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Abstract
We present a framework for improving task-
oriented dialog systems through online inter-
active teaching with human trainers. A dialog
policy trained with imitation learning on a lim-
ited corpus may not generalize well to novel di-
alog flows often uncovered in live interactions.
This issue is magnified in multi-action dialog
policies which have a more expressive action
space. In our approach, a pre-trained dialog
policy model interacts with human trainers,
and at each turn the trainers choose the best
output among N-best multi-action outputs. We
present a novel multi-domain, multi-action di-
alog policy architecture trained on MultiWOZ,
and show that small amounts of online super-
vision can lead to significant improvement in
model performance. We also present transfer
learning experiments which show that interac-
tive learning in one domain improves policy
model performance in related domains.

1 Introduction

Task-oriented dialog systems help users to com-
plete tasks by interacting with the user through a
multi-turn natural dialogue (Pietquin, 2006; Young
et al., 2013). The dialog manager module plays a
key role of maintaining state across the conversa-
tion and selecting actions in each turn to drive the
dialog to successful completion. Within the dialog
manager, the dialog policy module chooses the sys-
tem’s actions in each state (Young et al., 2013), and
it is typically constructed in one of the following
ways: (1) handcrafted with rules defined by a con-
versation designer (Bordes et al., 2017), (2) trained
with imitation learning on dialog samples collected
from human-human interactions (Wen et al., 2017;
Liu et al., 2018; Budzianowski et al., 2018), or
(3) trained with reinforcement learning with a user
simulator (Zhao and Eskenazi, 2016).

In practice, each approach has its unique advan-
tages and disadvantages, making it difficult to build

an optimal dialog policy with a single approach.
Systems crafted from large numbers of rules (Bo-
hus and Rudnicky, 2009; Lison and Kennington,
2016) are time-intensive to build and often lead to
rigid dialog flows. Supervised learning over human-
human dialog samples is widely studied. However,
human-human dialogs collected in a Wizard-of-
Oz setup (Budzianowski et al., 2018; Eric et al.,
2017) cannot cover all dialog states occurring in
human-machine interactions, such as dialog states
occurring due to system errors. Models trained on
human-human data alone do not generalize well
to human-machine dialogs and face compounding
errors when a deviation in a single turn takes the
dialog to a new state which the model might have
never seen during training (Liu et al., 2018). In
contrast, dialog systems trained with reinforcement
learning, either with user simulators or by receiv-
ing feedback from user interactions, have shown
improved robustness in diverse dialogue scenarios
(Williams et al., 2017; Liu and Lane, 2017). How-
ever, the reward signal used in RL provides distant
and weak supervision, resulting in large amounts of
samples required for the model to learn the credit
assignment between actions and outcomes (Liu
et al., 2018). A number of works attempt to com-
bine the best of both worlds through hybrid ap-
proaches (Henderson et al., 2008; Liu et al., 2018).

Most prior work on dialog policy modeling as-
sumes only one policy action per turn (Bordes et al.,
2017; Ilievski et al., 2018; Liu and Lane, 2017),
which limits interaction quality and increases di-
alog length, leading to more errors. Generating
multiple dialog acts in a single turn can increase
the system’s expressive power, and this can be for-
mulated as a multi-label classification or a sequence
generation problem (Shu et al., 2019). However,
having more than one act in a single turn exponen-
tially increases the space of possible outputs. A
limited corpus is unlikely to cover a large number
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Figure 1: Policy Learning with Interactive Action Selection (PLIAS)

of combinations of output acts, and models trained
with supervised learning alone will be restricted
to a small subspace of the complete output action
space.

In this paper, we propose “Policy Learning with
Interactive Action Selection” (PLIAS), a generic
framework for learning dialog policies which com-
bines pre-training on human-human dialog sam-
ples and interactive learning with human-machine
interactions. The interactive learning step is de-
signed to maximize supervision quality while min-
imizing annotation time and cost. We employ the
PLIAS framework on Dialog Action Sequence Pol-
icy (DASP), a novel multi-domain, multi-action
dialog policy architecture. Experiments on Multi-
WOZ (Budzianowski et al., 2018) show that PLIAS
significantly improves model performance.

2 Policy Learning with Interactive
Action Selection (PLIAS)

Figure 1 shows the 3-step approach of PLIAS: (1)
pre-train a dialog policy model on an annotated
human-human dialog corpus, (2) generate human-
machine interactions where a human interacts with
the model and picks the best output from N-best
policy outputs, (3) fine-tune the policy model on
the interactive learning dialog sessions from step
2. In this section, we describe PLIAS in context of
interactively improving the DASP model.

