Circas-
sian branch of the Northwest Caucasian languages,
and are considered closely related, both using the
Cyrillic alphabet; Armenian, in contrast, is an
Indo-European language spoken in the same re-

gion. First, transferring from Adyghe leads to bet-
ter performance compared to transfer from Arme-
nian. Converting Armenian to the Roman script has
no effect on downstream performance, as expected.

Converting both Transfer and Test Languages
In the second exploratory thread, we focus on cases
where the shared space is not the one of the test
language. In the first set of experiments, we use a
G2P model to transliterate both languages into IPA.
The results in three language pairs are shown in
Table 3 (top), where we observe statistically signif-
icant improvements in two cases (Hindi–Bengali
and Russian–Portuguese). In fact, in the case of
Russian–Portuguese, one can increase the perfor-
mance by almost 60% (in the case without halluci-
nated data) from 33.5 to 53.9.

Similarly, using the Roman alphabet as the
shared space is also beneficial in almost all cases.
As the bottom part of Table 3 showcases, the
increase can be significant. Our best Kannada–
Telugu system, for example, is the one trained us-
ing additional romanized versions of both language
data, improving even over the cases where halluci-
nated data are used (cf. accuracy of 84% to 72%).10

Last, we note that the trend of somewhat sur-
prising results continues in these settings too, as
we observe that transfer between Russian and Por-
tuguese (and vice versa) is very beneficial. The
improvement of 19.6 accuracy points that we ob-
serve in the G2P Russian–Portuguese experiment
is in fact the largest we observe in our experiments.

Russian-Portuguese Investigation We further
analyze the results of the Russian–Portuguese and
Portuguese–Russian experiments, in the hopes of
understanding where the improvements come from,
when using cross-lingual transfer. For each of the
experiments (transliteration into the test languages,
G2P conversion, and romanization), we compute
the percentage of times that an inflection with each
morphological tag failed. Table 4 reports the tags
with the highest difference in these ratios, between
the baseline and our models for each method. The
higher the number, the larger the improvements for
this particular tag. For inflecting Portuguese (top
and bottom sets of results), we find it hard to make
any conclusions: both noun, adjective, and verb
tags appear in the top lists. For inflecting Russian

10In fact, our submission to the SIGMORPHON 2020
Shared Task (Murikinati and Anastasopoulos, 2020) following
this approach tied for first for Telugu (Vylomova et al., 2020).
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(middle set), it is mostly noun/adjective tags per-
taining to animacy (ANIM, INAN), gender (MASC)
and case (GEN, DAT) that show the largest improve-
ments. We still cannot explain the improvements
we see in these language pairs, except for vague
hypotheses that either the languages do share some
similar inflection processes (besides, they are both
Indo-European) or that the harder multi-task train-
ing setting regularizes the model leading to better
accuracy overall.

5 Conclusion

With this work we study whether using translit-
eration as a preprocessing step can improve the
accuracy of morphological inflection models under
cross-lingual learning regimes. With a few excep-
tions, most cases indeed show accuracy improve-
ments, some of them statistically significant. We
also note that the improvements are orthogonal to
those obtained by data augmentation through hallu-
cination, even in typologically distant languages.

While this work represents a first step in the
direction of understanding the effect of script dif-
ferences in morphological inflection, it is still lim-
ited in scope, as the experiments were restricted
by the lack of reliable transliteration tools for most
scripts. The SIGMORPHON 2020 Shared Task on
Morphological Inflection also provides more lan-
guages and better systems are being developed, so
we plan to expand our analysis to the latest state-
of-the-art models (Vylomova et al., 2020). Addi-
tionally, some of the transliteration models do not
account for phenomena that could have an impact
in downstream performance, such as vowelization
for Abjad scripts like Arabic. As we aim to expand
the scale of this study, a future direction will in-
volve training transliteration models between most
scripts of the world. This will allow more exten-
sive experimentation, both by incorporating more
language pairs and by allowing more control exper-
iments across various scripts. We will also further
explore the usage of more advanced G2P systems,
such as those developed for the SIGMORPHON
2020 Shared Task on Grapheme-to-Phoneme con-
version, or the models of Nicolai et al. (2018).
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Abstract

Neural sequence labelling approaches have
achieved state of the art results in morphologi-
cal tagging. We evaluate the efficacy of four
standard sequence labelling models on San-
skrit, a morphologically rich, fusional Indian
language. As its label space can theoretically
contain more than 40,000 labels, systems that
explicitly model the internal structure of a la-
bel are more suited for the task, because of
their ability to generalise to labels not seen dur-
ing training. We find that although some neu-
ral models perform better than others, one of
the common causes for error for all of these
models is mispredictions due to syncretism.1

1 Introduction

Sanskrit is a fusional Indo-European language with
rich morphology, both at the inflectional and deriva-
tional level. The language relies heavily on mor-
phological markers to determine the syntactic, and
to some extent the semantic roles, of words in a sen-
tence. There exist limited and partly incompatible
solutions (Hellwig, 2016; Goyal and Huet, 2016;
Krishna et al., 2018) for morphological tagging of
Sanskrit that heavily rely on lexicon driven shallow
parsers and other linguistic knowledge. However
recently, neural sequential labelling models have
achieved competitive results in morphological tag-
ging for multiple languages (Cotterell and Heigold,
2017; Tkachenko and Sirts, 2018; Malaviya et al.,
2018). We therefore explore the efficacy of such
models in performing morphological tagging for
Sanskrit without access to extensive linguistic in-
formation.

Most recent research treats morphological tag-
ging as a structured prediction problem where the
morphological class of a word is either treated as

1Code and data available at https://github.com/
ashim95/sanskrit-morphological-taggers

a monolithic label or as a composite label with
multiple features (Müller et al., 2013; Cotterell
and Heigold, 2017). Schmid and Laws (2008);
Hakkani-Tür et al. (2002) model the morphologi-
cal tags as a sequence of individual morphological
features. Recently, Tkachenko and Sirts (2018) pro-
posed to generate this sequence of morphological
features using a neural encoder-decoder architec-
ture. Hellwig (2016) shows a significant improve-
ment in performance for morphological tagging
in Sanskrit by using a monolithic tagset with re-
current neural network based tagging model. In
systems using monolithic labels, multiple feature
values pertaining to a word are combined to form
a single label (Müller et al., 2013; Heigold et al.,
2017), which leads to data sparsity for morpholog-
ically rich languages such as Czech, Turkish and
Sanskrit. The sparsity issue can be addressed by
using composite labels which model the internal
structure of a class as a set of individual features
(Tkachenko and Sirts, 2018; Zalmout and Habash,
2017). Malaviya et al. (2018) use a neural factorial
CRF to model inter-dependence between individual
categories of the composite morphological label.

However, as the decision for monolithic vs. com-
posite labels is one of the central design choices
when tagging morphologically rich languages, we
use Sanskrit as a test case for a systematic eval-
uation for this choice. For this evaluation, we
consider several neural architectures with differ-
ent modelling principles. For the monolithic tag
model, the neural architecture is based on a bi-
directional LSTM with a linear CRF layer stacked
on top of it (Lample et al., 2016; Huang et al.,
2015). For composite labels, we explored a neu-
ral generation model that generates a sequence of
morphological features for each word in the input
sequence. In order to explicitly capture the inter-
dependencies between the morphological features,
we use a model based on a factorial Conditional
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Tense 18 3 3

Case 8 3 3

Number 3 3 3 3

Gender 3 3 3

Person 3 3

Last char. 31 3 3 3

Other 5 3

Total 71 2232 162 40176 31 5

Table 1: Grammatical features and their distribution
over inflectional classes. ‘Others’ include forms such
as infinitives, absolutives, Indeclinables, etc.

Random Field (CRF) (Malaviya et al., 2018). Ad-
ditionally, independent classifiers trained under a
multi-task setting with sharing of parameters are
also explored (Inoue et al., 2017; Søgaard and Gold-
berg, 2016). Our experiments specifically focus on
the following problems and questions:

• Syncretism: We will show that syncretism, i.e.,
inflected forms of a lemma that share the same
surface form for multiple morphological tags, is
the major source of mispredictions. We evaluate
if and how models with monolithic and compos-
ite labels deal with this phenomenon.

• Performance on unseen tags: For models with
composite labels, it should be possible to predict
morphological classes which were not seen in
the training data. Our experiments show that the
performance of the systems remains more or less
the same irrespective of the neural architecture.

This raises an important point: Models that perform
marginally better in terms of evaluation metrics are
supposedly not superior, since we see similar per-
formances on special test sets targeting particular
statistical phenomenon (unseen tags) and linguistic
phenomenon (syncretism).

2 Problem Formulation and Models

Tagset: Sanskrit, similar to Hungarian (Zsibrita
et al., 2013) and Turkish (Çetinoğlu and Kuhn,
2013), relies on suffixes for marking inflectional
information. As Sanskrit has a rich inflectional
system, the size of the tagset plays a relevant role.
Hellwig (2016) uses a tagset with 86 possible la-
bels that merges some grammatical features based

on linguistic considerations. Krishna et al. (2018)
use an extended tagset of 270 features, by adding
the feature tense, but only to finite verbs. As the
systems tested in this paper do not use external
linguistic information that could restrict the range
of applicable features, we choose a tagset consist-
ing of the features shown in Table 1, which is in
principle motivated by the traditional grammatical
analysis of Sanskrit (Apte, 1885).2 As the declen-
sional type of a noun in Sanskrit is determined by
the last character in the non-inflected stem of the
word, we add the last character of the stem as a
morphological feature in our predictions.

Notation: Given a sequence of tokens x =
x1, x2..., xT , we aim at predicting a sequence of
labels y = y1, y2, ....yT , one for each token. Each
label yi is a composite label yi = {yi0, yi1, ...yit}
and consists of a collection of grammatical features
for xi.

Encoder: All neural sequence labelling models
tested in this paper (see below) use an encoder that
generates the input representations of words as fol-
lows. Given a sequence of tokens as input, for
each token xi ∈ x, its vector representation is ob-
tained by concatenating its word embedding with a
sub-word character embedding obtained from a bi-
directional LSTM similar to Lample et al. (2016).
These word representations are passed through a
word level Bi-LSTM to obtain hidden state hi for
each token in the sequence.

Monolithic Sequence Model (MonSeq): This
is a standard neural sequence labelling model with
a neural-CRF tagger (Lample et al., 2016; Huang
et al., 2015). A linear chain CRF is used as the
output layer for the monolithic labels used.

Neural Factorial CRF (FCRF): The model pro-
posed by Malaviya et al. (2018) is an end to end
neural sequence labeling model with a factorial
CRF (Sutton et al., 2007). The model is shown in
Figure 1a. In order to model the inter-dependence
between different morphological types, a pairwise
potential between cotemporal variables and a tran-
sitional potential between variables of the same
type of tags is used. As exact inference is compu-
tationally expensive, loopy belief propagation is

2Exhaustive list of inflectional tags used by three prevalent
tagging schemes in Sanskrit computational linguistics:
https://sanskritlibrary.org/helpmorphids.
html
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Figure 1: Models for composite tag prediction, demonstrated for the toy sentence rāmah. vanam. gacchati (English:
‘Rāma goes to the forest’). a) FCRF b) Seq c) MTL-Hierarchy. For illustrative purposes, we consider a tagset
consisting of only three categories.

used to compute approximate factor and variable
marginals.

Sequence Generation Model (Seq): We use a
sequence generation model (Tkachenko and Sirts,
2018) that predicts composite labels as sequences
of feature values for every token in the sequence.
For token xi, the LSTM hidden state hi is fed to an
LSTM based decoder, which generates a sequence
of feature values conditioned on the context vector
hi and the previous feature value. As shown in
Figure 1b, the decoding is initiated with a special
marker passed as input and terminates when the
decoder predicts an end marker.

Multi task learning (MTL): Here, we consider
each grammatical feature as shown in Table 1 as
a separate task. We experiment with two settings
for multi-task learning. In MTL-Shared the en-
coder parameters are shared across all the tasks,
and supervision for all the tasks is performed at
the same layer with each task having its own in-
dependent output CRF layer. In MTL-Hierarchy,
as proposed by Søgaard and Goldberg (2016), we
establish a hierarchy between the grammatical cat-
egories. A hierarchical inductive bias is introduced
by supervising low-level tasks at the bottom layers
and higher-level tasks at the higher layers (Sanh
et al., 2019). Concretely, for a task k, only the
parameters at the output CRF layer and those at the
shallower layers are updated. The model is shown
in Figure 1c. In order for the higher layers to have
access to the inputs, we use shortcut connections
as proposed in Hashimoto et al. (2017).

3 Experiments

Data: We use a training set of 50,000 and a test
set of 11,000 sentences from the Digital Corpus

of Sanskrit (DCS, Hellwig (2010–2020)). To pre-
pare the training set, we sample sentences such that
there exist at least 100 instances for each of the 71
features in Table 1. The training data still covers
only 2,757 out of possible 42,606 labels, indicat-
ing that the true dimension of the target space is
much lower than could be expected from Table 1.
The test data we use contain only about 0.5 % of
the tokens with labels not present in the training
set. Additionally we use a separate unseen test set,
where every sentence contains at least one word
with a monolithic label not present in the training
data.

3.1 Evaluation

We report the performance using average token-
level accuracy and F1-scores (see Malaviya et al.,
2018; Cotterell and Heigold, 2017; Buys and Botha,
2016). The average token-level accuracy is re-
ported on the exact match of a morphological tag
for a token, i.e., if it predicts all the morphological
features correctly. The F1 measure is computed on
a tag-by-tag basis, i.e. macro and micro averaged
at the grammatical category level, which provides
partial credit to partially correct tag sets.

3.2 Results

Table 2 shows the results for the five models studied
in this paper. We find that three of the four models
using composite labels obtain overall comparable
results, with hierarchical Multi-task model obtain-
ing the highest Macro and Micro F1-Scores, token
accuracy as well as outperforming other models
for category specific evaluation for 4 out of 5 cate-
gories. This highlights that there is some gains to
be had by inducing a hierarchical bias among these
morphological categories. As can be observed from
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System Token
Accuracy

Macro F1*
Score

Micro F1
Score T C N G L

MonSeq 75.15 85.16 85.14 79.64 86.39 91.05 80.37 83.86
MTL-Shared 81.72 90.82 90.84 85.98 88.31 95.61 90.84 90.00

MTL-Hierarchy 86.74 94.11 94.11 93.77 92.17 97.21 93.30 94.01
FCRF 85.37 93.01 93.01 92.35 89.08 96.38 92.44 94.03
Seq 85.95 92.72 92.72 91.10 89.66 96.52 92.01 93.12

Table 2: Performance of different systems for the morphological tagging task. All the reported values for Macro-F1
are statistically significant (p < 0.05), based on pairwise t-tests between the systems. The features (refer Table 1)
are marked using their first letter.

Syncretism Unseen
System Macro F1 Macro F1

Seq 70.44 55.98
MTL-Shared 70.26 55.02

MTL-Hierarchy 70.62 55.21
FCRF 68.80 55.62

MonSeq 52.55 –

Table 3: Macro-F1 score for the tokens which exhibit
syncretism (top 25 pairs, based on reported mispredic-
tions) and the unseen labels during training.

the results, all the composite models clearly out-
perform MonSeq in terms of Macro- and Micro
F1-Score, indicating their better performance for
rare morphological classes. Among the compos-
ite models, MTL-Shared clearly underperforms,
which is probably due to the fact that most of its
parameters are shared by all the tasks and no task
specific adaptation was possible. We also perform
pairwise t-tests and find that the gains reported are
statistically significant (p < 0.05).

One of our key findings is that syncretism is a
major source of error for all these systems. For
the composite models, about 20 % to 25 % of all
the mispredictions in nouns arise due to syncretism.
As expected it is worse for MonSeq, where close
to 37 % mispredictions are due to this linguistic
phenomenon. For a more detailed analysis, we
check the top 25 label-pairs of mis-predictions for
each system. In Table 3, we report macro F1-Scores
for the tokens which exhibit syncretism from this
filtered set. The reported results are far below the
overall F1-Macro scores, as shown in Table 2.

Composite-label models are also able to make
partially correct predictions for more unusual
forms. The 3rd person plural perfect form, sasar-
jire (English: ‘they have created’), for example, is
analysed as 3rd sg. perfect by Seq. This decision

Hierarchy Number Tense
N-G-C-T-L 97.21 93.77
T-C-N-G-L 96.49 90.12
N-G-L-T-C 97.24 92.85

Table 4: Results for Number and Tense based on differ-
ent configurations in MTL-Hierarchy. The shallow to
deep levels are marked by first character of the features.

should be influenced by the last letter -e, which can
indicate the 3rd singular of the perfect, while the
correct, and relatively rare, affix is -ire. MonSeq
predicts a locative singular of a non-existing noun
*sasarjira in this case. Again, this decision is proba-
bly based on the last letter -e, which in most cases
derives the locative singular.

Table 3 (right half) shows how the models per-
form for tags unseen during training (on unseen
test set). We consider 11 of such case, number and
gender combinations, 14 tense, person and number
combinations and two of the tenses additionally
for the participles. Among four different compos-
ite models, the macro F1-Score for ‘Seq’ model is
similar to what is observed in Tkachenko and Sirts
(2018) for a fusional language like Czech. More-
over, the behaviour for all the composite models
remains more or less same for unseen labels.

Next, we explore if there is a natural hierar-
chy for supervision of morphological categories
in MTL-hierarchy model. For this, we train the sys-
tem in different permutations of feature hierarchies
as shown in Table 4. We observe that the feature
number benefits from supervision at a shallower
level, whereas tense always benefits from supervi-
sion at a deeper level. The trends for other features
were not as conclusive, but these results show there
might be an inherent hierarchy among some of the
morphological features.

Krishna (2019), an extended version of the en-
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ergy based model proposed in Krishna et al. (2018),
report the state of the art results for morphological
parsing in Sanskrit. They report a token level ac-
curacy, macro averaged over sentences, of 95.33
% on a test set of 9,576 sentences. The FCRF and
SeqGen models, when tested on their test dataset,
achieve an average sentence level token accuracy
of 80.26 % and 81.79 % respectively. Here, it needs
to be noted that the morphological tagger used in
Krishna (2019) relies on a lexicon driven shallow
parser to obtain a smaller search space of candi-
dates. However, this makes the model a closed
vocabulary model as it would fail for cases where
the words are not recognised by the lexicon-driven
parser, as there will be no analyses for such words.
On the contrary, none of the models presented in
this work are constrained by the vocabulary of any
lexicon.

4 Conclusion and Future Work

In this work, we evaluated various neural models
for morphological tagging of Sanskrit, concentrat-
ing on models that are capable of using composite
labels. We find that all the composite label models
outperform MonSeq by significant margins. These
models, with an exception to MTL-Shared, achieve
overall competitive results when enough training
data is available. A major problem for all the se-
quence labelling models studied in this paper is syn-
cretism of morphological categories, which should
constitute the main focus of future research.
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Abstract

This work investigates the most basic units
that underlie contextualized word embeddings,
such as BERT — the so-called word pieces.
In Morphologically-Rich Languages (MRLs)
which exhibit morphological fusion and non-
concatenative morphology, the different units
of meaning within a word may be fused, in-
tertwined, and cannot be separated linearly.
Therefore, when using word-pieces in MRLs,
we must consider that: (1) a linear segmen-
tation into sub-word units might not capture
the full morphological complexity of words;
and (2) representations that leave morpholog-
ical knowledge on sub-word units inaccessi-
ble might negatively affect performance. Here
we empirically examine the capacity of word-
pieces to capture morphology by investigating
the task of multi-tagging in Hebrew, as a proxy
to evaluating the underlying segmentation.
Our results show that, while models trained
to predict multi-tags for complete words out-
perform models tuned to predict the distinct
tags of WPs, we can improve the WPs tag pre-
diction by purposefully constraining the word-
pieces to reflect their internal functions. We
conjecture that this is due to the naı̈ve linear to-
kenization of words into word-pieces, and sug-
gest that linguistically-informed word-pieces
schemes, that make morphological knowledge
explicit, might boost performance for MRLs.

1 Introduction

Contextualized word-embedding models, such as
BERT (Devlin et al., 2019) and XLNet (Yang
et al., 2019), rely on sub-word units called word-
pieces (Johnson et al., 2017), that enable these
models to generalize over frequent character-
sequences and elegantly handle out-of-vocabulary
items (with minimal resort to character-based
models). This word-pieces architecture helps
the models make better predictions for complete

words without the need to keep a large dictionary
for all the possible word-forms in a language.

Effectively analyzing the internal content of
words is important for Morphologically-Rich Lan-
guages (MRLs) (Tsarfaty et al., 2010), that express
multiple units of meaning at word level. Due to
morphological ambiguity, the interpretation of the
many functions of a complete word has to be deter-
mined in the context of the utterance, making ex-
plicit the contribution of each linguistic sub-word
unit (a.k.a., morpheme) to the global meaning.

In this study we aim to investigate how well
morphological information is captured by contex-
tualized embedding models, or, more specifically,
by their underlying word-pieces. We hypothesize
that the word-pieces tokenization scheme in these
models, which is not reflective of the actual mor-
phology, will decrease the models ability to pre-
dict morphological functions on sub-word units.

In order to test this hypothesis we use Multi-
lingual BERT (Devlin et al., 2019) on the task
of multi-tagging raw words in a morphologically
rich and ambiguous language, Modern Hebrew.
Pre-neural studies on Hebrew found that explic-
itly modeling sub-word morphological informa-
tion, substantially improves results on tagging and
parsing down the NLP pipeline (More and Tsar-
faty, 2016; More et al., 2019). Here our results
show a significant drop in multi-tagging accuracy
in word-level settings compared to settings where
we aim to tag the distinct WPs. Nevertheless,
when we purposefully incorporate morphological
knowledge that reflect the internal functions of
WPs, the tagging of WPs substantially improves.

