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Abstract

This paper presents DeepSPIN’s submissions
to Tasks 0 and 1 of the SIGMORPHON 2020
Shared Task. For both tasks, we present
multilingual models, training jointly on data
in all languages. We perform no language-
specific hyperparameter tuning – each of our
submissions uses the same model for all lan-
guages. Our basic architecture is the sparse
sequence-to-sequence model with entmax at-
tention and loss, which allows our models to
learn sparse, local alignments while still being
trainable with gradient-based techniques. For
Task 1, we achieve strong performance with
both RNN- and transformer-based sparse mod-
els. For Task 0, we extend our RNN-based
model to a multi-encoder set-up in which sep-
arate modules encode the lemma and inflec-
tion sequences. Despite our models’ lack of
language-specific tuning, they tie for first in
Task 0 and place third in Task 1.

1 Introduction

Character transduction tasks such as grapheme-to-
phoneme conversion (g2p) and morphological in-
flection are important in many practical real-world
applications. However, it is often difficult to train
models for these tasks with deep learning tech-
niques, due to the scarcity of labeled data for most
of the world’s languages. In these circumstances,
it is common to use a non-neural method with a
stronger inductive bias (Novak et al., 2016) or to
generate synthetic data that hopefully ameliorates
the data scarcity problem. We find both of these
choices unsatisfying. First, older non-neural tech-
niques have a higher floor but also a lower ceiling –
previous SIGMORPHON shared tasks have shown
that neural methods outpace them in the presence
of even moderate quantities of data (Cotterell et al.,
2017). Second, although data augmentation has
proven helpful for morphological inflection (Anas-

tasopoulos and Neubig, 2019), any data augmenta-
tion procedure makes implicit assumptions about
language structure: techniques that work for West-
ern languages may fail when confronted with redu-
plication, vowel harmony, or non-concatenative
morphology. The kinds of languages for which la-
beled data are scarce are precisely the languages for
which NLP practitioners’ assumptions are most sus-
pect. Therefore, our submissions to this shared task
make use of a third alternative: multilingual train-
ing. Similarly to hallucinated data, multilingual
training improves results in low resource settings
by acting as a regularizer. However, the models
it yields are more versatile, as they are capable of
good performance on several languages at the same
time. We show that our technique is competitive
with state-of-the-art monolingually trained models
regardless of training data size for both g2p and
morphological inflection. This is despite our ap-
proach having a significant disadvantage from a
tuning perspective – while conventional monolin-
gual models can tune their hyperparameters sepa-
rately for each language, we use exactly the same
model for each language within a submission.

Our contributions are as follows:

• We reimplement gated sparse two-headed at-
tention (Peters and Martins, 2019) and apply
it to a massively multilingual setting. We sub-
mit versions of this model using 1.5-entmax
(Peters et al., 2019) and sparsemax (Martins
and Astudillo, 2016) as softmax alternatives.
We tie for first place in Task 0 (Vylomova
et al., 2020). Among the winners, ours are the
only multilingual models.

• We show that sparse seq2seq techniques, pre-
viously used for morphological inflection and
machine translation (Peters et al., 2019), are
also effective for multilingual g2p. We make
four submissions to Task 1 (Gorman et al.,
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2020), which differ based on their choice of
softmax replacement (1.5-entmax or sparse-
max) and their architecture (RNN or trans-
former). Our strongest models finish third in
word error rate (WER) and second in phoneme
error rate (PER). Our submissions record the
top result on at least one metric for 7 out of
15 languages, including 4 out of 5 surprise
languages.

2 Models

The common theme of the models we submit is
their use of sparse functions for attention weights
and output distributions, in place of the better-
known softmax (Bridle, 1990). Sparse functions
have the following motivations:

• Sparse attention has previously shown success
on morphological inflection (Peters and Mar-
tins, 2019). It allows the decoder to attend to a
small number of source positions at each time
step, unlike the dense softmax. While hard
attention has previously performed well for
character transduction (Aharoni and Goldberg,
2017; Makarov et al., 2017; Wu et al., 2018;
Wu and Cotterell, 2019), it usually requires an
elaborate and slow training procedure. On the
other hand, sparse attention does not require
any training techniques beyond those used for
standard seq2seq models.