Dialog Action Sequence Policy (DASP)
model. Each task-oriented dialog is modeled as a
sequence of user and system turns. Each system
turn at is associated with a sequence of dialog acts,
at = (at1, at2, ..., atn), where each ati represents
one atomic conversational action (Budzianowski
et al., 2018). Some example dialog acts include
inform(hotel, name) and request(restaurant, price).
Am is the set of all such dialog act sequences up

to a fixed length m. We model DASP as a function
πθ : U ×B ×K 7→ Am, where U is the set of
possible input utterances,B is the set of possible
belief states, K is the set of possible knowledge
base results for a dialog turn, and θ is a set of
parameters learned by our policy model.

Following (Budzianowski et al., 2018), DASP
is modeled as a neural network that receives both
sparse (text) and dense (belief state and KB result)
features. The user utterance is “delexicalized”, to
replace slot value mentions with special tokens,
and fed into an LSTM encoder (Wen et al., 2015).
The belief state is encoded as a one-hot vector for
each slot, denoting whether a slot is empty, filled,
or “dont care”. The KB is queried with the up-
dated belief state to obtain a one-hot KB vector
for each domain indicating the number of entities
compatible with the current belief state. The utter-
ance encoder’s final hidden cell and output vectors
are concatenated together with the the belief state
and KB vectors for the current dialog turn, and
passed to an LSTM decoder which produce a se-
quence of dialog act output tokens, with attention
over the input tokens. While the dialog model in
(Budzianowski et al., 2018) directly outputs the
system utterance, DASP outputs semantic dialog
action tokens which are fed to a separate NLG mod-
ule to generate the final response. We define a flat
multi-domain multi-action sequence encoding as
follows:

ati = {Domain,Act,Slot1, . . . ,Slotp} (1)

at = {at1.at2. . . . atn}(n ≤ m) (2)

For example, the dialog act sequence(
inform(hotel, address

)
, inform(hotel, price),

request(hotel, parking)
)

is encoded as {hotel,
inform, address, price, request, parking}. To
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Figure 2: Dialog Action Sequence Policy (DASP)
model.

increase training efficiency, we normalize the
target dialog act sequences for each turn in training
data by recursive alphabetical sorting: first sort
each dialog act group by domain, then within each
group sort by dialog act type, then sort the slot
names within each dialog act.

N-best candidate action sequences. We use
beam search (Graves, 2012) to generate a ranked
list of predicted action sequences from the DASP
model at each turn. We filter out sequences with
invalid actions (e.g. informing a slot that does not
exist in the current belief state), and pick the top
five candidate action sequences. These candidates
are fed to an NLG module to generate natural re-
sponses, which are shown to a human for interac-
tive action selection.

Interactive action selection. The goal of the
interactive learning phase is to collect high quality
supervision signal with minimal annotation cost.
This is achieved by designing a user interface where
a human trainer interacts with the dialog system
and corrects the system’s outputs (Fig 3). To re-
duce annotation overhead, the interface presents
the top-5 candidate responses from the model, and
the trainer picks the best one to continue the dia-
log. The trainer also gives a rating (1 to 5) for the
chosen response, which aids in filtering out turns
where none of the candidate responses were accept-
able. The trainers are instructed to end the dialog
when the task is complete or if the model returns
the same incorrect response twice in a row.

Fine-tuning step. The corrected dialog samples

Table 1: Task Success Rate

GTST TST
Rest Hotel Multi Rest Hotel Multi

PT 0.45 0.35 0.34 0.44 0.65 0.66
BT 0.53 0.53 0.66 0.45 0.65 0.71
FT 0.56 0.69 0.85 0.64 0.70 0.77

Human 0.65 0.68 0.90 0.41 0.57 0.74

Table 2: Avg. turn rating (1 to 5)

GTST TST
Rest Hotel Multi Rest Hotel Multi

PT 4.03 2.76 2.81 2.92 3.32 2.85
BT 3.92 4.00 3.66 2.77 3.23 2.29
FT 4.09 4.28 4.22 3.52 3.90 3.32

Human 4.24 4.12 4.20 3.62 3.71 3.23

obtained from the interactive learning phase are fil-
tered to keep only the turns with user rating greater
than 3. The DASP model pre-trained on the origi-
nal human-human corpus (DASP-PT) is fine-tuned
(Yosinski et al., 2014) using supervised learning on
the new samples to obtain DASP-FT. Fine-tuning
was performed by pre-loading the original weights
of DASP-PT model and using a learning rate 10
times smaller than the one used for training the
pre-trained model. For comparison, we also train a
model bootstrapped only on the interactive learning
samples, called DASP-BT. The DASP-BT model is
initialized with random weights and training with
the same learning rate as the pre-trained model.