We conjecture that current word-pieces archi-
tectures might be sub-optimal for capturing com-
plex (e.g., fusional) morphology, and that more
morphologically-informed schemes may yield
better models, at least for MRLs.
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2 The Data: All Analytic Languages are
Alike, Each MRL Is Rich In Its Own
Way

Morphologically-Rich languages (MRLs) (Tsar-
faty et al., 2010) are languages that express syn-
tactic relations by inflection or agglutination at
word level. In NLP, MRLs often require segmen-
tation into sub-word units called morphemes as
part of the pre-processing in the NLP pipelines.
The term morphological fusion, or simply fusion,
refers to the degree to which morphemes are con-
nected to a word host or stem (Bickel and Nichols,
2013). There are three values for the degree of
fusion: isolating (low), concatenative (mild) and
non-concatenative (high). MRLs thus belong to
the mild- and high-fusion language groups.

In concatenative MRLs like Turkish (Swift,
1963) and Russian (Wade, 1992; Shevelov, 1957)
morphemes are linearly connected to the stem,
and so a concatenated word-form can easily be
segmented back into its composing morphemes.
Segmenting highly fusional MRLs (henceforth
fMRL), like Hebrew (Berman and Bolozky, 1978),
is not as simple, since words can be affixed in
such a way that makes the stem and/or affix un-
dergo morpho-phonological changes resulting in
ambiguous, syncretic word-forms. These changes
cannot be restored without morphological disam-
biguation of the word in context of the whole sen-
tence. Furthermore, word-forms may involve a
combination of a root and a template which are
intertwined via a non-concatenative process, and
both contribute meaning to the word-form.

Let us consider two examples for high fusion
morphological phenomena in Modern Hebrew.
First, consider the word-form !Mבצל. It can
either mean ‘in their shadow’ ∧Preposition-ב!) -צל!
Noun∧ !Mשלה-Possessive), ‘their onion’ -בצל!)
Noun∧ !Mשלה-Possessive)), ‘in the photographer’
( ∧Preposition-ב! ∧Definite-ה! !Mצל-Noun) or ‘Betse-
lem’ (!Mבצל-Proper Noun, a known organization).
The differences between the actual word-form
!Mבצל and the segments representing the compos-
ing morphemes in the different analyses, illustrate
how complex morphological processes in Hebrew
dictate the final word form — that is, the final
form is no longer re-constructable by (simply
concatenating) the morphological segments.
Among the different analyses, no interpretation is
a-priori more likely than others. Only in context
the correct analysis can be determined.

Next, let us consider the following two verbs:
שומר! (‘/somer’, keep.PRES.MASC.SG, ‘keeps’)
and נ¢שמור! (‘ni-/smor’, 1st.PL.FUT-keep.FUT, ‘we
will keep’). Here, although the affixes ,ו! נ¢! can be
separated from the root letters ,שמר! the analysis of
the verb cannot be constructed by analyzing the
mere character sequences, it must be understood
from the unified form of the morphemes.

So, from the first example, we observe that mor-
phological disambiguation is crucial, and that con-
textualized models may actually be good candi-
dates for morphological disambiguation where the
external context is crucial. But from the second
example, we learn that the linear order and strict
separation of words into word-pieces, as is done in
current contextualized embeddings, may be too ar-
bitrary and too strict, which may in turn undermine
the performance of tasks down the NLP pipeline,
particularly for fMRLs.

3 The Question: How Adequate are
Word Pieces for Modeling Morphology

The Goal This paper aims to investigate
whether word pieces capture sufficient morpho-
logical information about whole words. That is,
we ask whether the information contained in such
representations would allow to predict the multi-
ple functions of an input, i.e. a space-delimited
word-form. In particular, we empirically exam-
ine this capacity via the task of multi-tag assign-
ment in Hebrew — where each multi-tag reflects
the analyses of a single word-form bearing multi-
ple POS tags — as illustrated in our Hebrew ex-
ample in section 2. We conduct a series of exper-
iments on multi POS-tag assignment to raw word
forms in Hebrew texts, changing the granularity
of the input and the output to reflect word-internal
functions that are potentially captured by individ-
ual word-pieces.

The Task We define a multitag as a single label
that consists of the multiple POS tags reflecting
the categories of the (morphological) segments of
a word-form. For example, we assign the word-
form ,בבית! which means ‘in the house’, the mul-
titag IN∧DEF∧NN. In all of our experiments, the
model receives as input a sentence that underwent
a tokenization into word pieces by the built-in tok-
enizer of mBERT (Wolf et al., 2019). We then out-
put a multitag for each word as whole. Our models
vary in how much (and what kind of) information
is predicted for each of the word-pieces.
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Experimental Setup We use the Hebrew sec-
tion of the SPMRLs treebank, which consists of
6500 sentences from the daily newspaper Ha’aretz
(Sima’an et al., 2001). This corpus was manu-
ally annotated for POS tags at morpheme-level by
trained experts, and it is the accepted benchmark
for all morphological processing tasks in Hebrew.
We fine-tune the models using the Pytorch imple-
mentation of transformers by Wolf et al. (2019).
We use its standard BertTokenizer and BertForTo-
kenClassification, with multilingual BERT (cased)
as our model for fine-tuning.

We use the standard train set as input for fine-
tuning, and evaluate and report results on the dev
set. We report on two measures. The first is Exact
Match (EM), that is, the percentage of correct mul-
titag assignments from all multitag assignments to
word-forms in the evaluation set.

EM =
# correct multitags

# words
(1)

The second is Existence F1: precision and recall
on the existence of correct POS tags in a (possible
incorrect) multitag assignment. We compute Ex-
istence F1 based on the precision and recall that
follow. For calculating the precision and recall the
predicted multitag is split into its composing sim-
ple POS tags. Note that F1 gives partial credit on
correctly identified POS in the case of partial iden-
tification or wrong order, while EM doesn’t.

Precision =
# correctly predicted individual POS tags

# individual POS tags in all multitag assignments (2)

Recall =
# correctly predicted individual POS tags

# individual POS tags in all multitags in the evaluation set
(3)

3.1 Models
3.1.1 Oracle
We begin with an Oracle scenario that emulates
an English-like POS tagging scenario, where the
input is a sequence of strings, in our case gold pre-
segmented morphemes, and the output is a single
POS tag per segment. For fine-tuning, we use pre-
segmented words along with their corresponding
POS tags, as it is gold-annotated in our training
data. It should be noted that these segments un-
dergo additional tokenization into word pieces by
mBERT’s tokenizer, based on its internal word-
pieces lexicon, prior to fine-tuning.

For comparability with the other models, the
evaluation is done on raw words i.e., we combine

Before Tokenization: After Tokenization:
Nickname Word label WP label

Oracle ל! IN ל! IN
ה! DEF ה! DEF

משטרה! NN מש! NN
טר!## NN
ה!## NN

Word-Level למשטרה! IN-DEF-NN ל! IN-DEF-NN
משטרה!## IN-DEF-NN

Word-Level למשטרה! NN ל! NN
Host משטרה!## NN

Word-Level למשטרה! IN-DEF ל! IN-DEF
Prefix משטרה!## IN-DEF

Decomposed ל! IN ל! IN
ה! DEF ה! DEF

משטרה! NN מש! NN
טר!## NN
ה!## NN

Decomposed למשטרה! IN-DEF-NN ל! IN-DEF
Informed משטרה!## NN

Table 1: The Labeled Data we crafted for Fine-
Tuning the Models. We illustrate it for the Hebrew
form למשטרה! (to-the-police, IN-DEF-NN), before and
after the tokenization to WPs by BERT. At inference,
the Oracle is given pre-segmented words to tag. All
other models are given complete word-forms as input.

the predicted simple tags into a multitag and com-
pare it to the original multitag per word. This
scenario is of course not realistic, in the sense
that gold segmented data at morpheme level are
slow and costly to deliver. However, this setting
provides an empirical upper-bound for the per-
formance of BERT on a simple POS tagging in
Hebrew. We hypothesize that, had BERT’s tok-
enization into word pieces been morphologically
informed, the model’s accuracy in word-level set-
tings could rise up to the level of performance on
this pre-segmented Oracle scenario.

3.1.2 Word-Level Multi-tagging
Moving on to a realistic scenario, in our next task
the input to the model is a sequence of raw word
forms, and the output is a sequence of multi-tags,
one multi-tag (i.e., multiple POS) per word. Dur-
ing fine-tuning, each word piece (WP) is assigned
the multitag of the complete original word. Unlike
the Oracle setting, where the input for fine-tuning
reflected morphological phenomena, here no mor-
phological knowledge is incorporated at all. Dur-
ing inference, the input is composed of raw words
which undergo BERT’s tokenization into word-
pieces (WP), and each WP gets assigned one of
the multi-tags encountered during fine-tuning.

The goal here is to examine the ability of
the BERT-based representations to cope with a
large space of complex labels (multi-tags) that re-
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Model Nickname Oracle Word-Level Word-Level Informed Decomposed Decomposed Informed
Model Input Gold-Morph. Segment Word Word Word Word
Model Output Tag Multi-tag {Prefix|Host}Multi-tag WP-based Multi-tag WP-based Multi-tag
Fine-Tuned on Tagged Segments Multi-tagged Words {Single|Multi}-tagged Word-Pieces
Exact Match 94.44 92.45 92.05 69.47 86.66
Existence F1 95.51 94.09 94.22 76.65 88.71

Table 2: Empirical Results. We report EM and F1 on raw-words’ multi-tags, for all models and training regimes.

sult from different morphological (and morpho-
phonological) processes that construct words in an
MRL. This setting has several drawbacks; first, it
is unable to generalize to an unseen composition
of tagged-pieces into a new multitag, and second,
throughout the process, the internal morphological
segmentation of the tokens remains inaccessible.

3.1.3 Prefix/Host Multi-tagging

Retaining our realistic settings, where the input is
composed of raw words, we split multi-tagging
into two independent tasks. One predicts the
multi-tag reflecting the prefix of that word, and
the other predicts the multi-tag of its host (plus
pronominal clitics).1 The input for fine-tuning, in
both cases, presents raw words having undergone
BERT’s tokenization, and each WP is assigned the
multi-tag of the Prefix (/Host) of that word.

For the prefix task, we implemented a func-
tion that looks for all known tags that represent
prefixes in Hebrew, and truncated the complete
multitag of the word to include only them. For
instance, a word that is assigned the multi-tag
IN∧DEF∧NN will now get assigned the multi-tag
IN∧DEF. Words that don’t contain a prefix get as-
signed the label ‘–‘. Likewise for the host, words
are assigned only the part of the multi-tag that
doesn’t contain prefix tags. For the above exam-
ple, this would simply be NN. Fine-tuning is per-
formed independently for each of the tasks. At
inference time, the predictions for the prefix and
host are combined into a single multi-tag, com-
pared against the gold multi-tag for evaluation.

One technical advantage of this setting is that it
substantially limits the label-space that needs to be
learned per word. Also, unlike the previous sce-
nario, the model is able to generate unseen mul-
titags (to some extent) by creating previously un-
seen Prefix-Host compositions.

1Since Hebrew can stack prefixes before a host, the pre-
fixes require a multi-tag. Similarly, hosts with pronominal
clitics may also be assigned a multi-tag rather than one tag.

3.1.4 Decomposed Multi-tagging
In this scenario we aim to assign to each WP a
single tag that corresponds to the actual function
of that WP.

For fine-tuning, we use the same data as in the
Oracle scenario. That is, we use pre-segmented
morphemes that undergo BERT’s tokenization,
paired with their corresponding tags, a single tag
per WP. Now, at inference time, whole words
undergo BERT’s tokenization into word-pieces.
Since the model was trained (fine-tuned) to pre-
dict a single tag per word-piece, the hope is that we
could predict the single tag that reflects the func-
tion of this specific WP. We then combine all the
(unique) predictions for all the WPs in the word to
concatenate them to a single multi-tag.

This setting tests whether the tokenization al-
gorithm outputs WPs that are reflective of the ac-
tual morphemes the model was fine-tuned on. If
this is the case, predicting a single POS tag per
WP would perform similarly to the Oracle setting.
Howvere, since the internal decomposition of the
words at inference time is determined solely by
BERT’s WPs, any diversion between the WP tok-
enization and the gold morphological decomposi-
tion is expected to negatively affect performance.

3.1.5 Morphologically-Informed
Decomposed Multi-tagging

Here again the input for the task consists of raw
words, tokenized by BERT into word-pieces. As
output we now aim to assign each word-piece a
multi-tag that reflects exactly its own content.

The input to fine-tuning thus has to be modified.
We use raw words having undergone BERT’s to-
kenization into WPs, and each WP is assigned a
multitag label that reflects the actual POS tag(s)
that this part of the word contains (an informed
multi-tag). We obtain these informed multi-tags
using a deterministic procedure that compares the
WPs proposed by BERT to the gold morphological
segmentation we have for the training data. Dur-
ing training, we can unambiguously detect which
morphemes are relevant for the WP only, and the
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WP gets assigned the multi-tag of the actual mor-
phemes it contains. At inference time we provide
BERT-tokenized words as input, and each WP gets
assigned an informed multi-tag as observed dur-
ing fine-tuning. For evaluation, we combine the
prediction made on all WPs of a word to a sin-
gle ordered multi-tag, and compare it to the gold
multi-tag of that word. Interestingly, this setting
can potentially generate previously unseen multi-
tags, and it maximizes the extent to which we can
access word-internal structure during fine-tuning.

4 Results

The input, output and training regimes for our
models are illustrated in Table 1. Table 2 presents
the results on multi-tagging for all of our models.

As expected, the Oracle scenario assigning sin-
gle tags to gold segments outperformed all other
models that aim to multi-tag complete words. For
word-level multi-tagging, the word-level model
performed at the same level as the Prefix/Host
model — narrowing down the labels’ space in this
fashion does not seem to improve results or pro-
vide any further generalization capacity.

Purposefully fine-tuning our model to assign a
single POS tag per WP (trained on our gold mor-
phological data) did not help, in fact it dramati-
cally hurts performance. This indicates that WPs
in and of themselves do not coincide with the no-
tion of morphemes. Curiously though, inform-
ing BERT’s WPs as to their own internal func-
tion prior to fine-tuning significantly improves the
results compared to the model trained to assign a
POS-per-WP based on gold morphology.

This last result suggests that, while current WPs
do not reflect morphological structure and lose
morphological distinctions in their sub-word units,
informing these word-units as to their own internal
functions can provide a major performance boost.
So far, we only incorporated such morphologi-
cal information during fine-tuning. We conjecture
that informing the WP algorithm earlier on, prior
to pre-training, with a linguistically-informed de-
composition into WPs, may greatly advance the
performance of contextualized models for fMRLs.

5 Related Work

Although the term ’word pieces’ was only coined
in 2017, by Johnson et al. (2017), the idea that
sub-word segmentation might be useful for down-
stream tasks was already well-known and studied,

especially in the field on Neural Machine Trans-
lation. In 2010 Luong et al. (2010) explicitly
showed that incorporating morphological knowl-
edge in the translation process significantly im-
proves translation. In 2017 Belinkov et al. (2017)
found that for learning morphology it is better
to use character based representation rather than
word-based ones. They also found that neural net-
works encode morphology in the lower layers of
the network, which might explain why mere fine-
tuning is insufficient to capture morphological
complexity. Later, Straka et al. (2019) achieved
SoTA on POS tagging on 54 languages, includ-
ing Heberew, but was using BERT embeddings
along with character level embeddings and Fast-
text (Bojanowski et al., 2017) word embeddings
on gold morphology, which strengthen our claim
that word pieces by themselves don’t capture mor-
phology well. This was also supported by Mielke
and Eisner (2019), that explicitly mentioned the
non-concatenativity of Hebrew and Arabic as the
major drawback of sub word tokenization systems.

6 Conclusion

In this work we examined the adequacy of BERT’s
word-pieces as sub-word units for representing
complex morphology. We chose to investigate
multi-tagging in a high fusional language, as a
proxy for assessing the underlying segmentation
into distinct morphemes. We expected that if dis-
tinct word-pieces indeed reflect units of meaning,
then tagging them would be as accurate as it is for
languages that assign a single tag per word. Our
results show that the current word pieces do not
reflect actual morphology, resulting in decreased
performance for tagging complex Hebrew words.
Nonetheless, we found that imposing morpholog-
ical knowledge during fine-tuning (an Informed
setup) is indeed helpful, albeit a bit late. We con-
jecture that pre-training with a morphologically-
informed word-pieces scheme that reflects a com-
plex morphological reality, has the potential to im-
prove multi-tagging, as well as other tasks down
the pipeline, in Hebrew and other fMRLs.
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Evaluating contextualized embeddings on 54 lan-
guages in pos tagging, lemmatization and depen-
dency parsing. arXiv preprint arXiv:1908.07448.

Lloyd B. Swift. 1963. A Reference Grammar of Mod-
ern Turkish. Indiana University Press, Bloomington.
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Abstract
We investigate the problem of searching for
a lexeme-set in speech by searching for its
inflectional variants. Experimental results
indicate how lexeme-set search performance
changes with the number of hypothesized in-
flections, while ablation experiments highlight
the relative importance of different compo-
nents in the lexeme-set search pipeline and the
value of using curated inflectional paradigms.
We provide a recipe and evaluation set for the
community to use as an extrinsic measure of
the performance of inflection generation ap-
proaches.

1 Introduction

Keyword search (KWS) is the task of finding cer-
tain words or expressions of interest in a body
of speech. KWS is relevant to incident-response
situations such as those modeled by LORELEI
(Strassel and Tracey, 2016) and was a focus of the
IARPA Babel Program.1 In the event of a humani-
tarian crisis, processing speech to determine men-
tions of certain keywords can inform better deci-
sion making when time is critical.

KWS is typically framed as searching for in-
stances of a keyword in lattices that result from
speech recognition decoding, as this means search
is not restricted to a potentially incorrect one-best
transcription. However, existing work on KWS
assumes the relevant form of a keyword has been
correctly specified. Many concepts to be searched
for in speech take different forms through inflec-
tion as a result of the language’s morphosyntax. In
most cases, distinctions between such inflections
(e.g. kill, kills, killing, killed) are irrelevant to the
problem of searching for the underlying concept
of interest.

Producing such inflection sets manually is ar-
duous, even for native speakers, yet curators of

1www.iarpa.gov/index.php/research-programs/babel

Lemma Inflections Speech

amanzi

7 namazi

3emanzini

3ngamanzi
...

...

3

7

Figure 1: An example Zulu keyword lemma (left) is
inflected (middle) and then searched for in a corpus of
speech (right). 3and 7 indicate correct/incorrect inflec-
tions, and correct/incorrect findings of the inflection in
the corpus.

keyword lists may have to construct them cross-
lingually using bilingual dictionaries, which typ-
ically only contain canonical forms. Compound-
ing this issue are the limitations of existing lan-
guage technology for most of the world’s lan-
guages across the whole KWS pipeline, including
inflection generation, the language model (LM),
the pronunciation lexicon, and the acoustic model.

In this paper we explore the application of in-
flection generation to KWS by searching for in-
stances of a lexeme (see Figure 1). To the best of
our knowledge, this task has not been investigated
before. Using Bengali and Turkish as evaluation
languages, we scale the number of inflections gen-
erated per lexeme-set to examine how the trade-
off between false positives and false negatives af-
fects downstream KWS. We additionally perform
experiments that assume varying quality of inflec-
tion generation. Our findings show that lexeme-
set KWS yields promising results even when all
inflections must be generated on the basis of a dis-
tantly supervised cross-lingual approach to train-
ing inflection tools, though we observe that having
a curated set of inflectional paradigms is important
for achieving good performance. These first re-
sults encourage future work for lexeme-set search
in speech, and the use of KWS as an extrinsic eval-
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uation of inflection generation tools.
To this end, we make available to the com-

munity a lexeme-set KWS pipeline with baseline
models for inflection generation, grapheme-to-
phoneme conversion (G2P), multilingual acous-
tic modeling, and cross-lingual inflection genera-
tion, and a KWS evaluation set built on a suitable
intersection of UniMorph inflection sets (Sylak-
Glassman et al., 2015; Kirov et al., 2018) and
the Babel speech (Andresen et al., 2016; Bills
et al., 2016). The combination of these compo-
nents serves as a novel downstream evaluation of
inflection generation approaches, as well the other
components in the pipeline. We make this recipe
and evaluation set freely available online.2

2 The lexeme-set KWS Pipeline

The pipeline starts with a lexeme of interest from
the evaluation set (§2.1). Inflections of the lexeme
are generated using some generation tool or man-
ual resource (§2.2). These inflections are then con-
verted to a phonemic representation (§2.3) before
being added to the lexicon used in speech recogni-
tion. KWS is then performed (§2.4) by decoding
the speech and the model is scored on the how well
it finds instanes of the lexeme.

2.1 Evaluation Set

We evaluate systems based on their ability to com-
plete the following task: given a lemma, find all
occurrences of its inflections in speech. To create
an evaluation set for this task, we use UniMorph
data, which provides ground truth inflection sets
for a substantial number of languages. We use as
our evaluation set instances of words in the Babel
10h development set that also are inflections in the
UniMorph data. We remove from this set a small
number of inflections that occur in more than one
paradigm, as well as those that don’t occur in the
Babel pronunciation lexicon. This means that we
can use the Babel lexicon as an oracle pronuncia-
tion lexicon with respect to our constructed eval-
uation sets to compare against our other methods.
The result is an evaluation set tailored to morpho-
logically salient word forms, with 1250 Turkish
paradigms and 59 Bengali paradigms. The set
of evaluation languages that can be extended to
other languages in the Babel set for which we have
ground truth paradigms.