• Sparse output distributions allow probability
mass to be concentrated in a small number
of hypotheses. In practice, this happens fre-
quently for morphological inflection (Peters
et al., 2019), sometimes making beam search
exact.

2.1 Entmax and its loss
Our tool for achieving sparsity is the entmax acti-
vation function (Peters et al., 2019), which is pa-
rameterized by a scalar α ≥ 1 and maps a vector
z ∈ Rn onto the n–dimensional probability sim-
plex4n := {p ∈ Rn : p ≥ 0,1>p = 1}:

α-entmax(z) := argmax
p∈4n

p>z + Hα(p), (1)

where

Hα(p) :=

{
1

α(α−1)
∑

j

(
pj − pαj

)
, α 6= 1,

−
∑

j pj log pj , α = 1
(2)

is the Tsallis α-entropy (Tsallis, 1988). For pur-
poses of the shared task, the key point is that α
controls the sparsity of the distribution. α = 1 re-
covers softmax, while any value greater than 1 can
result in a sparse probability distribution. Sparse-
max (Martins and Astudillo, 2016) is equivalent to
entmax with α = 2.

An important note about models with sparse out-
put layers is that they cannot be trained with cross
entropy loss, as the cross entropy loss becomes in-
finite when the model assigns zero probability to
the gold label. Fortunately, for each value α, there
is a corresponding loss function, which is given by

Lα(y,z) := (p? − ey)
>z + Hα(p

?), (3)

where p? := α-entmax(z). This is an instance of
a Fenchel-Young loss (Blondel et al., 2020).

2.2 Task 0 Architecture

For morphological inflection, we use an RNN-
based two-encoder model with gated attention (Pe-
ters and Martins, 2019). In this model, two separate
bidirectional LSTMs (Graves and Schmidhuber,
2005) encode the lemma character sequence and
the set of inflectional tags. A unidirectional LSTM
(Hochreiter and Schmidhuber, 1997) decoder then
generates the target sequence. The decoder is sim-
ilar to a conventional RNN decoder with input
feeding, except that separate attention mechanisms
compute context vectors independently for each
encoder. A gate function then interpolates the two
context vectors. Like Peters and Martins (2019),
we use a sparse gate, which allows the model to
completely ignore one encoder or the other at each
time step. Each individual attention head uses bi-
linear attention (Luong et al., 2015).

2.3 Task 1 Architecture

We experiment with both RNN-based (Bahdanau
et al., 2015) and transformer-based (Vaswani et al.,
2017) models for g2p. As in Task 0, our RNNs use
input feeding and bilinear attention.

2.4 Handling Multilinguality

Multilingual NLP tasks are intrinsically more dif-
ficult than their monolingual counterparts, as the
correct way to process a sample depends on what
sample the language is in. A simple approach to
multilingual NLP is to append a token to each in-
put sequence identifying the language of the sam-
ple; this has proven effective for both g2p (Peters
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et al., 2017) and morphological inflection (Peters
et al., 2019), and is similar to techniques for multi-
lingual neural machine translation (Johnson et al.,
2017). However, this technique has drawbacks: it
forces the true characters and the language token to
“compete” for attention, and it requires the learned
language embedding to have the same size as the
character embeddings.

Therefore, we use the alternative technique of
concatenating a language embedding to the encoder
and decoder input at each time step. Within an ex-
ample, the language embedding is the same across
all time steps. We do not tie language embeddings
between the encoder (or encoders) and decoder,
allowing each model to learn different language
representations for different purposes.

3 Experiments

3.1 Preprocessing

Task 0 We used character-level tokenization for
lemma and inflected forms. Each inflectional tag
was treated as a separate token.

Task 1 Prior to training, we decomposed com-
pound characters in the grapheme sequences in
all languages. For most languages, this simply
amounts to splitting diacritics and their base char-
acters into separate tokens. For Korean, however,
it makes a major difference due to the unique struc-
ture of the Hangul alphabet. Individual letters in
Hangul, called jamo, are composed into blocks rep-
resenting syllables. Modern Hangul contains 40
jamo, but the number of possible syllables licensed
by Korean phonotactics is much larger. Conse-
quently, a naı̈ve tokenization of the Korean training
data gives a vocabulary size of 834 types, of which
more than 30% occur only once. We suspect that
the lack of jamo tokenization is the reason for the
baselines’ poor performance on Korean.