3 Experiments

We present experiments on MultiWOZ
(Budzianowski et al., 2018), restricted to di-
alogs in two domains, restaurant and hotel,
including dialogs that span both of them, which we
refer to as multi. For all the experiments, we use a
rule-based belief tracker to track the slot updates
across each turn, and a template-based NLG mod-
ule (Shah et al., 2018). The DASP model requires a
NLU slot tagger to delexicalize the user inputs. To
isolate the impact of PLIAS from the effectiveness
of the slot tagger, we devised two modes in our
interactive learning step: trained-slot-tagger (TST)
and ground-truth-slot-tagger (GTST). In TST, we
trained a seq2seq slot tagger (Hakkani-Tür et al.,
2016) on user utterances in MultiWOZ corpus, and
integrated it in the action selection step to tag the
human trainer’s input utterances. In GTST, we
switched the trainer’s input from free-form text to
a search over templated user utterances extracted
from MultiWOZ (Fig 3), which skips the need for
slot tagging and enables us to collect interactive
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Table 3: Average per-annotator score increase from in-
teractive learning

Rest Hotel Multi
PT 4.06 3.21 3.05
BT +0.02 (0%) +1.29 (40.2%) +0.83 (27%)
FT +0.18 (4.4%) +1.79 (55.8%) +0.92 (30.%)

Human +0.33 (8.1%) +1.18 (36.8%) +1.40 (46%)

learning samples with gold NLU labels.
We pre-trained a single multi-domain model on

the entire train split of MultiWOZ (4000 dialogs),
then ran interactive action selection of 300 dialog
sessions for each pair of restaurant, hotel, multi
and TST, GTST. To measure the effectiveness of
PLIAS, we evaluate all three models DASP-PT,
DASP-BT and DASP-FT. In the interactive eval-
uation mode, action selection is disabled and the
system responds with the top action sequence pre-
diction. The trainer gives a 1-5 rating for each turn
based on the quality of the system’s chosen output.
We collected 100 sessions of interactive evaluation
for each combination of DASP model, domain, and
slot-tagger mode. We report two scores for each
experiment: (1) Task Success Rate (TSR), which
aggregates the overall rate of task completion of
the model in human-machine interactions, and (2)
Avg. turn-wise human rating, which aggregates
the subjective per-turn feedback score given by the
human trainers.

We also present a transfer learning experiment
to evaluate the effectiveness of interactive policy
learning to generalize knowledge to related do-
mains. In this experiment, we trained new DASP-
FT and DASP-BT models (in GTST mode) on the
interactive learning samples restricted to restau-
rant domain, and performed interactive evaluations
of these models on tasks from all three domains -
restaurant, hotel and multi.

3.1 Results

We observe a clear trend of improved performance
from pre-trained (PT) to bootstrapped (BT) to fine-
tuned (FT), in both TSR (Table 1) and avg. hu-
man feedback scores (Table 2). For comparison,
the tables also show the “Human” TSR and avg.
turn rating, from the interactive learning sessions,
where the human trainer is picking the best ac-
tion sequence from top-5 candidates. The fine-
tuned (FT) model closes the gap with Human per-
formance, and also outperforms the bootstrapped
(BT) model, which shows that pre-training with the
larger dataset helps to improve the overall policy

Table 4: Transfer learning results

TSR Avg. turn rating
Rest Hotel Multi Rest Hotel Multi

PT 0.45 0.35 0.34 4.03 2.76 2.81
BT 0.47 0.10 0.26 4.05 1.60 2.07
FT 0.60 0.79 0.77 4.12 4.21 3.75

Human 0.65 0.68 0.90 4.24 4.12 4.20

performance.
In order to normalize the scores across trainers,

Table 3 presents the human feedback scores aggre-
gated on a per-trainers basis. Each human trainer
performed multiple dialog sessions in each evalua-
tion job, so we first compute the average score by
each trainer, then compute the delta in the score be-
tween pre-trained (PT) and all other models for that
trainer, and then take a global average of the deltas
across all trainers. We see that on average the same
human trainer gives a higher score to the fine-tuned
model compared to the original pre-trained model.