2https://github.com/oadams/inflection-kws

2.2 Inflection Generation

Inflection generation is the task of producing
an inflection, given a lemma and a bundle of
morphosyntactic features. For example, run +
{PRES;3;SG} 7→ “runs”. The state of the art in
inflection generation has arisen from the CoNLL–
SIGMORPHON Shared Tasks (Cotterell et al.,
2016, 2017, 2018; McCarthy et al., 2019), and typ-
ically consists of a modified sequence-to-sequence
model with attention (Makarov and Clematide,
2018).

However, these systems are fully supervised,
and hand-curated morphological dictionaries of-
ten do not exist. We instead turn to the meth-
ods of Nicolai and Yarowsky (2019), who use
English annotation as distant supervision to in-
duce target language morphology, using a widely-
translated, verse-parallel text: the Bible. Start-
ing from the inflection pairs extracted by their
method, we ensemble generators trained using an
RNN and DirecTL+ (Jiampojamarn et al., 2010).
For each lemma in the respective UniMorph, we
generate hypotheses for each feature bundle, en-
sembling via a linear combination of confidence
scores. This gives us a set of inflections for each
of the lexemes in the evaluation set which can then
be searched for in the speech.

2.3 Grapheme-to-Phoneme Conversion

To include hypothesized inflections in the KWS
pipeline, orthographic forms of inflections must be
mapped to a phonemic form consistent with the
units used by the acoustic model (Maskey et al.,
2004; Chen et al., 2016; Mortensen et al., 2018;
Schultz et al., 2007; Kominek and Black, 2006;
Deri and Knight, 2016; Trmal et al., 2017). We
use a finite-state transducer model trained with
Phonetisaurus3 on 5,000 word forms in the target
language.

2.4 Keyword Search

After generating inflections of lemmas in the eval-
uation set, these inflections are then included in the
lexicon used in KWS. The KWS involves decod-
ing the speech into lattices, and assessing lattice’s
inclusion of the keyword of interest. Our pipeline
builds on the Kaldi OpenKWS system (Trmal
et al., 2017), which uses the standard lattice in-
dexing approach of (Can and Saraclar, 2011). We

3github.com/AdolfVonKleist/
Phonetisaurus
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use augmented pronunciation lexicons for KWS,
which has been shown to outperform proxy KWS,
a popular alternative (Chen et al., 2013).

The novel problem of lexeme-set KWS is re-
lated to work on out-of-vocabulary KWS, which
has been approached by handling sub-word units
such as syllables and morphemes (Trmal et al.,
2014; Narasimhan et al., 2014; van Heerden et al.,
2017; He et al., 2016). In contrast to KWS with
sub-word granularity, our approach is to generate
likely full-word inflections given a lemma.

For language modeling, we used a 4-gram
modified Kneser-Ney baseline (Kneser and Ney,
1995). We compare using as training data the in-
domain Babel text to the Bible, a resource avail-
able for many languages, and which was the re-
source used for cross-lingual distant supervision
for inflection generation described in Section 2.2.
Hypothesized inflections not seen in the training
data receive some probability mass in language
model smoothing as is default in SRILM (Stolcke,
2002), the language modeling tool used.

Though a monolingual acoustic model could
have been used, we chose to use a “universal”
phoneset acoustic model which can effectively be
deployed on languages not seen in training and is
motivated by work in multilingual acoustic mod-
eling (Schultz and Waibel, 2001; Le and Besacier,
2005; Stolcke et al., 2006; Vesely et al., 2012;
Vu et al., 2012; Heigold et al., 2013; Scharenborg
et al., 2017; Karafiát et al., 2018). We train an
acoustic model on 300 hours of data from 25 lan-
guages using a common phonemic representation
across languages. The training data includes 10
hours for each of 21 different languages from the
IARPA Babel corpus, a 20 hour subset of the Wall
Street Journal,4 Hub4 Spanish Broadcast news,5

and the Russian and French portions of the Vox-
forge6 corpus.

3 KWS Evaluation Metrics

We evaluate KWS performance on a per lexeme-
set basis, rewarding the system when it finds any
form of an evaluation lexeme, regardless of how
it is inflected, while also penalizing failure to find
any inflection.

As an evaluation metric we use term weighted
value (TWV), a standard metric in KWS devel-

4LDC94S13B
5LDC98T29
6http://voxforge.org

oped for the NIST 2006 Spoken Term Detection
evaluation (Fiscus et al., 2007), which rewards
joint maximization of recall with minimization of
false positives. TWV relies on a threshold param-
eter to determine what minimum level of confi-
dence is required by the system in order to assert
keyword findings. There are several variations of
term weighted value (TWV) that are different in
the way the threshold is handled: Actual (ATWV),
Optimum (OTWV), and Supreme (STWV).

ATWV is the TWV of the system given some
global threshold (provided by the system) of con-
fidence common to all keywords, and is the most
common metric used to compare systems.

OTWV determines a per-keyword (in our case,
per lexeme-set) threshold. For our purposes this
is the most informative metric because it gives a
better sense of how the ATWV would be if sys-
tem effectively normalized confidences across lex-
emes. Improvements to TWV may also poten-
tially be made beyond what is represented by the
OTWV. Some inflections are more likely than oth-
ers, yet the thresholds for OTWV are made at a per
lexeme-set basis, not a per-inflection basis. Im-
proving how the system weights the likelihood of
different inflections (either during inflection gen-
eration or in the LM probabilities) would likely
substantially improve ATWV.

STWV is a recall-oriented version of TWV that
disregards the confidence of the terms and does not
penalize false positives. It is thus similar to lattice
recall and serves as a useful metric in system anal-
ysis for determining whether low ATWV/OTWV
is due to large number of false positives or issues
in effective speech word lattice decoding.

4 Experiments

We conduct experiments to see how perfor-
mance of KWS relates to the number of inflec-
tions hypothesized by the cross-lingual distantly-
supervised method described in Section 2.2
(henceforth RNN+DTL), before comparing it to
several alternative benchmark methods.

As evaluation languages we used Bengali and
Turkish, a subset of languages for which we have
Bibles and that also occur in UniMorph. We ob-
served similar trends and relative performance of
methods for both languages languages so in the
subsequent results we present the arithmetic mean
of the results of Bengali and Turkish.
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Figure 2: Variations on the term weighted value (TWV)
metric for different numbers of generated inflections
per morphosyntactic bundle (by RNN+DTL). Overgen-
eration of inflections improves recall, as captured by
STWV, but leads to too many false positives when
k ≥ 80.

4.1 The Number of Generated Inflections

To gauge how over-generation of inflections af-
fects KWS performance we scaled k, the number
of inflections generated per morphosyntactic bun-
dle. Figure 2 illustrates how TWV varies with re-
spect to k for inflections generated by RNN+DTL
in a KWS system that uses the in-domain Babel
LM. At values of k beyond 40 the ATWV and
OTWV began to decrease, as the number of false
positives was too high. The recall-oriented STWV
continued to increase, peaking at 0.764 when k =
160. It is noteworthy that OTWV only began to
decrease at such a value of k. For Turkish nouns,
with 23 bundles per lexeme-set, a value of k = 40
corresponds to 920 inflections, the vast majority
of which are invalid inflections. This indicates that
there is room for a substantial amount of inflection
overgeneration in KWS, since the speech recogni-
tion can provide acoustic evidence against incor-
rect inflection candidates.

4.2 Comparison of Inflection Approaches

To get a comparative sense of the KWS perfor-
mance of RNN+DTL at the best value of k, we
compare it with three other approaches: Oracle,
UniMorph, and Lemmas, as shown in Table 1.
Oracle includes exactly the set of inflections

that occur in the evaluation set. UniMorph in-
cludes all the inflections that occur in the Uni-
Morph data, which differs from Oracle in that
it contains true inflections that don’t happen to oc-
cur in the Babel speech. We included this to as-

Inflections LM ATWV OTWV STWV

Oracle Babel 0.315 0.463 0.866
UniMorph Babel 0.392 0.513 0.864
RNN+DTL Babel 0.133 0.269 0.577
Lemmas Babel 0.169 0.219 0.281

RNN+DTL-NS Babel 0.304 0.443 0.815
RNN+DTL Bible 0.046 0.206 0.561

Table 1: Term weighted value (TWV) under varying
conditions: Oracle inflections known to occur in the
Babel speech; UniMorph inflections that additionally
include true inflections not seen in speech; RNN+DTL-
generated inflections via distant cross-lingual super-
vision; Lemmas-only search. Discounting spurious
forms from RNN+DTL shows its high recall. Using
an out-of-domain LM substantially decreases perfor-
mance.

sess how true inflections of the lexeme that are not
found in the speech affect performance. It helps
substantially for ATWV and OTWV, but not for
STWV. This somewhat counterintuitive result sug-
gests that including more inflectional variants of
a lexeme may not improve recall (i.e. improve
STWV) but can decrease the number of false pos-
itives.
Lemmas searches only for citation-form lem-

mas. It has a relatively decent ATWV (even out-
performing RNN+DTL, though not by OTWV) de-
spite low recall (as indicated by STWV) because
it has few false positives and also because most
inflections sound similar to the lemmas via the ad-
dition of an affix. As a result, searching for the
lemma often catches inflectional variants too.

We consider two further points of comparison.
Firstly, RNN+DTL with only a Bible-trained LM,
which underperforms other systems substantially
except in lattice recall as indicated by STWV.
Secondly, RNN+DTL-NS, which removes from
RNN+DTL spurious inflections that weren’t found
in Oracle. Comparison of RNN+DTL-NS and
RNN+DTL demonstrates that while the system has
some robustness to overgeneration of inflected
forms (§4.1), it is also the case spurious inflections
not only increase false positives, but can actually
hurt recall too.

These results indicate that correctly generat-
ing inflected forms and properly weighting the
hypothesized inflections (either via the inflection
generation module, or in the language model) is
the most critical bottleneck in the pipeline. The
high relative performance of Unimorph indicates
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the value of making full use of available curated
resources. Recent work has shown how effec-
tive inflection generation can be with limited re-
sources in the target language (Cotterell et al.,
2018). These results suggest that if such resources
are not available, then in practice it is likely worth
gathering training data with which train an inflec-
tion generator.

5 Conclusion

We have presented an evaluation of lexeme-set
KWS. Our results shed light on the relative impact
of undergenerating and overgenerating inflected
forms on KWS, indicating that high recall can be
achieved via an inflection method of cross-lingual
distant supervision, but with the best all-round per-
formance achieved by making use of Unimorph.
We release our evaluation set along with scripts to
reuse our pipeline so that the community can ex-
plore lexeme-set KWS as an extrinsic evaluation
of inflection generation.
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Abstract

Tone is a prosodic feature used to distinguish
words in many languages, some of which
are endangered and scarcely documented. In
this work, we use unsupervised representa-
tion learning to identify probable clusters of
syllables that share the same phonemic tone.
Our method extracts the pitch for each sylla-
ble, then trains a convolutional autoencoder
to learn a low-dimensional representation for
each contour. We then apply the mean shift
algorithm to cluster tones in high-density re-
gions of the latent space. Furthermore, by feed-
ing the centers of each cluster into the decoder,
we produce a prototypical contour that repre-
sents each cluster. We apply this method to
spoken multi-syllable words in Mandarin Chi-
nese and Cantonese and evaluate how closely
our clusters match the ground truth tone cat-
egories. Finally, we discuss some difficulties
with our approach, including contextual tone
variation and allophony effects.

1 Introduction

Tonal languages use pitch to distinguish different
words, for example, yi in Mandarin may mean
‘one’, ‘to move’, ‘already’, or ‘art’, depending on
the pitch contour. Of over 6000 languages in the
world, it is estimated that as many as 60-70% are
tonal (Lewis, 2009; Yip, 2002). A few of these are
national languages (e.g., Mandarin Chinese, Viet-
namese, and Thai), but many tonal languages have
a small number of speakers and are scarcely docu-
mented. There is a limited availability of trained lin-
guists to perform language documentation before
these languages become extinct, hence the need for
better tools to assist linguists in these tasks.

One of the first tasks during the description of an
unfamiliar language is determining its phonemic
inventory: what are the consonants, vowels, and
tones of the language, and which pairs of phonemes

Figure 1: Fundamental frequency (F0) contours for the
four Mandarin tones and six Cantonese tones in isola-
tion, produced by native speakers. Figure adapted from
(Francis et al., 2008).

are contrastive? Tone presents a unique challenge
because unlike consonants and vowels, which can
be identified in isolation, tones do not have a fixed
pitch, and vary by speaker and situation. Since
tone data is subject to interpretation, different lin-
guists may produce different descriptions of the
tone system of the same language (Yip, 2002).

In this work, we present a model to automatically
infer phonemic tone categories of a tonal language.
We use an unsupervised learning approach: a con-
volutional autoencoder learns a low-dimensional
representation of each tone using only a set of
spoken syllables in the target language. This is
followed by mean shift clustering to identify clus-
ters of syllables that probably have the same tone.
We apply our method on Mandarin Chinese and
Cantonese datasets, for which the ground truth an-
notation is used for evaluation. Our method does
not make any language-specific assumptions, so it
may be applied to low-resource languages whose
phonemic inventories are not already established.

1.1 Tone in Mandarin and Cantonese

Mandarin Chinese (1.1 billion speakers) and Can-
tonese (74 million speakers) are two tonal lan-
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Figure 2: Diagram of our model architecture, consisting of a convolutional autoencoder to learn a latent represen-
tation for each pitch contour, and mean shift clustering to identify groups of similar tones.

guages in the Sinitic family (Lewis, 2009). Man-
darin has four lexical tones: high (55), rising (25),
low-dipping (214), and falling (51)1. The third tone
sometimes undergoes sandhi, addressed in section
3. We exclude a fifth, neutral tone, which can only
occur in word-final positions and has no fixed pitch.

Cantonese has six lexical tones: high-level (55),
mid-rising (25), mid-level (33), low-falling (21),
low-rising (23), and low-level (22). Some descrip-
tions of Cantonese include nine tones, of which
three are checked tones that are flat, shorter in du-
ration, and only occur on syllables ending in /p/,
/t/, or /k/. Since each one of the checked tones are
in complementary distribution with an unchecked
tone, we adopt the simpler six tone model that treats
the checked tones as variants of the high, mid, and
low level tones. Contours for the lexical tones in
both languages are shown in Figure 1.

2 Related work

Many low-resource languages lack sufficient tran-
scribed data for supervised speech processing, thus
unsupervised models for speech processing is an
emerging area of research. The Zerospeech 2015
and 2017 challenges featured unsupervised learn-
ing of contrasting phonemes in English and Xit-
songa, evaluated by an ABX phoneme discrimina-
tion task (Versteegh et al., 2015). One successful
approach used denoising and correspondence au-
toencoders to learn a representation that avoided
capturing noise and irrelevant inter-speaker varia-
tion (Renshaw et al., 2015). Deep LSTMs for seg-
menting and clustering phonemes in speech have
also been explored in (Müller et al., 2017b) and
(Müller et al., 2017a).

In Mandarin Chinese, deep neural networks have
been successful for tone classification in isolated

1The numbers are Chao tone numerals, where 1 is the
lowest and 5 is the highest pitch.

syllables (Chen et al., 2016) as well as in con-
tinuous speech (Ryant et al., 2014b,a). Both of
these models found that Mel-frequency cepstral
coefficients (MFCCs) outperformed pitch contour
features, despite the fact that MFCC features do
not contain pitch information. In Cantonese, sup-
port vector machines (SVMs) have been applied
to classify tones in continuous speech, using pitch
contours as input (Peng and Wang, 2005).

Unsupervised learning of tones remains largely
unexplored. Levow (2006) performed unsuper-
vised and semi-supervised tone clustering in Man-
darin, using average pitch and slope as features,
and k-means and asymmetric k-lines for cluster-
ing. Graph-based community detection techniques
have been applied to group n-grams of contiguous
contours into clusters in Mandarin (Zhang, 2019).
In recent work concurrent to ours, Fry (2020) uses
adversarial autoencoders and hierarchical cluster-
ing to identify tone inventories, and evaluate their
method on Mandarin, Cantonese, Fungwa, and En-
glish data.

We further explore unsupervised deep neural net-
works for phonemic tone clustering. It should be
noted that our unsupervised model is not given tone
labels during training, and the number of tones is
assumed to be unknown, so it cannot be directly
compared to supervised tone classifiers in the liter-
ature.

3 Data and preprocessing

We use data from Mandarin Chinese and Cantonese.
For each language, the data consists of a list of spo-
ken words, recorded by the same speaker. The
Mandarin dataset is from a female speaker and is
provided by Shtooka2, and the Cantonese dataset
is from a male speaker and is downloaded from

2http://shtooka.net/, specifically the cmn-caen-
tan dataset.
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Forvo3, an online crowd-sourced pronunciation
dictionary. We require all samples within each
language to be from the same speaker to avoid
the difficulties associated with channel effects and
inter-speaker variation. We randomly sample 400
words from each language, which are mostly be-
tween 2 and 4 syllables; to reduce the prosody
effects with longer utterances, we exclude words
longer than 4 syllables.

We extract ground-truth tones for evaluation pur-
poses. In Mandarin, the tones are extracted from
the pinyin transcription; in Cantonese, we reference
the character entries on Wiktionary4 to retrieve the
romanized pronunciation and tones. For Mandarin,
we adjust for third-tone sandhi (a phonological rule
where a pair of consecutive third-tones is always
realized as a second-tone followed by a third-tone),
and use the sandhi tone as the ground truth. We
also exclude the neutral tone, which has no fixed
pitch and is sometimes thought of as a lack of tone.

3.1 Pitch extraction and syllable
segmentation

We use Praat’s autocorrelation-based pitch estima-
tion algorithm to extract the fundamental frequency
(F0) contour for each sample, using a minimum
frequency of 75Hz and a maximum frequency of
500Hz (Boersma, 1993). The interface between
Python and Praat is handled using Parselmouth
(Jadoul et al., 2018). We normalize the contour to
be between 0 and 1, based on the speaker’s pitch
range.

Next, we manually segment each speech sample
into syllables, necessary because syllable bound-
aries are not provided in our datasets. We sample
the pitch at 40 equally spaced points, obtaining a
constant length vector as input to our model. Note
that by sampling a variable length contour to a con-
stant length, the model does not have information
about syllable length; we discuss this design choice
in section 6.2.

4 Model

4.1 Convolutional autoencoder
We use a convolutional autoencoder (Figure 2) to
learn a two-dimensional latent vector for each syl-
lable. Convolutional layers are widely used in com-
puter vision and speech processing to learn spa-
tially local features that are invariant of position.

3https://forvo.com/
4https://en.wiktionary.org/
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Figure 3: Clusters generated by the mean shift proce-
dure. The black line shows the threshold: we discard
clusters with size below this value and treat their points
as unclustered.

We use a low dimensional latent space so that the
model learns to generate a representation that only
captures the most important aspects of the input
contour, and also because clustering algorithms
tend to perform poorly in high dimensional spaces.

Our encoder consists of three layers. The first
layer applies 2 convolutional filters (kernel size 4,
stride 1) followed by max pooling (kernel size 2)
and a tanh activation. The second layer applies 4
convolutional filters (kernel size 4, stride 1), again
with max pooling (kernel size 2) and a tanh activa-
tion. The third layer is a fully connected layer with
two dimensional output. Our decoder is the en-
coder in reverse, consisting of one fully connected
layer and two deconvolution layers, with the same
layer shapes as the encoder.

We train the autoencoder using PyTorch (Paszke
et al., 2017), for 500 epochs, with a batch size of
60. The model is optimized using Adam (Kingma
and Ba, 2015) with a learning rate of 5e-4 to mini-
mize the mean squared error between the input and
output contours.

4.2 Mean shift clustering
We run the encoder on each syllable’s pitch con-
tour to get their latent representations; we apply
principal component analysis (PCA) to remove any
correlation between the two dimensions. Then, we
run mean shift clustering (Comaniciu and Meer,
2002; Ghassabeh and Rudzicz, 2018), estimating

219



Cluster A        Cluster B         Cluster C        Cluster D Cluster A         Cluster B        Cluster C        Cluster D         Cluster E

Mandarin Cantonese

B

A

C

D A
B

E

C

D

PC1

P
C

2

PC1

P
C

2
Figure 4: Latent space generated by autoencoder and the results of mean shift clustering for Mandarin and Can-
tonese. Each cluster center is fed through the decoder to generate the corresponding pitch contour. The clusters
within each language are ordered by size, from largest to smallest.

a probability density function in the latent space.
The procedure performs gradient ascent on all the
points until they converge to a set of stationary
points, which are local maxima of the density func-
tion. These stationary points are taken to be cluster
centers, and points that converge to the same sta-
tionary point belong to the same cluster. We feed
the cluster centers into the decoder to generate a
prototype pitch contour for each cluster.

Unlike k-means clustering, the mean shift pro-
cedure does not require the number of clusters to
be specified, only a bandwidth parameter (set to
0.6 for our experiments). The cluster centers are
always in regions of high density, so they can be
viewed as prototypes that represent their respective
clusters. Another advantage is that unlike k-means,
mean shift clustering is robust to outliers.

4.3 Selecting bandwidth and threshold

The bandwidth parameter controls the size of the
clusters: a higher bandwidth value generates fewer
and larger clusters. We tune the bandwidth parame-
ter to produce linguistically plausible tone clusters:
we expect between 3 to 8 different clusters, each
clusters should have at least 1/10 of the points be
assigned to it, and most points should belong to
some cluster.

The mean shift procedure assigns every point to
some cluster, even if the resulting cluster contains

only a few points. Thus, we set a threshold: we
treat clusters smaller than the threshold as spurious,
and leave their points as unclustered. Figure 3
shows the effect of the threshold on both languages.