3.2 Experimental Set-up

We ran experiments with three sparse seq2seq ar-
chitectures: RNNs for inflection, RNNs for g2p,
and transformers for g2p. For entmax, we used
two α values: 1.5 and 2 (i.e. sparsemax). We used
the same α value in both the attention mechanism
and loss function. Combining the architectures and
entmax functions gives six model configurations.
For each, we trained three1 model runs with the

1Due to time constraints, the TRANSFORMER-
SPARSEMAX ensemble used only two models.

Hyperparameters RNN Transformer

Embedding size 108 236
Language embedding size 20 20
Hidden size 512 256
Positionwise feedforward size - 1024
Layers (all enc. and dec.) 2 4
Dropout 0.3 0.3
Batch size 128 words 1600 char.

Table 1: Hyperparameters for all models.

Model Acc. ↑ Lev. Dist. ↓

INFLECTION-ENTMAX-1.5 90.5 0.217
INFLECTION-SPARSEMAX 90.9 0.211

Baseline (Wu et al., 2020) 90.6 0.215

Table 2: Macro-averaged test results for Task 0.

same hyperparameters. At test time, we ensembled
the models by averaging their probabilities.

3.3 Training

We implemented our models with JoeyNMT
(Kreutzer et al., 2019).2 Our hyperparameters are
shown in Table 1. Each model was trained with
early stopping for a maximum of 100 epochs. We
used greedy decoding at validation time, saving
the model if it had the best character error rate so
far. We used the Adam optimizer (Kingma and Ba,
2015). For RNNs, we set the initial learning rate
to 0.001, reducing it by half whenever the model
failed to improve for two consecutive validations.
Validation was performed every 10,000 steps for
Task 0 and every 500 steps for Task 1. Transform-
ers were trained with a linear learning rate warm up
for 4,000 steps, after which the learning rate was
decayed by an inverse square root schedule.

3.4 Results

At test time, we decoded with a beam size of 5.
Task 0 results are shown in Table 2 and Task 1 re-
sults are in Table 3. For Task 0, our sparsemax
model outperforms a very strong baseline, with
entmax not far behind. For Task 1, all of our mod-
els outperform all three baselines. In both tasks,
the baselines were trained monolingually, so they
were able to use language-specific hyperparameter
tuning that is unavailable for multilingual models.

2Our code and configuration files are available at https:
//github.com/deep-spin/sigmorphon-seq2seq.

https://github.com/deep-spin/sigmorphon-seq2seq
https://github.com/deep-spin/sigmorphon-seq2seq
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Model WER ↓ PER ↓

RNN-ENTMAX-1.5 14.47 2.85
RNN-SPARSEMAX 14.19 2.78
TRANSFORMER-ENTMAX-1.5 14.15 2.92
TRANSFORMER-SPARSEMAX 14.53 2.92

FST Baseline 22.00 4.92
RNN Baseline 16.84 3.99
Transformer Baseline 17.51 4.30

Table 3: Macro-averaged test results for Task 1.
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Figure 1: Single-language development set accuracies
for INFLECTION-SPARSEMAX.

4 Analysis

Next we consider a few questions that multilingual
models raise.

4.1 How much data does inflection need?

All other things being equal, we expect the perfor-
mance of a model to improve as the amount of train-
ing data is increased. And indeed, this is generally
the case, as Figure 1 shows that accuracy is usually
above 90% for languages with more than 10,000
training samples. However, there is much more
diversity of performance at smaller training sizes.
Per-family development set results are shown in Ta-
ble 4. While families like Niger-Congo record very
strong results with modest resources, Germanic
and Uralic struggle despite their large training sets.
It is likely that certain morphological patterns are
easier to learn than others, but we hesitate to make
strong statements. Often results are very different
between closely related languages, such as Danish
(68.20% on dev) and Swedish (99.20%). More re-
search is needed to identify other factors besides
morphological typology that influence results.