Table 4 presents the TSR and Avg Turn Rating
scores for the transfer learning experiment. Since
the BT model was bootstrapped only using the
restaurant domain data, the lower performance on
hotel and multi is expected. However, the FT model
outperforms the PT model even in the hotel and
multi tasks. This shows that fine-tuning a multi-
domain architecture on a single domain can boost
performance in other related domains.

3.2 Analysis
We present dialog samples between a human trainer
and DASP models in Table 5. Both dialogs begin
in a similar manner with the user asking for a guest-
house with free parking and the system responding
with several choices and asking more follow up
questions to narrow the search. When the system
cannot find any matches for a 2-star guest-house,
the pre-trained model (DASP-PT) gets stuck in a
loop asking for the same location slot. On the other
hand, the fine-tuned model (DASP-FT) is able to
recommend an alternative which leads to task com-
pletion. This example shows how fine-tuning on
dialogs from the interactive action selection phase
enables the policy model to properly handle a wider
range of dialog states.

4 Conclusion and Future Work

In this paper, we presented PLIAS, a generic frame-
work for policy learning through interactive action
selection. We described the framework in context
of a novel multi-domain multi-action policy model,
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Table 5: Sample dialogs between human and DASP models. Note: Each system turn is annotated with the turn-
wise human rating (from 1 to 5) for that turn, provided in brackets after the turn.

Task (common to both dialogs): In this task, the user is instructed to book a guesthouse
with free parking and rating of 2 stars. If no such guesthouse is found, they are asked to
try to find a 4-star one.

DASP-PT model in GTST mode DASP-FT model in GTST mode
USER I’m looking for a guesthouse with free
parking.
SYSTEM The number of choices is 24 with
no parking and hotel type as guesthouse.
Please tell me the location. (4)
USER Yes, it should have 2 stars.
SYSTEM I’m sorry, I could not find any
matches for your query. Would there be
anything else? (5)
USER I’m looking for a 4 star hotel.
SYSTEM Please tell me the location. (5)
USER I don’t really care about the area.
SYSTEM Please tell me the location. (1)
USER I want to find a guesthouse with free
parking included. Can you help?
SYSTEM The number of choices is 16 with
free parking and hotel type is guesthouse.
Please tell me the location. (5)
USER I don’t care, but it should be a 4 star
establishment.
SYSTEM Please tell me the location. (1)
USER i don’t really care about the area.
SYSTEM Please tell me the location. (1)
USER Bye
SYSTEM Good bye, have a nice day! (5)

USER I am looking for a place to stay. The
hotel should be in the type of guesthouse and
should include free parking.
SYSTEM The number of choices is 21 with
hotel type as guesthouse. Please tell me the
location and the price. (5)
USER The hotel should have a star of 2.
SYSTEM The number of choices is 0 with
rating as 2. Please tell me the location. (5)
USER How about one that has a star of 4?
SYSTEM How about acorn guest house?
The location is north and the rating is 4.
Would there be anything else? (5)
USER i want to book it for 8 people and 5
nights starting from Saturday.
SYSTEM Your booking is done for Saturday
at acorn guest house. The number of people
in the booking is 8 and the stay is 5 nights.
This is your reference number: ref1860.
Would there be anything else? (5)
USER No that’s all. Thank you.
SYSTEM You are welcome. (5)

DASP, which generates a dialog action sequence
output that encodes multiple system actions across
domains. Experiments with models pre-trained on
MultiWOZ and further optimized through interac-
tive learning convey that the interactive action se-
lection step significantly improves the performance
of policy models. Directions of future work in-
clude: (1) evaluating the PLIAS framework with
other multi-action policy architectures (e.g. (Shu
et al., 2019)), (2) using beam search variants that
promote diversity in candidate sequences (e.g. (Li
et al., 2016)), (3) studying the correlation between
model performance and an increasing/decreasing
number of human-machine interactive sessions.
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A Action Selection Interface

Figure 3: Interactive action selection interface. A demo
video of the interface is submitted in the supplementary
materials.

B Model training details

• Learning rate: 0.005

• Hidden layer size: 150 (encoder, decoder, pol-
icy network)

• Embedding size for user utterance : 50

• Max length for user utterance: 50 words

• Max length of dialog act sequence output: 50
tokens

• Teacher ratio of 1

• Beam search width = 3