4.4 k-means baseline

We implement a simple k-means baseline similar to
Levow (2006), using two engineered features. The
first feature is the average pitch of all the points in
the pitch contour; the second feature is the slope
of an ordinary least squares regression fit on the
pitch contour. After extracting these features for
every syllable, we run k-means clustering, using
the same number of clusters that is chosen by the
mean shift algorithm.

5 Results

Figure 4 shows the latent space learned by the au-
toencoders and the clustering output. Our model
found 4 tone clusters in Mandarin, matching the
number of phonemic tones (Table 1) and 5 in Can-
tonese, which is one fewer than the number of
phonemic tones (Table 2). In Mandarin, the 4 clus-
ters correspond very well with the the 4 phonemic
tone categories, and the generated contours closely
match the ground truth in Figure 1. There is some
overlap between tones 3 and 4; this is because tone
3 is sometimes realized a low-falling tone without
the final rise, a process known as half T3 sandhi

220



Cluster T1 T2 T3 T4
A 1 163 12 4
B 108 0 0 1
C 0 5 53 31
D 1 0 0 97

N/A 47 30 53 129

Table 1: Cluster and tone frequencies for Mandarin.

Cluster T1 T2 T3 T4 T5 T6
A 5 5 59 109 7 105
B 102 3 36 2 2 7
C 93 0 0 2 0 0
D 0 64 4 3 2 11
E 0 28 2 4 30 2

N/A 70 39 51 45 15 49

Table 2: Cluster and tone frequencies for Cantonese.

(Chen, 2000), thus, it may overlap with tone 4
(falling tone).

In Cantonese, the 5 clusters A-E correspond to
low-falling, mid-level, high-level, mid-rising, and
low-rising tones. Tone clustering in Cantonese is
expected to be more difficult than in Mandarin be-
cause of 6 contrastive tones, rather than 4. The
model is more effective at clustering the higher
tones (1, 2, 3), and less effective at clustering
the lower tones (4, 5, 6), particularly tone 4 (low-
falling) and tone 6 (low-level). This confirms the
difficulties in prior work, which reported worse
classification accuracy on the lower-pitched tones
because the lower region of the Cantonese tone
space is more crowded than the upper region (Peng
and Wang, 2005).

To evaluate how much the clusters match the
ground truth, we use normalized mutual informa-
tion (NMI); this is preferable over accuracy because
it does not require the number of detected clusters
to be the same as the number of tones. In Table 3,
we evaluate NMI for our autoencoder model and
the k-means baseline. We consider two scenarios
for each language: using all the syllables (All) and
using only the first syllable of each word (First).

In all cases, the clusters from the autoencoder
model have higher NMI than the k-means model.
The improvement is due to the mean shift proce-
dure identifying points that belong to a cluster with
high confidence: it only only makes predictions
for those points, whereas k-means assigns every
point to a cluster. All models perform better on the

Autoencoder k-means
Mandarin (First) 0.846 0.829
Mandarin (All) 0.753 0.645
Cantonese (First) 0.575 0.493
Cantonese (All) 0.463 0.377

Table 3: Normalized mutual information (NMI) be-
tween cluster assignments and ground truth tones, con-
sidering only the first syllable of each word, or all syl-
lables.

first syllable of each utterance than the rest of the
syllables; we discuss the reasons for this in the next
section.

6 Limitations

6.1 Contextual effects

One limitation of our model is it considers sylla-
bles in isolation, but in reality, pitch is affected by
context. Two types of contextual effects are carry-
over and declination. A carry-over effect is when
the pitch contour of a tone undergoes contextual
variation depending on the preceding tone; strong
carry-over effects have been observed in Mandarin
(Xu, 1997). Prior work (Levow, 2006) avoided
carry-over effects by using only the second half of
every syllable, but we do not consider language-
specific heuristics in our model.

Declination is a phenomenon in which the pitch
declines over an utterance (Yip, 2002; Peng and
Wang, 2005). This is especially a problem in Can-
tonese, which has tones that differ only on pitch
level and not contour: for example, a mid-level
tone near the end of a phrase may have the same
absolute pitch as a low-level tone at the start of a
phrase.

Contextual effects are apparent in our results
(Table 3). In both Mandarin and Cantonese, the
clustering is more accurate when using only the
first syllable (which is not affected by carry-over
or declination), compared to using all the syllables.

6.2 Minimal pairs and allotones

Tone is not a purely phonetic property: it is impos-
sible to determine, from phonetics alone, whether
two pitch contours have the same or different tones.
The same underlying tone may manifest as sev-
eral different allotones depending on the phonetic
context.

An example of this appears in Cantonese. Its
tone system is sometimes analyzed as having nine
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tones instead of six, where six of the tones are
only permitted in open syllables (e.g. si) and three
are only permitted in checked syllables (e.g. sik).
Other analyses use a six-tone system, treating the
three checked tones as allotonic variants of the high,
mid, and low tones. By taking this approach, one
implies that length is a property of the syllable and
cannot be solely responsible for contrasting two
tones.

Length is not the only differentiating factor for
allotones. Another example is in Wu Chinese,
where syllables beginning with voiced consonants
have lower pitch than those beginning with voice-
less consonants (Yip, 2002). Thus the same lan-
guage may have vastly different numbers of tones,
depending on the analysis.

Linguistically, two phonemic tones are consid-
ered to be contrastive if there exists a minimal pair:
two semantically different lexical items that are
identical in every aspect except for tone. This def-
inition is the most widely used because it clearly
settles disagreements about whether two tones are
same or different. However, it is problematic for
unsupervised models that only have access to pho-
netic and not semantic information. This issue
is not unique to tone: similar difficulties have
been noted when attempting to identify consonant
and vowel phonemes automatically (Kempton and
Moore, 2014).

7 Conclusion

We propose a model for unsupervised clustering
and discovery of phonemic tones in tonal lan-
guages, using spoken words as input. Our model
extracts the F0 pitch contour, trains a convolutional
autoencoder to learn a low-dimensional represen-
tation for each contour, and applies mean shift
clustering to the resulting latent space. We obtain
promising results with both Mandarin Chinese and
Cantonese, using only 400 spoken words from each
language. Cantonese presents more difficulties be-
cause of its larger number of tones, especially at
the lower half of the pitch range, and also due to
multiple contrastive level tones. Still, in both our
languages, our method finds clusters of tones that
better match the ground truth than the k-means
baseline. Finally, we discuss the effects of contex-
tual variation and the limitations of unsupervised
learning for the tone induction problem.

8 Acknowledgments

We thank Prof Gerald Penn for his help suggestions
during this project. Rudzicz is a CIFAR Chair in
AI.

References
Paul Boersma. 1993. Accurate short-term analysis

of the fundamental frequency and the harmonics-to-
noise ratio of a sampled sound. In Proceedings of
the institute of phonetic sciences, volume 17, pages
97–110. Amsterdam.

Charles Chen, Razvan C Bunescu, Li Xu, and Chang
Liu. 2016. Tone classification in Mandarin Chinese
using convolutional neural networks. In INTER-
SPEECH, pages 2150–2154.

Matthew Y Chen. 2000. Tone sandhi: Patterns across
Chinese dialects, volume 92. Cambridge University
Press.

Dorin Comaniciu and Peter Meer. 2002. Mean shift:
A robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis & Machine
Intelligence, (5):603–619.

Alexander L Francis, Valter Ciocca, Lian Ma, and Kim-
berly Fenn. 2008. Perceptual learning of Cantonese
lexical tones by tone and non-tone language speak-
ers. Journal of Phonetics, 36(2):268–294.

Michael David Fry. 2020. Grammaticus ex machina:
tone inventories as hypothesized by machine. Ph.D.
thesis, University of British Columbia.

Y Aliyari Ghassabeh and F Rudzicz. 2018. Modi-
fied mean shift algorithm. IET Image Processing,
12(12):2172–2177.

Yannick Jadoul, Bill Thompson, and Bart De Boer.
2018. Introducing Parselmouth: A Python interface
to Praat. Journal of Phonetics, 71:1–15.

Timothy Kempton and Roger K Moore. 2014. Dis-
covering the phoneme inventory of an unwritten lan-
guage: A machine-assisted approach. Speech Com-
munication, 56:152–166.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. ICLR.

Gina-Anne Levow. 2006. Unsupervised and semi-
supervised learning of tone and pitch accent. In
Proceedings of the main conference on Human Lan-
guage Technology Conference of the North Amer-
ican Chapter of the Association of Computational
Linguistics, pages 224–231. Association for Compu-
tational Linguistics.

M. Paul Lewis. 2009. Ethnologue: Languages of
the World, 16th edition. SIL International, Dallas,
Texas.

222



Markus Müller, Jörg Franke, Sebastian Stüker, and
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tian Stüker. 2017b. Towards phoneme inventory dis-
covery for documentation of unwritten languages.
In 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
5200–5204. IEEE.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS Autodiff Workshop.

Gang Peng and William S-Y Wang. 2005. Tone recog-
nition of continuous Cantonese speech based on
support vector machines. Speech Communication,
45(1):49–62.

Daniel Renshaw, Herman Kamper, Aren Jansen, and
Sharon Goldwater. 2015. A comparison of neu-
ral network methods for unsupervised representa-
tion learning on the zero resource speech challenge.
In Sixteenth Annual Conference of the International
Speech Communication Association.

Neville Ryant, Malcolm Slaney, Mark Liberman, Eliz-
abeth Shriberg, and Jiahong Yuan. 2014a. Highly
accurate Mandarin tone classification in the absence
of pitch information. In Proceedings of Speech
Prosody, volume 7.

Neville Ryant, Jiahong Yuan, and Mark Liberman.
2014b. Mandarin tone classification without pitch
tracking. In 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 4868–4872. IEEE.

Maarten Versteegh, Roland Thiolliere, Thomas Schatz,
Xuan Nga Cao, Xavier Anguera, Aren Jansen, and
Emmanuel Dupoux. 2015. The zero resource speech
challenge 2015. In Sixteenth Annual Conference
of the International Speech Communication Associ-
ation.

Yi Xu. 1997. Contextual tonal variations in Mandarin.
Journal of phonetics, 25(1):61–83.

Moira Yip. 2002. Tone. Cambridge University Press.

Shuo Zhang. 2019. Data mining Mandarin tone con-
tour shapes. SIGMORPHON 2019, page 144.

223



Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages 224–232

Online, July 10, 2020. c©2020 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17

Joint learning of constraint weights and gradient inputs in Gradient
Symbolic Computation with constrained optimization

Max Nelson
University of Massachusetts, Amherst

Amherst, MA, USA
manelson@umass.edu

Abstract

This paper proposes a method for the joint opti-
mization of constraint weights and symbol ac-
tivations within the Gradient Symbolic Com-
putation (GSC) framework. The set of gram-
mars representable in GSC is proven to be a
subset of those representable with lexically-
scaled faithfulness constraints. This fact is
then used to recast the problem of learning
constraint weights and symbol activations in
GSC as a quadratically-constrained version
of learning lexically-scaled faithfulness gram-
mars. This results in an optimization problem
that can be solved using Sequential Quadratic
Programming.

1 Introduction and background

This paper proposes a method for the joint optimiza-
tion of constraint weights and symbol activations
within the Gradient Symbolic Computation (GSC)
framework. The set of grammars representable in
GSC is proven to be a subset of those representable
with lexically-scaled faithfulness constraints. This
fact is then used to recast the problem of learning
constraint weights and symbol activations in GSC
as a quadratically-constrained version of learning
lexically-scaled faithfulness grammars. This re-
sults in an optimization problem that can be solved
using Sequential Quadratic Programming.

The remainder of this paper proceeds as follows.
The rest of this section provides the relevant back-
ground on GSC, previous approaches to the same
problem, and maximum entropy grammars which
are used in the proposed model. §2 describes and
proves the relationship between GSC grammars
and lexically-scaled faithfulness constraints and
then uses this proof to develop the proposed learn-
ing algorithm. §3 illustrates with a minimal test
case of an example used through the GSC literature,
French Liaison. §4 provides a brief discussion and
concludes.

1.1 Phonological grammars in Gradient
Symbolic Computation

Gradient Symbolic Computation is a general cogni-
tive framework in which structures are represented
as gradient blends of multiple symbolic representa-
tions. Smolensky and Goldrick (2016) adapt stan-
dard optimality-theoretic constraints and optimiza-
tion procedures to allow for inputs which consist of
blends of symbolic structures. They propose that
each position in the input is associated with a blend
of discrete units, each of which is associated with
an activation. In phonological terms an input may
be composed of a series of positions, each of which
is associated with a set of phonemes with different
degrees of activation. The evaluation of constraints
that make reference to the input, traditionally only
faithfulness constraints, is done with respect to the
activations of individual segments in the gradient
representation. So if this partially active /t/ is fully
realized, then a constraint like Dep, which penal-
izes epenthesis, will be violated to the degree that
reflects the extent of this epenthesis: in this ex-
ample, a violation of strength 0.3. Phonological
grammars that allow for gradient inputs will hence-
forth be referred to as gradient symbolic grammars
(GS grammars).

GS grammars have been employed to capture
phonological phenomena that are difficult for tradi-
tional representational theories, including opacity
(Mai et al., 2018), and exceptionality (Zimmer-
man, 2018; Hsu, 2018)/subregularity (Rosen, 2016;
Smolensky and Goldrick, 2016).

1.2 Learning gradient symbolic grammars

GS grammars present a unique learning problem.
In standard constraint-based grammars a phonolog-
ical learner must discover the discrete underlying
forms of the target language as well as the rank-
ing or weighting of the constraints. In GS gram-
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mars the learner has to learn these things as well,
while also learning the activations of all symbols
at all positions in the underlying form. The com-
plete GS grammar learning problem, discovering
the discrete units, their activations, and the con-
straint ordering, has not been addressed in previous
literature and will not be addressed here. Previous
work has however looked at different subparts of
this problem, including the learning of activations
in isolation (Rosen, 2019) and the parallel learning
of activations and constraint weights (Rosen, 2016;
Smolensky et al., 2020). This parallel problem is
the topic of the present work.

Rosen (2016) presents an approach to jointly op-
timizing constraint weights and input activations
based on simulated annealing which is able to
successfully learn a grammar capturing Japanese
rendaku. As will be discussed below, the joint
optimization of weights and activations is non-
convex so simulated annealing is a promising ap-
proach. This work will not attempt to improve on
the empirical performance of a simulated anneal-
ing model, but rather it will propose an alternative
approach which is more closely related to gradient-
based methods used elsewhere in the phonolog-
ical learning literature (Goldwater and Johnson,
2003; Boersma and Pater, 2008; Hayes and Wilson,
2008).

Smolensky et al. (2020) apply the Gradual Learn-
ing Algorithm (GLA) for Harmonic Grammar
(Boersma and Pater, 2008), which is based on the
Perceptron Update Rule (Rosenblatt, 1958), to the
problem of learning both constraint weights and
input activations. They report promising results,
however the convergence proof for the GLA does
not necessarily apply to the case of GS grammars,
where multiple interacting parameters are being
simultaneously optimized. As will be discussed
later, activations add quadratic terms to the Har-
mony function. This means that Harmonies are
not linear in the parameters and consequently the
relationship between Harmonic Grammar and the
Perceptron does not hold between GS grammar and
the Perceptron.

This work presents a third approach to jointly
learning activations and constraint weights, based
on the fact that blended inputs represent a scaling
function on faithfulness violations and on previous
work which has explored the learning of scaled
faithfulness. The presented model is also not guar-
anteed to converge on a global optimum, so it does

not improve on the GLA approach in that respect.
It does however have the benefit of casting the
GS grammar learning problem as an explicit and
well-understood optimization procedure while also
relating it to a familiar problem, learning lexically-
scaled constraint weights (Hughto et al., 2019).

1.3 Maximum entropy grammars

Unlike previous work in GSC, the learning algo-
rithm in the present work will make use of Maxi-
mum Entropy (MaxEnt) Grammars (Goldwater and
Johnson, 2003). A MaxEnt grammar is a log-linear
model which allows for the probabilistic interpreta-
tion of a Harmonic Grammar (HG). In Harmonic
Grammar the Harmony H of a candidate is the
dot-product of its constraint violations and the con-
straint weights. Constraint violations are generally
treated as strictly negative and weights as strictly
positive, so given an input x a candidate y is opti-
mal if it has the highest Harmony score in the set
of all competing candidates Y(x).

H(x,y) =
∑

i

wici(x, y) (1)

A MaxEnt probability distribution is computed
by applying the softmax function to the set of Har-
monies.

p(x) =
eH(x,y)

∑
γ∈Y(x) e

H(x,γ)
(2)

MaxEnt grammars are used for the learning al-
gorithm purely because it is intuitive to define an
interpretable loss function when model outputs are
a probability distribution, as will be discussed in
§2.2. This is an expository choice: the learning
algorithm presented below could be equivalently
described as learning a Harmonic Grammar by min-
imizing a loss function that incorporates the soft-
max function. Because softmax is monotonic, a
MaxEnt grammar makes the same prediction about
the most well-formed candidate as its correspond-
ing Harmonic Grammar.

2 Optimizing gradient symbolic
grammars

2.1 Gradient symbolic computation as
lexically scaled faithfulness

The observation driving the proposed learning al-
gorithm for GS grammars is that GS grammars can
be rewritten as a special case of lexically-scaled
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faithfulness (LSF) grammars. An LSF grammar
(Linzen et al., 2013) is a grammar in which all mor-
phemes come with a set of scales which combine
additively with constraint weights. This section
aims to prove that the set of expressible GS gram-
mars is a subset of the expressible LSF grammars.

In this work I assume all outputs are discrete
structures and consequently only faithfulness con-
straints are gradiently evaluated1. Within the
faithfulness constraints, Smolensky and Goldrick
(2016) describe two classes in terms of how gra-
dient activations in the input influence evaluation.
Constraints belonging to the PROPORTIONAL class
are violated to a degree proportional to the activa-
tion level of a deleted feature or segment, for exam-
ple MAX constraints in Smolensky and Goldrick.
Constraints belonging to the COMPLEMENT class
are violated to a degree proportional to one minus
the activation level of a realized feature or seg-
ment, for example DEP constraints in Smolensky
and Goldrick. Introducing gradient inputs to the
grammar results in a rescaling of faithfulness con-
straint violations and in no effect on markedness
constraint violations2.

Consider the simple GS tableau in (1), where α
is the activation of the input segment b, M is the
weight of a PROPORTIONAL constraint, and ∆ is
the weight of some COMPLEMENT constraint. Two
hypothetical candidates are competing on which
of the two constraints is violated. Note that Har-
mony is a quadratic function of the weights and
activations.

(1)
M ∆

/bα/ PROP COMP H
φ 0 1− α ∆− α∆
ψ α 0 αM

Now consider the grammar in (2), which uses
lexically scaled faithfulness (LSF) constraints. The
scales are indexed to the input morpheme(s) and
combine additively with constraint weights. So the
functional weight of PROP when evaluated on the
ith morpheme is the general weight of PROP, M ,
added with the scale brought by morpheme i, µi

1In GSC this is expressed a strong quantization constraint,
which pushes outputs into discrete states (Smolensky et al.,
2014; Cho et al., 2017)

2 Zimmerman (2018) advocates for gradient outputs, which
will allow for gradiently evaluated markedness constraints.
The approach outlined below can be extended to cover this by
allowing for lexically scaled markedness constraints as well

(Linzen et al., 2013). In this case Harmony is a
linear function of the weights and scales.

(2)
µi δi
M ∆

/b/i PROP COMP H
[b] 0 1 ∆ + δi
∅ 1 0 M + µi

The tableaux in (1) and (2) make identical pre-
dictions as long as the equalities in Eq. (3) hold. In
other words if these equalities are true then the two
grammars assign the exact same Harmonies to the
candidates.

∆− α∆ = ∆ + δi

αM = M + µi
(3)

Given this fact, any GS grammar can be con-
verted into an LSF grammar by replacing any
morpheme’s activation values with a set of scales.
Scales for COMP and PROP constraints can be com-
puted from activations by rearranging Eq. (3), as
in Eq. (4).

δi = −α∆

µi = αM −M (4)

Eq. (4) proves that any function representable
with a GS grammar can be expressed with an equiv-
alent LSF grammar. The converse however is not
true – there are functions representable in LSF
grammars that are not representable in GS gram-
mars. This is be illustrated by considering how
Eq. (3) would be used to convert an arbitrary LSF
grammar into a GS grammar. Converting in this
direction requires computing activations from the
set of lexical scales. By rearranging Eq. (3), we
see that there are two ways to compute activations
from a given LSF grammar. Activations can be
computed either from the MAX constraints or from
the DEP constraints.

α =
µi
M

+ 1

α = − δi
∆

(5)

It is not possible for a single segment or feature
to have multiple distinct activation levels. An LSF
grammar is a valid GS grammar only if both meth-
ods of computing a yield the same result. So while
there is an LSF grammar for every GS grammar,
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there is not a GS grammar for every LSF grammar.
Only the subset of LSF grammars that satisfy the
equality in Eq. (6) are valid GS grammars.

µi
M

+ 1 = − δi
∆

(6)

For simplicity, Eq. (6) can be rearranged as in Eq.
(7).

µi∆ +M∆ + δiM = 0 (7)

This does not necessarily mean anything about
the linguistic expressivity of GS and LSF gram-
mars. The conversion from GS to LSF grammar
assumes that there are no limits on the constraint
set and consequently may require theoretically un-
wieldy constraints. For example in order to cap-
ture the fact that there are separate activations at
all positions in the input, there must be separate
constraints for every feature at every position in
the input. This point is ultimately unimportant for
the present work, which aims to address the re-
lationship between the mathematical, rather than
linguistic, functions that are representable in the
two theories with the purpose of leveraging this
relationship to construct a learning algorithm for
GS grammars. The next section will outline ex-
actly how this subset-superset relationship can be
used to to formulate the problem of simultaneously
learning input activations and constraint weights as
a quadratically constrained optimization problem.