#languages Train size Acc.
Family (avg.)

Afro-Asiatic 3 1524.67 94.90
Algic 1 4571.00 71.23
Australian 1 777.00 75.68
Austronesian 5 748.20 79.96
Dravidian 2 2311.00 88.78
Germanic 13 30995.69 87.30
Indo-Aryan 4 17642.50 98.37
Iranian 3 10046.33 96.49
Niger-Congo 10 1651.60 97.32
Nilo-Saharan 1 56.00 100.00
Oto-Manguean 10 7799.30 83.45
Romance 8 16075.12 98.15
Sino-Tibetan 1 3428.00 84.76
Siouan 1 2636.00 89.89
Tungusic 1 5413.00 59.43
Turkic 9 9268.33 94.76
Uralic 16 45805.31 89.21
Uto-Aztecan 1 1123.00 83.75

Table 4: Task 0 dev accuracy by language family for
INFLECTION-SPARSEMAX.

4.2 Crosslingual Character Embeddings

Learning good word representations has been
a prominent subject in NLP for several years
(Mikolov et al., 2013; Peters et al., 2018). Al-
though many models operate at the character level,
relatively little attention has been paid to the char-
acter embeddings themselves. Characters lack se-
mantic meaning, so character embeddings learned
for “semantic” tasks are unlikely to learn any
particular structure. However, Figure 2 shows
that multilingual g2p may be useful for learn-
ing phonologically grounded character represen-
tations: graphemes from different scripts cluster
together if they represent similar phonemes. We
suspect that the multilingual training with phono-
logical supervision is a necessary ingredient for this
to work – characters from different scripts are never
mixed within a single sample, so the grapheme con-
texts in which they occur are completely disjoint.

This idea differs from work on phoneme em-
beddings (Silfverberg et al., 2018; Sofroniev and
Çöltekin, 2018) in that the focus is explicitly on
the graphemes. Grapheme embeddings learned for
phonological tasks may prove useful for translit-
eration, or for processing informally romanized
text (Irvine et al., 2012) jointly with data from the
official orthography.

5 Related Work

Multi-encoder models Several previous works
have considered ways to integrate information from
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Figure 2: t-SNE projection (Maaten and Hinton, 2008) of the grapheme embeddings learned by TRANSFORMER-
1.5. For improved readability, we include only Cyrillic, Greek, and Latin graphemes. Graphemes that tend to
represent similar phonemes are clustered together.

multiple sources in a neural seq2seq model. Al-
though initially proposed as a way to leverage mul-
tiparallel data in machine translation (Zoph and
Knight, 2016), it has also been used for handling
multimodal data, and Ács (2018) applied it to mor-
phological inflection: our architecture is essentially
a sparsified version of this model. Past works have
also considered the effect of different strategies
for merging the attention from the various encoders
(Libovickỳ and Helcl, 2017; Libovickỳ et al., 2018).
This is worth exploring for morphological inflec-
tion, as Peters and Martins (2019) showed that the
behavior of the attention gating mechanism varies
between language families. The optimal strategy is
probably different for different languages.

Phonemes and multilinguality Multilingual
methods have previously been used for low re-
source g2p in conjunction with both non-neural
(Deri and Knight, 2016) and neural (Peters et al.,
2017; Route et al., 2019) architectures. Our model
is essentially identical to Peters et al. (2017)’s,
but with a different mechanism for identifying
the language, inspired by a technique for learning
language embeddings from multilingual language
modeling (Östling and Tiedemann, 2017). A nat-
ural connection is to work that makes use of typo-
logical information in multilingual NLP (Tsvetkov
et al., 2016). However, care needs to be taken when
applying this to g2p: Bjerva and Augenstein (2018)

showed that language representations learned from
multilingual g2p generally do not encode typologi-
cal features because orthographic similarity does
not correlate with typological similarity.

6 Conclusion

We showed that massively multilingual models are
competitive with the individually-tuned state of
the art for morphological inflection and g2p. We
presented the first result applying entmax-based
sparse attention and losses to g2p, showing that it
performed with both RNN and transformer models.
We release our code to facilitate further research.
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