2.2 Learning gradient symbolic grammars
with constrained optimization

The relationship between GS and LSF grammars
described above is useful because it allows the prob-
lem of learning constraint weights and activations
to be related to a well-understood problem, learn-
ing constraint weights and additive scales. Additive
scales are themselves a special case of another for-
malism, lexically-indexed constraints. Because the
scaled violations combine additively in the Har-
mony function, lexical scales can be represented
as indexed versions of their general form which
always incur the same number of violations as the
general form. Moore-Cantwell and Pater (2016)
show that the problem of learning lexically-indexed
constraint weights is no different than the standard
MaxEnt optimization problem and Hughto et al.
(2019) show that similar approaches can be taken
to learning additive lexical scales. So, like in stan-
dard MaxEnt (Goldwater and Johnson, 2003), the

task of learning an LSF grammar can be cast as op-
timizing the negative log-likelihood of the training
data 3, which is convex in the constraint weights.

Unfortunately, because of the subset-superset
relationship between GS and LSF grammars, the
problem of learning GS grammars is not similarly
reducible to the standard convex MaxEnt learning
problem. Rather, the GS learning problem can be
reduced to a constrained version of the LSF learn-
ing problem. Learning a GS grammar is equivalent
to learning an LSF grammar subject to the hard
constraint that the LSF grammar represents a pos-
sible GS grammar. This can be stated formally as
the optimization problem in Eq. (8), where p(x) is
computed using the standard MaxEnt probability
function in Eq. (2). The weight vector w includes:
General PROP and COMP weights M and ∆, i lexi-
cally indexed scales on PROP µ1, ..., µi, i lexically
indexed scales on COMP δ1, ..., δi, and n general
markedness constraints m1, ...,mn. The rightmost
term in the objective function is an L2 prior with
strength λ.

w = [M,∆, µ1..., µi, δ1..., δi,m
1, ...,mn]

min
w

[(
−
∑

x

log p(x)

)
+ λ || w ||2

]

Subject to:
∑

i

(µi∆ +M∆ + δiM)2 = 0 (8)

The constraint enforcing that the learned grammar
is a viable GS grammar is the equality relation-
ship in Eq. (7) summed over all input phonemes i.
The constraint is squared within the sum to prevent
positive and negative terms in the summation from
canceling out. This ensures that activations com-
puted for a given phoneme and morpheme index
from both the PROP and COMP constraints will be
guaranteed to return the same value.

There are a number of potential approaches to
constrained optimization problems like that posed
above. It is worth mentioning here why meth-
ods familiar in computational phonology will not
work. Maximum Entropy and Harmonic Grammars
are generally fit using projected gradient descent,
which is itself a method of constrained optimiza-
tion. This entails computing the weight update, in-
dependent of any constraints placed on the weights,

3Or other equivalent loss function, such as Kullback-
Leibler divergence
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and then projecting the updated weights onto the
set defined by the constraint. The use familiar in
phonology is in the enforcement non-negativity –
a restriction against negative weights which main-
tains the theoretical tenant of Optimality Theory
that constraints can penalize but not reward. In this
case projected gradient descent is effective. Not
only is the projection function simple to compute
because the nearest non-negative number to any
negative number is 0, but the space defined by the
constraint is a convex set, meaning that projected
gradient descent with this constraint has the same
convergence guarantees as standard gradient de-
scent (Levitin and Polyak, 1966). As defined in Eq.
(8) the current problem is quadratically constrained,
meaning that the set that satisfies the constraint is
non-convex and a projection function onto the set
is not easily computable. Consequently projected
gradient descent is not only not guaranteed to con-
verge, it is computationally intractable.

Another possible approach would be to treat the
constraint as a prior. One simple issue with this
is that priors are violable. Given that the goal is
learn a GS grammar, the constraint on the solution
space defined above cannot be violated. One pos-
sible workaround would be to set the strength of
the prior arbitrarily high, making it functionally
non-violable. However the intersection of the loss
function and the space satisfying the constraint is
non-convex and is not guaranteed to be connected.
Consequently gradient descent and other widely
applied optimization techniques are likely to fail.

The proposed solution is to use Sequential
Quadratic Programming (SQP), an iterative gen-
eralization of Newton’s method developed for min-
imizing a function under quadratic constraints. The
general approach is to iteratively take the quadratic
approximation of the constrained objective func-
tion at w, minimize this subproblem with quadratic
programming, and then set w to the solution. This
will yield increasingly better approximations and
therefore increasingly better solutions. On a prac-
tical note, this requires computing the first three
terms of the Taylor expansion of the objective func-
tion at a given point, meaning that it must be twice
differentiable. For detailed derivation and discus-
sion of the method see Boggs and Tolle (1995).

3 An example

To illustrate the promise of the proposed approach
to learning GS grammars, this section applies it to a

minimal example of the French liaison problem that
Smolensky and Goldrick (2016) use to motivate the
use of gradient representations in the phonologi-
cal grammar. Liaison is a phenomenon in which,
in certain syntactic contexts, a consonant surfaces
between vowel-final and vowel-initial words when
hiatus would otherwise occur. The identity of this
consonant, the liaison consonant, is not phonologi-
cally predictable. There is a long literature on the
phonological analysis on liaison and its interacting
processes, including competing analyses that pro-
pose that the liaison consonant is specified by the
first word (Tranel, 1996) and by the second word
in the sequence (Morin, 2005).

There is a class of words which are phonologi-
cally vowel initial but exceptionally do not trigger
the surfacing of a liaison consonant in environ-
ments where it is otherwise predicted to surface.
These words are always the second word in the pair
and are called the h-aspiré words, referencing the
fact that they are orthographically h-initial.

Consider the following set of French surface
forms. When petit comes together with ami, a
vowel-initial word, the liaison consonant [t] sur-
faces.

[pøti] petit + [ami] ami
‘small’ ‘friend’

[pøtitami] petit ami ‘boyfriend’

However, when petit is followed by héros, an
h-aspiré word, no liaison consonant surfaces.

[pøti] petit + [eKo] héros
‘small’ ‘hero’

[pøtieKo] petit héros ‘little hero’

The adjective [pøti] petit is associated with a
liaison t. When it occurs in isolation the liaison
consonant does not surface, however when it oc-
curs before the vowel-initial [ami] ami the liaison
consonant surfaces, preventing two adjacent vow-
els from surfacing. Despite being vowel-initial, the
h-aspiré word [eKo] héros does not trigger the sur-
facing of the liaison consonant when it surfaces
after peti.

Smolensky and Goldrick (2016) offer an analysis
of this phenomenon couched in Gradient Symbolic
Computation, which suggests that the liaison conso-
nant is specified by both the first and second word
in the pair. In their analysis both words contain
partially active edge consonants. When the words
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surface together the combined activation is enough
to get cause the liaison consonant to surface. In this
analysis h-aspiré words differ from their liaison-
participating counterparts in that they have no or
minimal activation on liaison consonants at their
left edge, preventing them from contributing to the
combined activation.

In terms of the minimal dataset above, they pro-
pose that there is a partially-activated /t/ in the
input at both the right edge of peti and at the left
edge of ami. When either word occurs in isola-
tion there is not sufficient activation of the /t/ for it
to surface. When the two words surface adjacent
to one another the combined activation of /t/ in
both words overcomes a threshold and liaison [t]
surfaces. In the h-aspiré héros there is little to no
activation on an input /t/ at the left edge. Despite
the consequence of realizing a marked vowel-vowel
sequence, the liaison [t] does not surface between
[pøti] and [eKo] because the combined activation of
the input /t/s is not enough to justify its realization.
They argue that this analysis overcomes empiri-
cal shortcomings of analyses which place the onus
of specifying the liaison consonant on exclusively
the first or second consonant, see Smolensky and
Goldrick (2016) and Smolensky et al. (2020) for
detailed discussion.

As proof of concept a GS grammar was fit to
these data using the procedure described above.
Model parameters include the weight of three con-
straints, HIATUS, MAX(t) and DEP(t), as well as
the activation levels of liaison /t/ at the left edge of
petit and at the right edge of ami and héros. MAX(t)
is a PROP constraint and DEP(t) is a COMP con-
straint. In every tableau there are two competing
candidates, one in which [t] surfaces and one in
which it does not. Activations were constrained to
being positive by adding the constraint in Eq. (9)
to the optimization procedure.

∑

i

min
( µi
M

+ 1, 0
)

= 0 (9)

In practice the Jacobian and Hessian of the ob-
jective function are estimated analytically, so the al-
gorithm described above is non-deterministic. The
quadratically-constrained optimization problem is
also generally non-convex, so variation is expected
across runs. Consequently 10 models were fit with
weights randomly initialized in [-2,0). An L2 prior
is included with λ = 0.01. Table (1) shows the
average final probability of each candidate in the

five tableaux across the 10 runs.

Candidate avg. s.d.
. [pøti] 0.999 1e-4

[pøtit] 0.001
. [ami] 0.991 0.003

[tami] 0.008
. [eKo] 0.999 2e-7

[teKo] 1e-6
. [pøtit ami] 0.980 0.009

[pøti ami] 0.020
[pøtit eKo] 0.015 0.005

. [pøti eKo] 0.985

Table 1: Average final probability across 10 runs on all
forms. . indicates the target surface forms.

The average activations of input /t/s in all words
are shown in Table (2). Recall that there are two
possible ways to compute the activations, from the
COMP or PROP constraints. To ensure that the
model works correctly, both methods of computing
activations are shown. Note that these are negligi-
bly different, confirming that the final grammar is
indeed a valid GS grammar.

COMP PROP

pøti(t) 0.296 (0.062) 0.296 (0.062)
(t)ami 0.614 (0.081) 0.614 (0.081)
(t)eKo -2e-5 (6e-5) -1e-4 (2e-4)

Table 2: Average (s.d.) activation of liaison conso-
nants in all words as computed from the ∆ and M con-
straints.

The activations suggest that the model may be
converging on a solution that resembles the anal-
ysis proposed by Smolensky and Goldrick. Petit
and ami both have a partially-activated /t/ in the
at the relevant edge, while the activation of liai-
son /t/ in héros is approximately 0. The individual
tableaux confirm that the learned analysis resem-
bles Smolensky and Goldrick’s. For simplicity, and
consistency with previous work, all tableaux will
be presented without probabilities, as HG tableaux.

While petit and ami both have partially-activated
underlying /t/s, the activation is low enough that
when either of these words occur in isolation the /t/
is not realized. This is demonstrated in Tableaux
(3) and (4).
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(3)

-13.1 -5.3 -0.4
/pøtit0.30/ DEP(t) HIATUS MAX(t) H

[pøti] 0 0 0.30 -0.12
[pøtit] 0.70 0 0 -9.59

(4)

-13.1 -5.3 -0.4
/t0.61ami/ DEP(t) HIATUS MAX(t) H

[ami] 0 0 0.61 -0.24
[tami] 0.39 0 0 -5.12

In héros the underlying liaison /t/ has a 0 activation,
so it trivially does not surface in isolation.

(5)

-13.1 -5.3 -0.4
/t0.00eKo/ DEP(t) HIATUS MAX(t) H

[eKo] 0 0 0.0 -0.0
[teKo] 1.0 0 0 -13.1

When petit and ami are realized next to one another,
their combined activation, as well as the threat of a
HIATUS violation, are enough to make the liaison
consonant surface.

(6)
-13.1 -5.3 -0.4

/pøti t0.30+0.61 ami/ DEP(t) HIATUS MAX(t) H
[pøtiami] 0 1 1.01 -5.70

[pøtitami] 0.01 0 0 -0.13

However this is not the case when petit and héros
surface together. Because héros contributes 0 acti-
vation to /t/, the cost of epenthesizing the remaining
activation needed for the /t/ to be realized does not
outweigh the cost of incurring a HIATUS violation.

(7)
-13.1 -5.3 -0.4

/pøti t0.30+0.00 eKo/ DEP(t) HIATUS MAX(t) H
[pøtieKo] 0 1 0.30 -5.42

[pøtiteKo] 0.70 0 0 -9.17

The presented learning algorithm for GS gram-
mars reliably converges on the analysis of French
liaison offered by Smolensky and Goldrick (2016)
as a motivating pattern for the inclusion of gradient
inputs in the phonological grammar. This serves
to illustrate the fact that the proposed learning al-
gorithm is capable of learning interpretable GS
grammars and has promising application in future
work, both in finding GSC analyses of linguistic
phenomena and in evaluating the learnability of
phenomena in the GSC framework.

4 Discussion and Conclusions

This paper has presented a method for the joint op-
timization of blended inputs and constraint weights
in gradient symbolic grammars. The proposed
method leverages the fact that the set of functions
representable by GS grammars is a subset of those
representable by lexically-scaled faithfulness gram-
mars to cast the GS grammar learning problem as

a constrained version of the LSF grammar learn-
ing problem. The primary aim of this work is to
introduce and justify the method, rather than dis-
cuss its implications for linguistic theory, however
points of interest to linguistic theory will be briefly
addressed here.

The subset-superset relationship that was shown
to hold between GS and LSF grammars does not
make predictions regarding the expressivity of the
two theories in terms of the linguistic phenomena
they are capable of representing. It does, how-
ever, highlight differences between the two theories
which may provide a starting point for comparing
their linguistic expressivity. For example, repre-
senting GS grammars in the LSF framework re-
quires a set of faithfulness constraints which make
reference to every position in every input. This dif-
fers from standard approaches to positional faithful-
ness, where faithfulness constraints make reference
to prosodic positions (Beckman, 1998), and may
yield pathological predictions. Consequently, de-
spite the fact that LSF grammars represent a greater
range of functions, it is likely that there are phe-
nomena that can be captured with GS grammars but
not with LSF grammars given a limited constraint
set. This is left to future work.

This work has also shown that the optimization
problem for GS grammars is likely more difficult
than the analogous problem in other frameworks
designed to capture the same types of phonological
phenomena. For example, grammars with lexically-
scaled constraints like those mentioned throughout
this paper have also been shown to capture lexical
exceptionality and subregularity but, as described,
they correspond to a convex optimization problem.
Similarly, grammars with underlying representa-
tion constraints have also been shown to be a vi-
able approach to capturing these phonological phe-
nomena (Apoussidou, 2007; Smith, 2015) and, in
learning problems like that described in this paper
present a convex optimization problem. The critical
difference between these approaches and GS gram-
mars is that Harmony function for GS grammars is
quadratic, consequently the optimization problem
is not guaranteed to be convex. It is not necessarily
the case that the complexity of the related opti-
mization problems is a valid metric along which to
compare linguistic theories. Previous work how-
ever, has made strong claims regarding the relation-
ship between the numerical optimization of Max-
Ent/HG grammars and the learning trajectories of
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human language learners (Boersma et al., 2000;
Jäger, 2007; Jesney and Tessier, 2008, 2011), in
which case there may be merit in comparing the
optimization procedure for competing theories.

The broader GSC framework offers a novel the-
ory of phonological grammars, the expressivity and
restrictiveness of which has not been thoroughly
explored. This work hopes to facilitate further re-
search by introducing a method for simultaneously
learning constraint weights and input activations
of GS grammars which both relates GS grammars
to an existing phonological framework and serves
as a tool in finding GS analyses of phonological
phenomena.
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Abstract

This paper investigates the ability of neu-
ral network architectures to effectively learn
diachronic phonological generalizations in a
multilingual setting. We employ models us-
ing three different types of language embed-
ding (dense, sigmoid, and straight-through).
We find that the Straight-Through model out-
performs the other two in terms of accuracy,
but the Sigmoid model’s language embeddings
show the strongest agreement with the tradi-
tional subgrouping of the Slavic languages.
We find that the Straight-Through model has
learned coherent, semi-interpretable informa-
tion about sound change, and outline direc-
tions for future research.

1 Introduction

Historical phonology is an important area of di-
achronic linguistics, allowing scholars to explore
the space of possible sound change trajectories and
resulting synchronic patterns, as well as posit de-
grees of relatedness between languages on the ba-
sis of sound changes shared across them. The
latter practice traditionally involves the identifi-
cation of innovations that are probative with re-
spect to historical subgrouping. The internal ge-
netic structure of many linguistic groups is uncon-
troversial. For others, scholars disagree in terms of
which isoglosses are relevant to subgrouping, and
whether the relevant features are indeed shared
across groups of languages. The use of compu-
tational methods has aided in resolving a num-
ber of outstanding questions in diachronic linguis-
tics, though little work has been done assessing
the ability of computational models to learn mean-
ingful patterns of sound change as well as capture
language-level information that may bear on de-
grees of genetic relatedness.

This paper employs a neural encoder-decoder
architecture to analyze patterns of sound change

among Slavic languages, training a series of mod-
els on data from an etymological dictionary. Fol-
lowing the standard practice in multilingual NLP
tasks, we make use of language embeddings con-
catenated to the model input. We make use
of three different types of language embedding,
comprising continuous real-valued DENSE, SIG-
MOID (defined on the [0, 1] interval), and binary
STRAIGHT-THROUGH embeddings. We assess the
accuracy with which these encoder-decoder mod-
els predict held-out forms in contemporary Slavic
languages from their corresponding Proto-Slavic
input. We provide a detailed error analysis, ob-
serving differences across models in terms of the
types of error introduced. We measure the ex-
tent to which the language embeddings learned by
each model recapitulate the the most commonly
accepted subgrouping of the Slavic languages. Fi-
nally, we assess the interpretability of the straight-
through embedding, investigating the degree to
which embeddings in binary latent space represent
meaningful information regarding sound change.

We find that the model with straight-through
language embeddings outperforms the Dense and
Sigmoid models in terms of accuracy. At the same
time, the language embeddings learned by the Sig-
moid model display a signal that shows the highest
agreement out of the three models with received
wisdom regarding the dialect grouping of Slavic
languages. We find that the latent binary represen-
tations learned capture meaningful and coherent
information regarding sound patterns. We outline
future directions for research using latent binary
embeddings in neural historical phonology.

2 Background

The Slavic branch of Indo-European is tradition-
ally divided into East, West, and South Slavic
groups. Many of the oldest and most de-
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cisive isoglosses differentiating the Slavic lan-
guages are phonological in nature (cf. Shevelov
1964, Carlton 1991). For instance, tautosyl-
labic Proto-Slavic vowel+liquid sequences were
subject to METATHESIS or re-ordering in West
and South Slavic languages, whereas East Slavic
languages underwent PLEOPHONY, inserting a
vowel between the liquid and the following con-
sonant. Variation between liquid metathesis
and pleophony, accompanied by language-specific
vowel changes, can be seen in the cognates
Russian górod, Ukrainian hórod, Croatian grâd,
Czech hrad (< *gôrdŭ ‘city’); the h- found in
Ukrainian (East Slavic) and Czech (West Slavic)
shows also that certain shared features do not
cleanly follow the taxonomy defined above.

It is traditionally assumed that the tripartite
classification of Slavic either reflects the dialec-
tal diversity of the so-called Slavic homeland,
most probably situated on the outskirts of the
Carpathian Mountains, or emerged as a result
of the great Slavic expansion in the 6th century
AD (Bräuer, 1961; Hock, 1998). The extensive
study of loanwords, however, suggests that post-
expansional Slavic was, despite the vast territory it
occupied, still uniform. There seem to have been
no significant differences between Slavic spoken
in areas located as far away from each other as the
Baltic sea and the Peloponnese, at least with re-
gard to phonology. It has therefore been argued
that it is this post-expansional Slavic that con-
stitutes the ancestor of all Slavic languages and
not the Slavic language spoken in the homeland
(Holzer, 1995). One of the arguments put for-
ward in support of this claim is the still largely re-
constructible post-Proto-Slavic dialect continuum
(Holzer, 1997). One objective of this paper to as-
sess the degree to which neural models recapitu-
late the uncontroversial subgrouping of Slavic as
an indicator of whether they are capable of resolv-
ing outstanding issues in the field.

3 Related Work

A growing body of research assesses the informa-
tion captured by language embeddings trained on
large data sets using neural models. There is some
debate as to whether embeddings learned in these
tasks can pick up on genetic signal (Östling and
Tiedemann, 2017; Tiedemann, 2018), or whether
the information learned represents structural simi-
larity (Bjerva et al., 2019). The majority of work

of language embeddings involves models trained
on large parallel corpora. Meloni et al. (2019) ap-
proach the issue of sound change using a GRU-
based neural machine translation model with soft
attention to reconstruct Latin forms from contem-
porary Romance reflexes; the authors employ lan-
guage embeddings, but do not provide an analysis
of the information captured by these embeddings.
Phylogenetic approaches to sound change and the
reconstruction of word forms incorporate a highly
articulated genetic representation of language re-
latedness (Hruschka et al., 2013; Bouchard-Côté
et al., 2013), but employ simplified representa-
tions of sound change in comparison to what can
be captured by recurrent neural networks; at the
same time, phylogenetic work explicitly models
intermediate stages of change, a potential chal-
lenge for RNNs, which are better suited to learn-
ing patterns resulting from the telescoping of mul-
tiple changes. Related work seeks to disentan-
gle genetic and areal pressures in shaping cross-
linguistic patterns (Daumé III, 2009; Murawaki
and Yamauchi, 2018; Cathcart, 2019, 2020b,a).

In general, while the signal learned by embed-
dings can be analyzed via visualization techniques
(Maaten and Hinton, 2008), it is a challenge to link
the behavior of embeddings to individual features
in the data analyzed. This difficulty undoubtedly
stems in part from the fact that embeddings are
generally continuous, lacking the sparsity or dis-
creteness needed to identify the behavior of the
neural model when features are active or inactive.
This issue has been addressed by the development
of de-noising approaches designed to induce spar-
sity (Subramanian et al., 2018).

Binary latent variables are of key interest to lin-
guistic questions, but pose many challenges for
inference. Binary latent variable models such
as the Indian Buffet Process (IBP, Ghahramani
and Griffiths, 2006) have been used in some ap-
plications in computational phonology and typol-
ogy (Doyle et al., 2014; Murawaki, 2017) using
a combination of Gibbs Sampling and updates
from the Metropolis-Hastings algorithm or Hamil-
tonian Monte Carlo, but it is not clear that these
inference procedures are scalable to neural mod-
els. Discrete variables pose problems for dif-
ferentiability in gradient-based optimization algo-
rithms; marginalizing out all possible combina-
tions of binary variables is generally unfeasible
for binary latent variables. Variational approaches
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have attempted to circumvent this issue via the
concrete (alternatively, Gumbel-Softmax) distri-
bution (Maddison et al., 2017; Jang et al., 2017),
which extends the reparameterization trick to cat-
egorical distributions and which produces gradi-
ent estimates that have lower variance than stan-
dard estimation techniques (Williams, 1992) but
are still biased; subsequent approaches reduce bias
but are less straightforward to implement (Grath-
wohl et al., 2018; Liu et al., 2019).

While concrete-distributed versions of the IBP
have been used in neural models (Singh et al.,
2017; Kessler et al., 2019), this work is limited
to variational autoencoders, which use amortized
variational inference to learn latent representa-
tions from the data via a global inference net-
work; encoder-decoder mechanisms with attention
like the one used in this paper cannot exploit this
property of the data; training the latent variable
with stochastic variational inference, while theo-
retically possible, is considerably more difficult
(Kim et al., 2018). As an alternative, we use
straight-through (ST) embeddings (Bengio et al.,
2013; Courbariaux et al., 2016) in a maximum
likelihood framework. Straight-through layers are
discrete but have underlying continuous weights;
model output is predicted on the basis of the dis-
crete representation, while model loss is differen-
tiated with respect to the continuous underlying
weights. While this approach has the same prob-
lems with biased estimates as the concrete dis-
tribution, it is straightforward to implement. We
compare the quality of straight-through embed-
dings to embeddings with no activation and em-
beddings with sigmoid activation.

4 Data

Our data set consists of Proto-Slavic etyma and
corresponding reflexes in medieval and mod-
ern Slavic languages taken from a digitized ver-
sion of a Slavic etymological dictionary (Derksen
2007; for alternative reconstructions see Holzer
1995; Andersen 1998). In order to minimize
the chance of introducing morphologically non-
congruent forms into our data set, we extracted
the first form provided for each Slavic language
in each entry, since these are most likely to agree
morphologically with the Proto-Slavic headword.

We converted forms in modern Slavic lan-
guages to a narrow phonetic representation us-
ing IPA transcriptions from Wiktionary (https:

//www.wiktionary.org), which were used
to train a neural encoder-decoder; these models
were used to obtain IPA transcriptions for forms
not in Wiktionary, and a portion was checked man-
ually. In several cases we reconciled sources used
in the etymological dictionary (e.g., Pleteršnik,
1894) with contemporary standardized orthogra-
phies, and made use of phonetic descriptions for
languages where the training data were problem-
atic (Schuster-Šewc, 1968; Lencek, 1982; Scat-
ton, 1984; Comrie and Corbett, 1993; Ternes and
Vladimirova-Buhtz, 1990; Landau et al., 1995;
Šuštaršič et al., 1995; Dankovičová, 1997; Jassem,
2003; Gussmann, 2007; Stadnik-Holzer, 2009;
Hanulíková and Hamann, 2010; Mojsijenko et al.,
2010; Yanushevskaya and Bunčić, 2015; Howson,
2017, 2018; Pompino-Marschall et al., 2017). For
the medieval languages Old Church Slavic and
Church Slavic, orthographic forms were converted
to a broad phonemic transcription based on Lunt
(2001). Suprasegmental features were marked for
all modern languages (pitch accent for Slovene
and BCS and primary stress for the remainder; for
consistency, we chose to mark primary stress on
monosyllables in stress-timed languages). We ex-
cluded languages with fewer than 100 forms in the
etymological dictionary (this resulted in the omis-
sion of Macedonian, Polabian and Slovincian).

We took additional steps to remove morpholog-
ical mismatches in the data set. For Bulgarian
verbs, which reflect the Proto-Slavic 1sg present
in their citation form, we replaced the Proto-Slavic
headword (the infinitive form by default) with a
morphologically congruent form, and excluded a
small number of forms based on athematic verbs.
Additionally, Proto-Slavic adjectives are always
given in the nominal or short form, although con-
temporary Slavic languages often reflect the so-
called long form, which arose from the addition
of an inflected element *-jı̆ to the ending; we con-
verted short Proto-Slavic adjectives to their long
form in the appropriate contexts. We tried to
ensure that Proto-Slavic verbs matched their re-
flexes according to the presence/absence of re-
flexive morphology and preverbs. Additionally,
the original data source contains multiple gen-
der inflections for certain Proto-Slavic etyma (e.g.,
*àblŭko n., *àblŭka f., and *àblŭkŭ m. for ‘ap-
ple’), which are linked to the same reflexes irre-
spective of the reflexes’ gender; for such forms, we
discarded etymon-reflex pairs with mismatched
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Language Glottocode # reflexes
Russian (Rus) russ1263 1572
Slovene (Sln) slov1268 1462
Serbo-Croatian (BCS[M]) sout1528 1434
Czech (Cze) czec1258 1377
Polish (Pol) poli1260 1282
Slovak (Slk) slov1269 1091
Old Church Slavic (OCS) chur1257 1097
Bulgarian (Bul) bulg1262 950
Church Slavic (CS) chur1257 392
Ukrainian (Ukr) ukra1253 301
Upper Sorbian (USo) uppe1395 243
Lower Sorbian (LSo) lowe1385 120
Belarusian (Bel) bela1254 79
Total 11400

Table 1: Number of forms in each language in data set,
along with closest matching glottocodes.

gender. Ultimately, this process yielded 11400
forms in 13 languages (see Table 1), and allowed
us to rid the data set of a large number (albeit not
the entirety) of morphological mismatches.

5 Method

To learn mappings between Proto-Slavic etyma
and the Slavic reflexes that descend from them,
we use an LSTM Encoder-Decoder with 0th-
order hard monotonic attention (Wu and Cotterell,
2019), trained on all languages in our data set.
The basic model architecture used for the exper-
iments in this study has the following structure
(schematized in Figure 1): a trainable language-
level embedding is concatenated to a one-hot rep-
resentation of each input segment at each input
time step; each concatenation is fed to a Dense
layer (with no activation) to generate a embed-
ding for each time step that encodes information
about the input phoneme and language ID of the
reflex; these embeddings subsequently are fed to
the encoder-decoder in order to generate the out-
put. The parameters of the encoder-decoder archi-
tecture are shared across languages in the data set;
the sole language-specific variable employed is the
language-level embedding fed to the model.

In all experiments, we set the dimension
of the language-level embedding and the lan-
guage/character embedding to 128, and the hidden
layer dimension to 256. In our experiments, we
employ different representations of the language-
level embedding, including a dense layer with no
activation (DENSE model), a dense layer with sig-
moid activation, (SIGMOID model) and a dense
layer with straight-through activation (ST model),
which uses the Heaviside step function (negative

z`i z`i

xi,1 xi,|xi|

ei,1 ei,|xi|

Encoder-Decoder

yi,1 yi,|yi|

. . .

. . .

Figure 1: Basic schema of architecture used in this pa-
per; for each input-output pair xi,yi, an embedding
associated with the language ID for index i is concate-
nated to a one-hot representation of the input.

values map to 0, non-negative values to 1). We
train our model for 200 epochs with a batch size
of 256 using the Adam optimizer with a learning
rate of .001 with the objective of minimizing the
mean categorical cross-entropy between the pre-
dicted and observed distributions of the output. To
evaluate model performance, we carry out K-fold
cross-validation (K = 10), randomly holding out
10% of the forms in each language, and greed-
ily decoding the held-out forms using the trained
model. For additional analyses regarding the in-
terpretability of the embeddings learned, we train
the model on all forms in the data set. Models are
implemented in Keras (Chollet, 2015) and Larq
(Geiger and Team, 2020).1

6 Results

6.1 Accuracy
We assess the accuracy of each model by gener-
ating held-out forms on the basis of the language
ID of the form and the Proto-Slavic etymon from
which the form descends, greedily decoding on the
basis of the trained model. We measure accuracy
in terms of word error rate (WER), which gives the
proportion of incorrectly generated forms, and the
phoneme error rate (PER), which we define as the
Levenshtein edit distance between generated and
ground truth strings divided by the length of the
longer form. Accuracy measures are found in Ta-
ble 2. The ST model shows the best performance,

1Code accompanying this paper is available at
https://github.com/chundrac/slav-dial/
tree/master/SIGMORPHON_2020
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WER PER
Dense 0.535 0.143
Sigmoid 0.559 0.151
ST 0.530 0.140

Table 2: Mean word error and phoneme error rate for
each model

followed by the Dense and Sigmoid models. Fig-
ure 2 shows WER and PER for each model plot-
ted by the log number of training examples for
each language in our data set. There is at best a
very weak negative correlation between error rates
and training example frequencies; the worst per-
formance seems to be restricted to four languages
(Belarusian, Lower Sorbian, Ukrainian, and Upper
Sorbian), which vary in training data frequency,
but in our impression posed the most difficulties
for phonetic conversion. Old Church Slavic and
Church Slavic show the highest accuracy; forms
in these languages tend to be close to their Proto-
Slavic ancestral forms,2 and were straightforward
to convert to IPA.

6.2 Error analysis

6.2.1 Quantitative error analysis
We wish to obtain a fuller picture of the errors
made by our models, and in particular, whether
different models produce different types of errors.
We analyze errors according to a taxonomy in-
spired by Gorman et al. (2019). At a high level,
errors can be divided according to whether they
stem from mistakes in the data or are a result
of model idiosyncrasies. Errors in the data (tar-
get errors) largely consist of morphologically non-
congruent etymon reflex pairs that we were un-
able to detect a priori: for instance, the Slavic et-
ymon *dı̌lti ‘to hollow, chisel’ is paired with re-
flexes such as Czech dlbsti, which contains the
cluster -bs- due to analogical influence; similarly,
the etymon *majati ‘wave, beckon’ (inf.) is paired
with OCS namaiaaxǫ (3pl impf.). Additionally,
there exists the possibility of doublet reflexes in
contemporary Slavic languages due to dialect bor-
rowing (free variation errors), e.g., Russian óblako
from Church Slavic (Vasmer, 1953-1958). Incor-
rect phonetic conversion is another source of er-
rors of this type.

2Note that according to the common practice in etymolog-
ical dictionaries, OCS snd CS forms are given in a normalized
form not reflecting regional differences.

In terms of linguistic errors that are not direct
artifacts of our data set, we are interested in the
degree to which the models’ behavior results in
a specific set of error pattern types. We wish to
measure the extent to which models introduce er-
rors when decoding forms in a given language due
to overgeneralization on the basis of forms seen in
the training data for the SAME LANGUAGE. For
instance, all models fail to learn the Upper Sor-
bian development *pr > [pS], erroneously gener-
alizing the change *r > [ö] to an incorrect envi-
ronment (e.g., PSl *pręsti ‘spin’ > ["pöjas

>
tS], ex-

pected ["pSas
>
tS]). Additionally, because our model

leverages global information shared across lan-
guages along with language-specific information,
errors in one language involving the application
of a sound law from a DIFFERENT SLAVIC LAN-
GUAGE are a potential concern. For example,
the Sigmoid model generates the erroneous BCS
reflex [lě

>
tCæti] ‘to fly’ (< PSl *letěti, expected

[lětjeti]); [æ] is attested only in OCS, CS, Rus-
sian, and Slovak. Of additional interest are errors
where the model produces a rule that is unattested
across the data set, and hence UNMOTIVATED by
the data. For instance, the Sigmoid model gener-
ates BCS [ppě:ta] (< PSl *pętà ‘heel’, expected
[pě:ta]); word-initial [pp-] is unattested in our data
set, and the origin of this error is unclear.

We quantitatively assess the issues enumerated
above in the manner described below. To assess
the prevalence of target errors, we measure the ex-
tent to which models agree in terms of the data
points for which poor performance is exhibited.
We take this agreement as a proxy for errors in the
data; if the same data points cause problems across
models, this poor performance may be an artifact
of morphological mismatches in the data or fewer
examples in the training data than needed to learn
the patterns for the data points in question. The
agreement matrix in Table 3 shows that agreement
levels are quite high, indicating that some errors
may be due to artifacts of the data used.

To gain an overview of the error types made by
the model, we use the attention mechanism of the
trained models to obtain alignments between all
Proto-Slavic etyma and attested reflexes as well as
between Proto-Slavic etyma and erroneously pro-
duced reflexes. We extract sound changes operat-
ing between Proto-Slavic and daughter languages
from these alignments (e.g., PSl *o > Slovak O),
which indicate whether a given edit is attested in
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Figure 2: PER (top) and WER (top) values (y axis) plotted by the log number of training examples for each
language (x axis), for Dense, Sigmoid and ST models (left to right)

Model Dense Sigmoid ST
Dense — 0.789 0.812
Sigmoid 0.824 — 0.827
ST 0.803 0.783 —

Table 3: Proportion of word errors produced by each
model (rows) shared with other models (columns)

Model SL OL U
Dense 0.551 0.105 0.342
Sigmoid 0.593 0.101 0.305
ST 0.617 0.101 0.281

Table 4: Proportion of errors produced by models that
are present in the same language (SL), other languages
(OL), or are unmotivated (U)

a language (irrespective of conditioning environ-
ment). We automatically annotate each erroneous
edit according to whether it is attested in the same
language as the decoded form in which it occurs
(same language), if not, whether it is attested in an-
other Slavic language (other language), or finally,
if it is not attested in any Slavic language (unmo-
tivated). Table 4 shows proportions of these error
types produced by each model; the Sigmoid and
ST models produce more other-language and un-
motivated errors than the Dense model.

6.2.2 Qualitative error analysis

We present results of a detailed error analysis in-
volving 422 forms spanning all languages in the

data set where at least one of the three models
produced an error. Roughly 15% of the forms
surveyed contain some sort of morphological mis-
match; many of these are trivial one-off analogi-
cal idiosyncrasies. In some cases, loanwords un-
marked in the dictionary can be detected (cf. the
example of Russian óblako mentioned above).

Annotated error types that occur more than once
across all models include incorrect accent type
(Dense: 18, Sigmoid: 12, ST: 10), accent mis-
placement (Dense: 40, Sigmoid: 40, ST: 32),
consonant mismatches (Dense: 139, Sigmoid:
161, ST: 149), vowel quality mismatches (Dense:
192, Sigmoid: 219, ST: 195), vowel length mis-
matches (Dense: 35, Sigmoid: 47, ST: 31), and
general segmental mismatches involving the erro-
neous substitution of a vowel for a consonant, or
vice versa (Dense: 85, Sigmoid: 81, ST: 68). The
ST model’s overall higher performance bears out
the larger-scale analysis of errors presented in the
previous section.

Our manual error analysis was carried out by a
single specialist; future research will involve more
detailed error analyses carried out by multiple spe-
cialists in order to gauge inter-annotator reliability.

6.3 Genetic signal in embeddings

We wish to measure the degree to which the
language-level embeddings learned by each model
reflect received wisdom regarding the dialectal
makeup of the Slavic languages. As stated previ-
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Figure 3: Reference phylogeny of Slavic languages and neighbor-joined trees from embeddings for Dense, Sig-
moid, and Straight-Through models (left to right)

ously, languages employed in this paper are tra-
ditionally divided among East, South and West
Slavic groups. To assess the signal contained
by the embeddings, we generated trees from co-
sine distances between pairs of language embed-
dings learned by each model using neighbor join-
ing (NJ, Saitou and Nei, 1987) as implemented in
the R package ape (Paradis et al., 2019). These
trees can be found in Figure 3 alongside a ref-
erence topology from Glottolog (Hammarström
et al., 2017). The Sigmoid model’s embeddings
show the highest agreement with the Glottolog
tree; the main discrepancies found are the place-
ment of Bulgarian outside of South Slavic, as
well as the placement of the Lechitic languages
Polish, Upper Sorbian and Lower Sorbian within
East Slavic. The ST embeddings show mixed
performance; certain West and South Slavic lan-
guages are grouped correctly, but a large number
of taxa are misplaced. We used the R package
Quartet (Smith, 2019) to measure the gener-
alized quartet distance (Pompei et al., 2011) be-
tween the reference tree and the trees constructed
from the embeddings, equal to the number of four-
taxon groups resolved differently across the two
trees, divided by the number of resolved four-
taxon groups found in the reference tree; lower
values indicate greater agreement (Dense: 0.322,
Sigmoid: 0.247, ST: 0.368). It is possible that
the ST model shows low agreement with the ref-
erence phylogeny but high accuracy because it has
succeeded in detecting areal features that conflict
with the traditional tripartite subgrouping. Further
investigation into the treelikeness of each network
(Wichmann et al., 2011) is needed in order to prop-
erly address this issue.

6.4 Interpretation of embeddings

A common goal of neural modeling with discrete
latent variables is to learn sparse interpretable fea-

Figure 4: Active dimensions (white cells) in ST lan-
guage embeddings

tures. Ideally, activating or deactivating a single
binary latent variable should correlate with the
presence or absence of a meaningful feature in
the model’s output. Inducing the level of sparsity
needed to generate such latent variables is an on-
going issue in the deep learning literature (Singh
et al., 2017). Our models have not learned mean-
ingful features in the sense that turning a single
variable “on” or “off” can produce a meaningful
feature of Slavic dialectology (e.g., the presence of
liquid metathesis/pleophony); these processes ap-
pear to be distributed across multiple latent binary
variables.

As shown in Figure 4, language-level straight-
through embeddings are far from sparse; of the
128 embedding dimensions, only 1 is inactive
across languages. Individual language embed-
dings contain between 32 and 61 active dimen-
sions. Preliminary attempts to turn individual di-
mensions “on” and feed the latent representation
to the encoder-decoder along with a Proto-Slavic
input do not produce interpretable or coherent re-
sults; it appears to be the case that it is not indi-
vidual dimensions, but interactions between them,
that influence the behavior of the decoder.

6.4.1 Nearest neighbors
Feeding all possible 2128 combinations of embed-
ding values to the model is computationally infea-
sible, though it might allow us to discover which
feature combinations are responsible for certain
types of behavior of the encoder-decoder. In or-
der to gain a better understanding of the behavior
of these dimensions individually and as a group,
we explore the NEAREST NEIGHBORS in embed-
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ding space of reflexes for languages in our data set
by altering the values of each variable in our lan-
guage embeddings, and feeding these altered em-
beddings to the model architecture along with a
Proto-Slavic etymon and observing the set of re-
sulting outputs. Specifically, we take language-
level embeddings and alter each of the embed-
ding’s 128 dimensions.

By feeding these nearest neighbors to the
encoder-decoder along with a Proto-Slavic ety-
mon, it is possible to see how perturbations of
an embedding result in different outputs from the
expected contemporary Slavic reflex. In gen-
eral, different perturbations often result in the
same output form, indicating that the embed-
ding space is perhaps less sparse than necessary,
and more compact representations can be learned
without losing information. To give a concrete
example of this phenomenon, the nearest neigh-
bors of Polish ["m1dwO] ‘soap, lather’ (< PSl
*mỳdlo) in embedding space yield only thirteen
unique forms (["milo], ["midlO], [mı̌:dlO], ["m1dwO],
[mı̌:lo], ["m1dlO], [mIll5], [mIllO], [mı̌lO], [mIlO],
["milO], [mı̌:lO]); interestingly, there is no evidence
for the otherwise naturalistic and plausible sound
change *dl > [ll] in our data set.

Based on a qualitative appraisal of these near-
est neighbors, it does not appear to be the
case that the ST model has learned to entirely
disentangle orthogonal developments in histori-
cal phonology. The unique nearest neighbors
of Russian [m@l5"ko] ‘milk’ (< PSl *melkò),
[mlEkO], ["mlEko], [mlě:kO], [mlI"ko], [mlě:ko],
["mlEkO], [m@l5"ko] and [mlE"kO], appear to show
that our model learns patterns of pleophony/liquid
metathesis and vowel change jointly, rather than
learning disentangled abstractions (though inter-
estingly, the same word in Polish has the neighbors
["mjIlkO] and [mljI"kO], showing metathesis inde-
pendent of vowel quality). It is not clear, however,
that this behavior goes against the received wis-
dom of Slavic linguistics; the operation of liquid
metathesis or pleophony among Slavic languages
is generally thought to be a change that has an
early common origin but developed in different
dialect-specific directions (Shevelov, 1964). Ul-
timately, this architecture shows the potential to
generate typologically meaningful (i.e., naturalis-
tic) but also novel representations of hypothetical
Slavic reflexes.

6.4.2 Sampling from the latent space

An issue that arises in the use of latent variable
models, particularly in the context of linguistic
typology, concerns the coherence of the repre-
sentations that they learn. If we randomly tra-
verse our models’ latent variable space or inter-
polate between representations, how likely are we
to encounter a plausible unattested sister language
of the languages attested in our data set? We
briefly explore this question by randomly sam-
pling 100 embeddings from variously parameter-
ized distributions and feeding them to our models,
along with a set of 100 randomly chosen Proto-
Slavic etyma. For each etymon, we feed zero-
mean Gaussian samples with standard deviation
σ ∈ {.01, .1, 1, 10} to the Dense model; symmet-
ric Beta samples with shape parameters α = β ∈
{.01, .1, 1, 10} to the Sigmoid model; and Bino-
mial samples with probability p ∈ {.2, .4, .6, .8}
to the ST model (all samples have the same dimen-
sion as our learned embeddings). Qualitatively
speaking, output forms randomly generated by the
ST model are consistently well formed and coher-
ent across parameterization regimes. Conversely,
when σ is greater than .01 (roughly equivalent to
the empirical standard deviation of the learned em-
beddings), the Dense model often generates unre-
alistic strings (e.g., [błł":łł@]), and when σ is very
small, forms are coherent but there is virtually no
variation; for the Sigmoid model, the strings be-
come more realistic looking as α = β increases
(the majority of values for the learned Sigmoid
embeddings are close to .5). To highlight a related
discrepancy, we observe the average number of
unique outputs generated by each regime in each
model (Dense: 3.21, 24.02, 93.08, 61.3; Sigmoid:
96.23, 94.14, 67.39 22.74; ST: 21.3, 24.3, 24.06,
20.1); the quantity of unique outputs stays con-
stant across all regimes for the ST model, along
with their quality.

Additionally, we wish to explore the extent to
which samples from latent variable space gener-
ate realistic sound changes and plausible sound
patterns. While certain diachronic trajectories
can lead to the emergence of “crazy” rules (Bach
and Harms, 1972; Buckley, 2000) and unnatu-
ral phonotactic restrictions (Beguš and Nazarov,
2017), we might expect the relatively infrequent
nature of these phenomena to somehow be cap-
tured by the behavior of models like the ST
model. To address this question, we feed sets
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of hypothetical well-formed Proto-Slavic phono-
logical neighbors (generated by taking 12 etyma
from our data set and generating echo-forms to
create a cohort of forms differing according to
initial *p-/t-/k-/b-/d-/g-; we exclude hypothetical
forms with velar-front vowel sequences, which
would have been affected by palatalization) to
the ST model, randomly sampling binary latent
embeddings from the binomial distribution with
probabilities {.2, .4, .6, , 8}. For each probabil-
ity regime, we attempt to evaulate the relative
frequency of unnatural sound patterns displayed
by these hypothetical forms’ descendants; if our
model embodies not only plausible but proba-
ble behavior, we predict that these etymologi-
cal phonological neighbors, which differ only ac-
cording to the word-initial consonant, should fre-
quently yield similar echo-forms, and that other
patterns may arise less frequently. For each pair
of outputs within each cohort (with stress mark-
ing removed), we divide the number of agreeing
final segments by the mean of the two strings’
lengths, and report the proportion of pairs for
which this value is greater than .5 (indicating
greater agreement); these values are 0.427, 0.546,
0.574, and 0.526 for each respective probability
regime, indicating that generated outputs tend not
to be very echo-like. To exemplify, a represen-
tative sample output for *{p,t,b,d}ı̆rtı̆ comprises
the forms ["pr

"
>
tC], ["tr

"
t], ["br

"
>
ts], ["dr

"
t]. While long-

distance assimilatory and dissimilatory processes
operating between the left and right word edge
are not unknown cross-linguistically, we believe
that changes where differences in word-initial seg-
ments trigger divergent word-final reflexes should
be rare, rather than typical. Further refinement of
metrics designed to assess the validity of output
patterns is much needed.3

From this small and rather premature investi-
gation, it appears that the latent variable design
space represented by the ST model generates co-
herent, realistic-looking output, but the frequency
distributions of patterns in its output may not re-
flect cross-linguistic frequency distributions. A
more in-depth analysis along these lines is outside
the scope of this paper, and methods seeking to

3Indeed, taking the proportion of agreeing final segments
as a measure of naturalness would classify changes resulting
from certain types of tonogenesis to be unnatural, e.g., *pa,
*ba > Vietnamese pa, pà (Haudricourt, 1954), since dissim-
ilarity in initial consonants often leads to dissimilarity at the
right word edge.

derive typological generalizations should include
data from multiple families; at the same time, the
issues raised here potentially bear on our under-
standing of the diachronic basis of synchronic pat-
terns in phonology.

7 Discussion and outlook

This paper investigated the performance of multi-
ple neural models in capturing patterns of sound
change across Slavic languages. We found that a
model with binarized straight-through language-
level embeddings outperformed other models in
terms of accuracy, and shows great potential for
learning coherent and interpretable information re-
garding sound change. We found that the discrete
features learned by our model appear for the most
part to correspond to meaningful, realistic varia-
tion in sound patterns, though representations are
not particularly sparse. Additionally, randomly
sampling from discrete latent space tended to con-
sistently generate coherent output; the preliminary
attempts that we made to assess the likelihood of
observing these samples in naturalistic contexts
can be expanded considerably.

We used straight-through embeddings as a low-
cost alternative to more involved means of train-
ing discrete latent variables. In the immediate
future, we plan to extend our approach to make
use of variational approaches, the flexibility of
which may help in inducing sparsity in order to
learn more meaningful, realistic representations
(there is additionally room for exploration of sim-
pler approaches that we did not make use of in
this paper, such as dropout regularization); how-
ever, since our encoder-decoder model is different
from the autoencoding models used in previous
work, directly extending these methods presents
a challenge that require considerable experimen-
tation to overcome (an early attempt to adopt the
IBP prior of Singh et al. 2017 was unsuccessful,
as the monotonically decreasing prior probabilities
rarely yielded non-zero values; thus far, attempts
to weight the KL divergence term have not yielded
success). Nevertheless, as low-variance, low-bias
techniques for inferring discrete variables in neu-
ral models progress, we believe that they will be
an increasingly valuable means of capturing mean-
ingful, interpretable features in multilingual neural
tasks like this paper’s.
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Marzena Żygis. 2017. Ukrainian. Journal of the
International Phonetic Association, 47(3):349–357.

Naruya Saitou and Masatoshi Nei. 1987. The
neighbor-joining method: a new method for recon-
structing phylogenetic trees. Molecular Biology and
Evolution, 4(4):406–425.

Ernest A. Scatton. 1984. A reference grammar of mod-
ern Bulgarian. Slavica Publishers, Columbus, Ohio.

Heinz Schuster-Šewc. 1968. Gramatika hornjoserb-
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sian. Journal of the International Phonetic Associa-
tion, 45(2):221–228.

244



Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages 245–255

Online, July 10, 2020. c©2020 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17

Multi-Tiered Strictly Local Functions

Phillip Burness
University of Ottawa

pburn036@uottawa.ca

Kevin McMullin
University of Ottawa

kevin.mcmullin@uottawa.ca

Abstract

Tier-based Strictly Local functions, as they
have so far been defined, are equipped with
just a single tier. In light of this fact, they are
currently incapable of modelling simultaneous
phonological processes that would require dif-
ferent tiers. In this paper we consider whether
and how we can allow a single function to op-
erate over more than one tier. We conclude
that multiple tiers can and should be permit-
ted, but that the relationships between them
must be restricted in some way to avoid over-
generation. The particular restriction that we
propose comes in two parts. First, each input
element is associated with a set of tiers that
on their own can fully determine what the el-
ement is mapped to. Second, the set of tiers
associated to a given input element must form
a strict superset-subset hierarchy. In this way,
we can track multiple, related sources of infor-
mation when deciding how to process a partic-
ular input element. We demonstrate that doing
so enables simple and intuitive analyses to oth-
erwise challenging phonological phenomena.

1 Introduction

Many theoretical analyses of long-distance phono-
logical patterns share the core intuition that a tier
or projection of segments can allow for ‘local’ re-
lationships to be established between non-adjacent
elements by excluding material that is irrelevant
from the implicated level of representation. For
example, Samala (also known as Ineseño Chu-
mash) has a long-distance process of sibilant har-
mony in which an underlying /s/ surfaces as [S]
if another [S] appears anywhere later in the word,
as in /ha-s-xintila-waS/→ [haSxintilawaS] ‘his for-
mer gentile name’ (Applegate, 1972). The har-
mony target can be arbitrarily far from the har-
mony trigger in the full string of segments, but the
trigger and target are rendered adjacent on a level

of representation containing all and only the sibi-
lant consonants.

Within the subregular hierarchy of formal lan-
guages, the class of Strictly Local languages,
which model local phonotactic restrictions (Mc-
Naughton and Papert, 1971; Rogers and Pullum,
2011; Rogers et al., 2013) have been extended
to incorporate the notion of a tier, resulting in
the class of Tier-based Strictly Local (TSL) lan-
guages (Heinz et al., 2011). Likewise, the In-
put Strictly Local (ISL) and Output Strictly Lo-
cal (OSL) functions—which characterize locally-
bounded phonological processes as subregular
maps (Chandlee, 2014; Chandlee et al., 2014,
2015)—have been generalized to the classes of
Input Tier-based Strictly Local (ITSL) and Out-
put Tier-based Strictly Local (OTSL) functions in
order to account for non-local phonological pro-
cesses (Burness and McMullin, 2019; Hao and
Andersson, 2019; Hao and Bowers, 2019).

These TSL formal languages and functions suc-
cessfully model a wide range of long-distance
phonological patterns (McMullin, 2016; Mc-
Mullin and Hansson, 2016; Burness and Mc-
Mullin, 2019; Hao and Bowers, 2019), and more-
over have desirable properties for learnability (Jar-
dine and Heinz, 2016; Jardine and McMullin,
2017; Burness and McMullin, 2019). However,
they suffer from a major drawback in that they
are restricted to a single tier, and as a conse-
quence are ill-equipped to deal with multiple, si-
multaneous long-distance dependencies. For ex-
ample, the Tamashek dialect of Tuareg exhibits
regressive long-distance sibilant harmony and re-
gressive long-distance labial dissimilation (Heath,
2005; McMullin, 2016). Each of the two processes
can be modelled in isolation as a TSL function, but
there is no single TSL function that can apply both
rules simultaneously. The solution we pursue in
this paper is to give functions access to more than
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one tier.
Incorporating multiple tiers into a single func-

tion is relatively straightforward; the difficulty
lies in understanding the computational proper-
ties of such functions and establishing appropri-
ate restrictions on the number of tiers and the rela-
tionships between tiers. Progress has been made
with regards to properly restricting multi-tiered
languages (Aksënova and Deskmukh, 2018; Mc-
Mullin et al., 2019), and this paper considers the
restrictions that need to be imposed onto the mul-
tiple tiers of a multi-tiered function. Our proposal
is to associate each input element with a set of tiers
that must fall into a strict subset-superset hierarchy
(i.e., each tier in the set is a strict subset of the next
largest tier in the set, if it exists). The output cor-
responding to an input element then depends on its
dedicated set of tiers, and no others.

The rest of this paper is structured as follows.
Section 2 introduces the notation that will be used
throughout the paper. Section 3 presents the TSL
functions as they are currently defined. Section 4
discusses some limitations of TSL functions that
this paper aims to address. Section 5 formally
defines the Multi-Tiered Strictly Local (MTSL)
functions, and formalizes the restrictions that we
propose must hold over the relationships among
multiple tiers. Section 6 demonstrates how appro-
priately restricted MTSL functions overcome the
limitations highlighted in Section 4. Finally, Sec-
tion 7 concludes and provides directions for future
research.

2 Preliminaries

To start, let Σ be an alphabet of symbols, which in
the context of phonotactics represents a language’s
inventory of surface phones. A string w is a fi-
nite contiguous sequence of symbols from Σ, and
|w| denotes the length of w. We write λ for the
unique string of length 0 (the empty string). We
use Σ∗ to denote the set of all strings of any length
that can be made from elements in Σ. Note that
Σ∗ includes the empty string. Given two strings
u and v, we write u · v to denote their concatena-
tion, though we will often simply write uv when
context permits. A k-factor of a string w is any
contiguous substring of w with length k, though
in the special case that |w| ≤ k, w is its own and
only k-factor. In what follows, fack(w) denotes
all the k-factors contained in a string w.

A prefix of some string w ∈ Σ∗ is any string

u ∈ Σ∗ such that w = u · x and x ∈ Σ∗. A suffix
of some string w ∈ Σ∗ is any string u ∈ Σ∗ such
that w = x · u and x ∈ Σ∗. Note that any string
is a suffix of itself, and that λ is a suffix of every
string. When |w| ≥ n, suffn(w) denotes the
unique suffix of w with a length of n; when |w| <
n, it simply denotes w itself. Given a string w and
one of its prefixes u we write u−1 · w to denote
w with u removed from its front. For example,
ab−1 · abcde = cde. Finally, given a set of strings
S, we write lcp(S) to denote the longest common
prefix of S, which is the string u such that u is a
prefix of every w ∈ S, and there exists no other
string v such that |v| > |u| and v is also a prefix of
every w ∈ S.

A string-to-string function pairs every w ∈ Σ∗

with one y ∈ ∆∗, where Σ and ∆ are the input
alphabet and output alphabet respectively. Given
a set of input strings I ⊆ Σ∗, f(I) =

⋃
i∈I{f(i)}

is the set of all outputs associated to at least one
of the inputs. An important concept is that of the
tails of an input string w with respect to a function
f .

Definition 1. Tails (Oncina and Garcia, 1991)
Given a function f and an input w ∈ Σ∗,
tailsf (w) = {(y, v) | f(wy) = uv ∧ u =
lcp(f(wΣ∗))}.

In words, tailsf (w) pairs every possible
string y ∈ Σ∗ with the portion of f(wy) that is
directly attributable to y. Put another way, the
tails of w are the effect that w has on the output of
any subsequent string of input symbols. Consider
a function f computing post-nasal voicing. The
tails of w1 = /tan/ relative to f will include pairs
such as 〈t, d〉 since f(tant) = [tand] and 〈opu, opu〉
since f(tanopu) = [tanopu]. When tailsf (w1)
= tailsf (w2), we say that w1 and w2 are tail-
equivalent with respect to f . The string w2 = /ken/
is tail-equivalent to w1 with respect to f because
they both end in a nasal consonant, and therefore
both trigger post-nasal voicing. An example of a
string that is not tail-equivalent to w1 or w2 would
be w3 = /sini/; its tail for /t/ is 〈t, t〉 since it does
not end in a nasal consonant and so does not trig-
ger post-nasal voicing.

Throughout the rest of this paper, we will need
to be able to pick out the portion of the output that
corresponds to actual input material. Viewed from
another perspective, we need to be able to ignore
the portion of the output that would correspond
to a word-end symbol. To make this distinction,
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Chandlee et al. (2015) defined the prefix function
fp associated with a function f such that fp(w) is
equal to the longest common prefix of all strings
f(wx), where x is some member of Σ∗.

Definition 2. Prefix function
Given a function f , its associated prefix function
fp is such that fp(w) = lcp(f(wΣ∗)).

An example where f(w) and fp(w) differ
would be a function that appends a to the end
of every input string. In this case, fp is sim-
ply the identity map, so fp(abc) = abc whereas
f(abc) = abca.

3 Background

Like their name suggests, the Input Strictly Lo-
cal (ISL) and Output Strictly Local (OSL) func-
tions take the Strictly Local (SL) languages as
their base. Theorem 1 states the property of the
SL languages that allowed for the jump to ISL
and OSL functions. This property is known as
Suffix Substitution Closure (SSC; Rogers and Pul-
lum, 2011; Rogers et al., 2013). Informally, if two
grammatical strings share a middle portion of at
least length k − 1 (i.e., if w1 = axb, w2 = cxd,
and |x| ≥ k − 1), then we can substitute the suf-
fixes that come after the overlap without causing
ungrammaticality. A corollary of SSC is that any
two grammatical strings from an SLk language
that end in the same k−1 (or more) symbols can be
legally continued by the exact same set of strings
(Chandlee et al., 2015).

Theorem 1. Suffix Substitution Closure (Rogers
et al., 2013)
A stringset L is Strictly k-Local if and only if
whenever there is a string x of length k − 1 and
strings u1, u2, v1, v2, it is the case that:

[u1xv1 ∈ L ∧ u2xv2 ∈ L] ⇒ u1xv2 ∈ L

Corollary 1. Suffix-defined Residuals (Chandlee
et al., 2015)
A stringset L is Strictly k-Local if and only if for
all pairs w1, w2 ∈ Σ∗:

suffk−1(w1) = suffk−1(w2)⇒
{v | w1 · v ∈ L} = {v | w2 · v ∈ L}

The definitions of the ISL and OSL functions
take the property in Corollary 1 and adapt it so that
it applies to function tails. Informally, a function
f is ISL if the tail-equivalence classes of f corre-
spond to input suffixes, and a function f is OSL if

the tail-equivalence classes of f correspond to out-
put suffixes (or more accurately, suffixes of fp).

Definition 3. Input Strictly k-Local Functions
A function f : Σ∗ → ∆∗ is ISLk if for all w1, w2

in Σ∗:

suffk−1(w1) = suffk−1(w2) ⇒
tailsf (w1) = tailsf (w2)

Definition 4. Output Strictly k-Local Functions
A function f : Σ∗ → ∆∗ is OSLk if for all w1, w2

in Σ∗:

suffk−1(fp(w1)) = suffk−1(fp(w2)) ⇒
tailsf (w1) = tailsf (w2)

Chandlee (2014) and Chandlee et al. (2014,
2015) show that most iterative phonological pro-
cesses can be modelled with an OSL function,
with an important exception being long-distance
iterative processes like consonant harmony. This
is parallel to the fact that long-distance phonotac-
tics cannot be represented with an SL stringset,
which motivated Heinz et al. (2011) to define
the Tier-based Strictly Local (TSL) languages—
stringsets that are SL after an erasure function has
applied, masking all symbols that are irrelevant
to the restrictions that the language places on its
strings. The erasure function takes a tier τ and a
stringw, returningw with all non-tier elements re-
moved.

Definition 5. Erasure function
Given an alphabet Σ, a tier τ ⊆ Σ, and a string
w = a1...an, eraseτ (w) = b1...bn where for all
i ≤ n, bi = ai if ai ∈ τ , else bi = λ.

Definition 6. Tier-based Strictly k-Local lan-
guages
A language L is TSLk if there is a tier τ ⊆ Σ and
a subset S ⊆ fack(oτ∗n) such that:

L = {w ∈ Σ∗ | fack(oeraseτ (w)n) ⊆ S}

As it turns out, the TSL languages also exhibit a
form of Suffix Substitution Closure (Lambert and
Rogers, 2020). In light of this fact, the legal con-
tinuations of any string w in a TSLk language can
be inferred simply by looking at the k−1 suffix of
eraseτ (w). Just as we did for the ISL and OSL
functions, then, we can define the ITSL and OTSL
functions according to how they partition Σ∗ into
tail-equivalence classes. For convenience, we will
write suffnτ (w) to mean suffn(eraseτ (w)) in
what follows.
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Definition 7. Input Tier-based Strictly k-Local
Functions
A function f : Σ∗ → ∆∗ is ITSLk if there is a tier
τ ⊆ Σ such that for all w1, w2 in Σ∗:

suffk−1τ (w1) = suffk−1τ (w2) ⇒
tailsf (w1) = tailsf (w2)

Definition 8. Output Tier-based Strictly k-Local
Functions
A function f : Σ∗ → ∆∗ is OTSLk if there is a tier
τ ⊆ ∆ such that for all w1, w2 in Σ∗:

suffk−1τ (fp(w1)) = suffk−1τ (fp(w2)) ⇒
tailsf (w1) = tailsf (w2)

Informally, a function f is ITSL if the tail-
equivalence classes of f correspond to input tier
suffixes (where the tier is a subset of the input al-
phabet Σ), and a function f is OTSL if the tail-
equivalence classes of f correspond to output tier
suffixes (where the tier is a subset of the output
alphabet ∆). Important to note is that the ITSL
functions properly contain the ISL functions and
that the OTSL functions properly contain the OSL
functions. This is because anything SL is also TSL
when the tier is simply the entire alphabet.

The above definitions of the ITSL and OTSL
functions abstract away from reading direction,
which divides each class into two overlapping but
distinct classes. This is similar to how the sub-
sequential functions can be divided into the left-
subsequential functions which read the input from
left to right and the right-subsequential functions
which read the input from right to left (Heinz and
Lai, 2013). We will also abstract away from read-
ing direction when defining our multi-tiered func-
tions, but will specify the directionality of individ-
ual functions.

4 Limitations of TSL functions

As discussed in Burness and McMullin (2019),
the TSL functions are quite versatile, being able
to model long-distance harmony and long-distance
dissimilation, both with and without blocking ef-
fects. This is, however, only the case when we
model each phonological process of a language in
isolation.

Consider the Tamashek dialect of Tuareg, which
contains a process of long-distance regressive sibi-
lant harmony and a process of long-distance re-
gressive labial dissimilation (Heath, 2005; Mc-
Mullin, 2016). The sibilant harmony can be seen

in words where the causative prefix /s-/ is followed
non-locally by another sibilant, whereupon it takes
that other sibilant’s values for anteriority, voicing,
and pharyngealization as shown by the data in (1)
from Heath (2005, p. 442). Note that the lan-
guage has considerable vowel allophony, and we
write ‘V’ where Heath (2005) does not provide
the surface vowel quality. The labial dissimila-
tion can be seen in words where a prefix /m/ (such
as in the mediopassive) is followed non-locally
by a labial consonant other than /w/, whereupon
the prefix /m/ will dissimilate to [n]. Data for
this process is shown in (2) from Heath (2005,
p. 472). That both processes can occur simulta-
neously is demonstrated by the word in (3) from
Heath (2005, p. 462), which contains the causative
and mediopassive prefixes together.

(1) Sibilant harmony: causative /s-/
-s-VNNV- ‘cook’
-s-VsVfVr- ‘treat (patient)’
-sQ-VsQuhV- ‘strengthen’
-S-VluSV- ‘clean sand from’
-z-VjVzzV ‘scrutinize’

(2) Labial dissimilation: mediopassive /m-/
-m-VrtVj- ‘become mixed’
-n-VkmVm- ‘be squeezed’

(3) Both prefixes/processes
A-zQ-@n:-@t-@lm@zQ ‘spitting saliva’

The combination of sibilant harmony and labial
dissimilation cannot, however, be computed by a
single TSL function. To see why, consider what
happens when we try with an OTSL2 function
whose tier consists of all sibilants and labial con-
sonants. Producing a sibilant will push the most
recent labial consonant (if any) out of the k − 1
window, and producing a labial consonant will
push the most recent sibilant (if any) out of the
k − 1 window. At any given point, then, we can
only know how to correctly map an input /s/ or
only know how to correctly map an input /m/.
Increasing k does not eliminate the issue, since
any number of sibilants can in principle occur be-
tween two labial consonants, and any number of
labial consonants can in principle occur between
two sibilants.

A further difficulty for TSL functions posed by
Tamashek Tuareg is that long-distance regressive
labial dissimilation interacts with a local process
of regressive nasal place assimilation. The com-
plication arises from the fact that the local pro-
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cess overrides the long-distance process: /m/ fails
to dissimilate specifically when it is immediately
followed by an oral labial stop, in order to avoid
a heterorganic cluster. This can be seen in a word
like (4) from Heath (2005, p. 476) where the re-
ciprocal prefix /Vm-/ comes immediately before a
/b/. We are faced with a paradox if we attempt to
model this interaction as a single TSL function. In
order to know when an input labial needs to dis-
similate we need to ignore everything that is not
a labial consonant, but in order to know when an
input labial needs to obey place assimilation we
cannot ignore anything.

(4) Local blocking of dissimilation
-æm-bæbbA- ‘carried each other’

Whether these interactions are problematic de-
pends on whether we conceive of a language’s
phonological system as a series of input-output
maps or as a single “master” input-output map.
The latter position is explored by Chandlee and
Heinz (2018) and Chandlee et al. (2018) in the
context of formal language theory and automata
theory. They remark that the ISL functions are not
closed under composition, but that certain opaque
rule interactions (counterfeeding, counterbleed-
ing, etc.) can nevertheless be modelled using a
single ISL function when the component rules are
also ISL functions.

5 Multi-Tiered Strictly Local functions

The main method that we will use to tackle the
limitations presented in the previous Section is by
allowing a single function to operate over multi-
ple tiers. We call these the Multi-Tiered Strictly
k-Local (MTSLk) functions, for lack of a better
name. Note that we use a large subscripted con-
junction symbol to collapse a series of formulae
that are identical aside from using different tiers.

Definition 9. Input Multi-Tiered Strictly k-Local
functions
A function f : Σ∗ → ∆∗ is IMTSLk if there is
a finite set T of tiers τ ⊆ Σ such that for all
w1, w2 ∈ Σ∗:

[
∧

τ∈T
[suffk−1τ (w1) = suffk−1τ (w2)]]

⇒ [tailsf (w1) = tailsf (w2)]

Definition 10. Output Multi-Tiered Strictly k-
Local functions

A function f : Σ∗ → ∆∗ is OMTSLk if there is
a finite set T of tiers τ ⊆ ∆ such that for all
w1, w2 ∈ Σ∗:

[
∧

τ∈T
[suffk−1τ (fp(w1)) = suffk−1τ (fp(w2))]]

⇒ [tailsf (w1) = tailsf (w2)]

In words, there is a finite set of tiers such that if
two input strings share a k − 1 suffix on all tiers,
then they will have the same tails. Notice how this
is a direct extension of the TSLk functions, since
the singleton tier of a TSLk function will satisfy
the above definition.

Of course, allowing any conceivable number of
tiers and allowing any conceivable relationship be-
tween their contents is too powerful. One patho-
logical behaviour that can arise from excessively
free tier sets would be ‘gang-up’ effects. For ex-
ample, given a collection of disjoint tiers that each
contain a single element, we can describe pro-
cesses where the output of some input element de-
pends on the exact set of preceding elements re-
gardless of their order. A similar behaviour can
arise from overlapping but disjoint tiers. Given
τ1 = {s, S, t} and τ2 = {s, S, n} we could describe
a process of sibilant harmony that is blocked only
when both ‘t’ and ‘n’ intervene, regardless of their
order. To the best of our knowledge, such pro-
cesses are unattested and should be excluded.

In order to limit the “tier multiverse”, we pro-
pose to reference the contribution of each σ ∈ Σ
separately, rather than referencing the entirety of
tailsf . Informally, the contribution of a relative
to w is the portion of f(wa) uniquely and directly
attributable to a (e.g., it is what we would append
to the output upon reading a in a transducer after
having read w). A more formal definition is pro-
vided below.

Definition 11. Contribution
Given a function f , some a ∈ Σ, and some
w ∈ Σ∗, contf (a,w) = lcp(f(wΣ∗))−1 ·
lcp(f(waΣ∗)) = fp(w)−1 · fp(wa).

Using this notion of a contribution relative to w,
which singles out a single element of tailsf (w),
we place the following condition on MTSLk func-
tions, which we call target specification.

Definition 12. Target specification
An IMTSLk function f : Σ∗ → ∆∗ is target speci-
fied if for each σ ∈ Σ there is a finite set Tσ of tiers
τ ⊆ Σ that form a strict superset-subset hierarchy,
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and the following holds for all w1, w2 ∈ Σ∗

[
∧

τ∈Tσ
[suffk−1τ (w1) = suffk−1τ (w2)]]

⇒ [contf (σ,w1) = contf (σ,w2)]

An OMTSLk function f : Σ∗ → ∆∗ is target speci-
fied if for each σ ∈ Σ there is a finite set Tσ of tiers
τ ⊆ ∆ that form a strict superset-subset hierar-
chy, and the following holds for all w1, w2 ∈ Σ∗:

[
∧

τ∈Tσ
[suffk−1τ (fp(w1)) = suffk−1τ (fp(w2))]]

⇒ [contf (σ,w1) = contf (σ,w2)]

In words, when an MTSL function is target
specified, each σ ∈ Σ (i.e., each potential tar-
get of one or more processes) can be associated
with a group of tiers that together determine the
contribution of σ. Viewed from another perspec-
tive, each input element specifies the tiers that it
wants to track, and the contribution of an input el-
ement can always be determined by tracking only
its specified set of tiers; tracking other tiers pro-
vides information that is either redundant or irrel-
evant. Importantly, each member of the tier group
is a proper subset of the next largest member.

Requiring an input segment’s multiple associ-
ated tiers to fall into a strict superset-subset hi-
erarchy has two apparent positive consequences.
First, this restriction will be beneficial for learn-
ing, since it drastically reduces the number of pos-
sible tier combinations that can influence a given
input element. Aksënova and Deskmukh (2018)
show that even with a small inventory of 10 ele-
ments, there are 1022 ways to create a superset-
subset pair, 511 ways to create a pair of fully dis-
joint sets, and 27990 ways to create a pair of par-
tially overlapping sets. This last number is al-
ready 95% larger than the other two combined,
and the difference only increases as the size of
the alphabet grows. Second, research into multi-
tiered stringsets suggests that we never see a single
restriction enforced on two partially overlapping
tiers (Aksënova and Deskmukh, 2018; McMullin
et al., 2019).

6 Multiple Tiers in Action

This section now considers a range of individual
patterns and pattern interactions that standard TSL
functions are incapable of capturing. We show that
each of the considered patterns and interactions

are simply and intuitively captured by the target-
specified MTSL functions defined in the previ-
ous Section. In order, we consider interactions
between independent processes (6.1), interactions
between conflicting processes (6.2), cases where a
single target is subject to multiple harmonies (6.3),
and cases where some segments act as last-resort
harmony triggers in the absence of canonical trig-
gers (6.4).

6.1 Independent processes
Recall from Section 4 that Tamashek Tuareg con-
tains simultaneous long-distance sibilant harmony
and long-distance labial dissimilation. Postpon-
ing discussion of the complication that arises from
local nasal place assimilation, we can describe
the two processes with a single target-specified
OMTSL2 function as follows.

First, we associate input /s/ with the tier τs =
{s, sQ, z, zQ, S, Z} containing all and only the
sibilant consonants. Doing so, we need only
specify that if suff1τs(f

p(w)) 6= λ when read-
ing from right to left, then contf (s, w) =
suff1τs(f

p(w)), else contf (s, w) =[s]. In other
words, /s/ harmonizes with the closest sibilant to
its right, if there is one, else it surfaces faithfully.

Second, we associate input /m/ with the tier
τm = {m, b, f} containing all and only the
labial obstruents. Doing so, we need only spec-
ify that if suff1τm(fp(w)) 6= λ when reading
from right to left, then contf (m, w) = [n], else
contf (m, w) = [m]. In other words, /m/ dissimi-
lates to [n] if there is a labial obstruent somewhere
to its right, else it surfaces faithfully.

Each of the input elements we are considering
here is associated to a single tier, and so the defi-
nition of target specification is satisfied. By virtue
of tracking separate tiers, the two processes do not
interfere with each other and so can be computed
in tandem, exactly as desired. The simultaneous
computation of the two rules is shown pictorially
in Figure 1 for the word [A-zQ-@n:-@t-@lm@zQ] ‘act
of spitting up saliva’. The string in the center of
the figure is the output string. Solid lines repre-
sent projection to an output tier and dashed lines
represent an output tier element’s influence on an
input element.

6.2 Conflicting processes
The previous Section abstracted away from the in-
teraction between long-distance labial dissimila-
tion and local nasal place assimilation, which we
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zQ zQ = τs

A zQ @ n: @ t @ l m @ zQ = f(w)

m = τm

/s/→ [zQ]

/m/→ [n]

Figure 1: Simultaneous sibilant harmony and labial dis-
similation in Tamashek Tuareg.

will now consider here. The interaction can be
modelled with a target-specified OMTSL2 func-
tions as follows. First, we associate /m/ with a first
tier τm1 = ∆ containing all elements in the output
alphabet. We furthermore associate /m/ with a sec-
ond tier τm2 = {m, b, f} containing all and only
the labial obstruents. Assuming that the input is
read from right to left, the full behaviour of /m/
can be described as follows. If suff1τm1

(fp(w))
is a labial obstruent, then contf (m, w) = [m]
since /m/ is required to assimilate in place with
the adjacent obstruent. If suff1τm1

(fp(w)) 6= [b]
and suff1τm2

(fp(w)) 6= λ, then contf (m, w)
= [n] since /m/ is not immediately adjacent to a
labial consonant, but nonetheless is preceded non-
locally by a labial and must dissimilate. In all
other cases, /m/ surfaces faithfully as [m]. Note
especially how τm2 ⊂ τm1, and so the function
meets the definition of target specification.

This is not to say that local processes always
override non-local processes. Indeed, the oppo-
site is witnessed in Samala. The Samala language
is well-known for its process of regressive sibi-
lant harmony, whereby the anteriority of the right-
most sibilant overrides the anteriority of all sibi-
lants to the left. As it turns out, the language con-
tains an additional rule affecting the sibilant /s/.
Namely, /s/ regressively palatalizes to [S] when im-
mediately followed by [t], [n], or [l] (Applegate,
1972; Poser, 1982, 1993; McCarthy, 2007; Hans-
son, 2010; McMullin, 2016). The long-distance
process is given priority here, such that the local
sequences [sn], [st] and [sl] are permitted precisely
when palatalization would create a disharmonic
sequence of non-local sibilants.1 Data exempli-

1Some accounts of the data claim that the local process
takes priority. See Heinz and Idsardi (2010) for a discussion
and resolution of this inconsistency.

fying the two processes and their interaction are
provided in (5) through (7) taken from Applegate
(1972, p. 117-120).

(5) Unbounded sibilant harmony
/s-xalam-S/→ [S-xalamS] ‘it is wrapped’

(6) Local palatalization
/s-niP/→ [S-niP] ‘his neck’

(7) Harmony overrides palatalization
/s-net-us/→ [s-net-us] ‘he does it to him’

We can also describe this with a target-specified
OMTSL2 function. In this case, the contribution
of /s/ is dependent on two tiers: a tier τs1 = ∆ rel-
ative to which local palatalization is considered,
and a tier τs2 = {s, S} relative to which sibilant
harmony is considered. Assuming that the input
is read from right to left, the behaviour of /s/ can
be described as follows. If suff1τs2(fp(w)) = λ
and suff1τs1(fp(w)) is one of [t], [n], or [l], then
contf (s, w) = [S] since it is adjacent to a palatal-
ization trigger but not preceded non-locally by a
[-anterior] sibilant. If suff1τs2(fp(w)) = [S], then
contf (s, w) = [S] since /s/ is preceded non-locally
by a [-anterior] sibilant and must harmonize. In all
other contexts, /s/ surfaces faithfully as [s]. Once
again, τs2 ⊂ τs1 and so the function meets the def-
inition of target specification.

6.3 Single target, multiple harmonies
The target-specified MTSL functions are not lim-
ited to describing interactions between a local
and non-local process, they can equally describe
cases where a single element is subject to two
long-distance dependencies operating over differ-
ent featural dimensions. An example of this comes
from then Imdlawn dialect of Tashlhiyt. The lan-
guage’s causative prefix /s-/ agrees in both ante-
riority and voicing with a following sibilant, as
shown in (8), although the voicing dimension of
the harmony is blocked by an intervening voice-
less obstruent (Elmedlaoui, 1995; Hansson, 2010;
McMullin, 2016), as shown in (9).

(8) Anteriority and voicing harmony
/s-gruZ:m/→ [Z-gruZ:m]
‘CAUS-be.extinguished’

(9) Voicing harmony blocked
/s-mèaraZ/→ [S-mèaraZ]
‘CAUS-get.angry.with.each.other’

We can describe this as a target-specified
OMTSL2 function wherein the contribution of /s/
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depends on one tier τs1 for its voicing and another
tier τs2 for its anteriority. The voicing tier τs1
contains all sibilants and all voiceless obstruents,
while the anteriority tier τs2 contains only the sibi-
lants. Assuming that the input is read from right
to left, the behaviour of /s/ can be described as
follows. If suff1τs1(fp(w)) = suff1τs2(fp(w)),
then an input /s/ harmonizes in both anteriority and
voicing with that sibilant. Note that both tiers con-
tain all sibilants and so the two tier suffixes can
never be different sibilants. If suff1τs2(fp(w)) is
a sibilant and suff1τs1(fp(w)) is a voiceless ob-
struent, then /s/ harmonizes in anteriority but not
voicing with suff1τs2(fp(w)). The voicing di-
mension of the harmony is blocked because τs2 ⊂
τs1, and so the voiceless obstruent necessarily in-
tervenes between the triggering sibilant and the
target sibilant. In all other cases, /s/ surfaces faith-
fully as [s].

In this Imdlawn Tashlhiyt case, the harmony tar-
get agrees with the harmony source along two di-
mensions, but there are cases where a single target
can agree with multiple sources in specific con-
figurations. Suffixal high vowels in Turkish typi-
cally agree in backness and rounding with the next
vowel to the left, as shown in (10) from Nevins
(2010, p. 27). An interesting exception, however,
concerns the consonants /k/, /g/, and /l/ which are
contrastively [+back] and have the [-back] coun-
terparts /kj/, /gj/, and /lj/ (Clements and Sezer,
1982). If one of these consonants intervenes be-
tween the suffixal high vowel and the next vowel
to the left, the suffixal high vowel takes its back-
ness value from the consonant and its rounding
feature from the vowel, as shown in (11) from
Nevins (2010, p. 54).

(10) Two harmonies, same source
son-un ‘end-GEN
sap-Wn ‘stalk-GEN’

(11) Two harmonies, two sources
usulj-y ‘system-Acc.SG’
sualj-i ‘question-ACC.SG’

Let us assume that the harmonizing suffixal
high vowels are underlyingly /U/, which lacks
values for [back] and [round]. The potentially
split harmony can be analyzed with the follow-
ing target-specified OMTSL2 function. We have a
backness tier τU1 containing all the vowels and the
abovementioned consonants. We also also have a
rounding tier τU2 containing all and only the vow-
els. Assuming that the input is read from left to

right, the behaviour of /U/ can be described as fol-
lows. If suff1τU1

(fp(w)) = suff1τU2
(fp(w)),

then the nearest source of backness and the near-
est source of rounding are both the nearest left-
ward vowel. If, however, suff1τU1

(fp(w)) 6=
suff1τU2

(fp(w)), then one of the relevant conso-
nants must intervene between the suffixal vowel
and the nearest leftward vowel. In this case, the
suffixal vowel will take on the backness value of
the consonant; the source of rounding will, how-
ever, always be the nearest leftward vowel.

6.4 Last-resort triggers

The final type of behaviour we will consider
comes from a case of harmony that is triggered
by a special class of segments in the absence of a
more “preferred” trigger. Uyghur vowels are sub-
ject to a progressive backness harmony for which
the non-low front vowels [i] and [e] are transpar-
ent (Lindblad, 1990; Vaux, 2000; Mayer and Ma-
jor, 2018). The language’s locative suffix shows
that the harmony is an active process; its vowel al-
ternates between front [æ] and back [a] as shown
in (12) taken from Mayer and Major (2018).

(12) Uyghur vowel harmony
aKinæ-dæ ‘friend-LOC’
qoichi-da ‘shepherd-LOC’

Interestingly, dorsal consonants can trigger har-
mony in the absence of a harmonic vowel, with
velar consonants causing front allomorphs of suf-
fixes and uvulars causing back allomorphs (Lind-
blad, 1990; Vaux, 2000; Mayer and Major, 2018),
as shown in (13). The harmony “prefers” to be
triggered by vowels, however, which is witnessed
by the fact that a back vowel can trigger back
allormorphs across a velar consonant (Lindblad,
1990; Vaux, 2000; Mayer and Major, 2018), as
shown in (14). Dorsal consonants only decide
the front/back status of a suffix when the base
lacks non-transparent vowels altogether, in a sense
acting as a “last-resort trigger” (Lindblad, 1990;
Vaux, 2000; Mayer and Major, 2018).

(13) Harmony with a dorsal
gezit-tæ ‘newspaper-LOC’
qiKiz-da ‘Kyrgyz-LOC’

(14) Harmony across a dorsal
rak-ta ‘exercise-LOC’

This pattern too can be generated by a target-
specified OMTSL2 function. The suffixal low
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vowel /A/ is associated to one tier τA1 contain-
ing all non-transparent vowels and dorsal conso-
nants, and is also associated to a second tier τA2
containing only the non-transparent vowels. As-
suming that the input is read from left to right,
the harmony can be described as follows. If
suff1τA2

(fp(w)) 6= λ, then there is a non-
transparent vowel in the stem that triggers har-
mony. If, however, suff1τA2

(fp(w)) = λ and
suff1τA1

(fp(w)) 6= λ, then all stem vowels are
transparent, but there is a dorsal consonant avail-
able to trigger harmony as a last resort.

7 Conclusion

This paper defined an extension of the Tier-based
Strictly Local functions, allowing them to track
multiple tiers so long as the inter-tier relationships
obey certain restrictions. Rather than having the
entirety of the functional tails depending on just
one tier, we allow the contribution of each input el-
ement to separately depend on its own set of tiers,
provided that the set falls into a strict superset-
subset hierarchy.

Our strategy of dividing the work amongst sev-
eral independent sets of tiers greatly resembles the
search procedure of Nevins (2010), see also An-
dersson et al. (2020). In this search procedure,
specific input elements initiate a search for the
nearest item relevant to them in some specified di-
rection, and their output fate depends on the iden-
tity of the first relevant element found. Our ap-
proach is in many ways the mirror of the search
procedure: by tracking the tiers specified by σ,
we preemptively remember the most recent ele-
ment(s) that would be relevant to the output fate
of σ, and we therefore always know what to do
when σ is encountered. We demonstrated that a
wide variety of otherwise challenging phonologi-
cal processes receive simple and intuitive analyses
from this perspective.

A reviewer asks about the closure of the TSL
functions under composition, pointing out that the
MTSL languages are the closure of the TSL lan-
guages under intersection. While we have not
yet formally proven so, it is likely that the left-
reading MTSL functions are indeed the closure of
the left-reading TSL functions under composition
(mutatis mutandis for right-reading functions). At
the very least, all of the language patterns analyzed
in Section 6 can be described as the composition of
two same-direction TSL functions. Similar to how

Aksënova and Deskmukh (2018) and McMullin
et al. (2019) argue that the full class of MTSL lan-
guages is too powerful, though, we believe that our
proposal of target specification is necessary since
free composition of TSL functions can lead to pro-
cesses with bizarre properties (see Section 5).

One noteworthy behaviour not covered by the
proposed class is bidirectional application. Re-
search into bidirectional patterns has established
that they can be modelled by weakly determinis-
tic functions (Heinz and Lai, 2013). These are
those functions from Σ∗ to ∆∗ that can be mod-
elled as a pair of subsequential functions that ap-
ply in sequence and meet the following criteria:
(i) the two functions read in opposite directions,
(ii) the first function is from Σ∗ to Σ∗, and (iii)
the first function is not permitted to increase the
length of the string. Since the function class con-
sidered in this paper is a proper subclass of the
subsequential functions, it would be interesting to
see whether we can lower the complexity bound
of these bidirectional processes. Namely, can we
instead model them as a pair of MTSL functions
running in opposite directions?

Finally, future work will consider the learnabil-
ity of MTSL functions. Burness and McMullin
(2019) showed that any OTSL function is effi-
ciently learnable from positive data if the tier is
known in advance. This result can likely be carried
over to MTSL functions once they receive a suit-
able automata characterization. When the tier is
not known in advance, however, Burness and Mc-
Mullin (2019) show that only total OTSL2 func-
tions are learnable from positive data. The induc-
tion of multiple tiers, necessary for the learning of
MTSL functions, will thus likely be a significant
challenge. That being said, McMullin et al. (2019)
developed a method for learning the Multi-Tiered
Strictly 2-Local languages, and their methods may
perhaps be fruitfully applied to the function case.
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