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Abstract

In this paper, we present our contribution in SemEval-2020 Task 1: Unsupervised Lexical Semantic
Change Detection, where we systematically combine existing models for unsupervised capturing
of lexical semantic change across time in text corpora of German, English, Latin and Swedish.
In particular, we analyze the score distribution of existing models. Then we define a general
classification threshold, adjust it independently to each of the models and measure the models’
score certainty. Finally, using both the threshold and score certainty, we aggregate the models for
the two sub-tasks: binary classification and ranking.

1 Introduction

Over the last decade, research on detection of lexical semantic change has increased. Many studies
were performed on various languages, corpora and periods. Two years ago, two literature surveys on
computational approaches to Lexical Semantic Change (LSC) (Kutuzov et al., 2018; Tahmasebi et al.,
2018) were published. Last year Schlechtweg et al. (2019) first systematically compared a broad variety
of LSC detection models on two data sets of different periods and domains and Shoemark et al. (2019)
proposed a new evaluation framework for semantic change detection using word embeddings.

To facilitate the comparison of different systems, SemEval-2020 Task 1 (Schlechtweg et al., 2020)
introduced a simple evaluation framework for unsupervised lexical semantic change detection in text
corpora of German, English, Latin and Swedish. The task relies on the comparison of two time periods for
each language. We participated in two sub-tasks: a classification task, where we decide which words lost
or gained senses between the periods, and a ranking task, where we rank a set of target words according
to their degree of lexical semantic change between the periods.

Given the large number of models that have already been explored, we built a system which systemati-
cally combines existing models in the unsupervised setting of the LSC detection task. Since no tuning
data is available, we minimized the parameters number of our system.

This paper is organized as follows: First, in Section 2, we describe the existing LSC detection models
that we have combined. Then, in Section 3, we analyze the score distribution of the models in order
to learn the general behaviour of words in our corpora. We aim to estimate the amount of words that
changed their meaning between the periods. Next, we define a general classification threshold percentile
(CT) parameter and adapt it to each model separately. We use the CT parameter to measure the models’
score certainty too, and filtered models with certainty low than a minimal required decision certainty. The
minimal required decision certainty (MCR) is also a parameter of our system. Finally, we present our
aggregation methods for the two sub-tasks: classification and ranking. Our system results are detailed in
Section 4, followed by conclusions in Section 5.

2 Related Work

In this section, we shortly describe the work of Schlechtweg et al. (2019) which covers a wide range of
LSC detection models. Then, we summarize the models that we have combined in our system.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Schlechtweg et al. (2019) made a comprehensive comparison between the results of the diverse existing
LSC Detection models and firstly ran the models under one evaluation task and data. Schlechtweg et al.
(2019) tested the methods for semantic change detection both across time (Diachronic) and across domains
(Synchronic). For the Diachronic task they used the evaluation framework and the DURel German corpora
(introduced in (Schlechtweg et al., 2018)). The framework was expanded for the Synchronic task using
the SURel German corpora (Hätty et al., 2019).

Existing LSC Detection models are based on three methods for meaning representations: semantic
vector spaces (Hamilton et al., 2016a; Hamilton et al., 2016b; Hellrich and Hahn, 2016; Rosenfeld
and Erk, 2018), topic distributions (Cook et al., 2014; Frermann and Lapata, 2016), and sense clusters
(Mitra et al., 2015). In semantic vector spaces, each term is represented as two vectors indicating its
co-occurrence statistics at different eras. Then, the semantic change is commonly measured by either
similarity measures, such as Cosine similarity, or contextual measures. In topic distributions, each term is
modeled as a probability distribution over different topics, or term senses. Then, the semantic change is
measured based on the senses’ frequency of use. Whereas, sense clustering and topic models are similar
in their mapping (uses to senses) and semantic change measures, in sense clustering, some contextual
property is used to assign all uses of a term into sense clusters.

Schlechtweg et al. (2019) focused on two meaning representations: semantic vector spaces and topic
distributions. They tested a list of known LSC Detection models with different combinations of semantic
representations, alignment methods and detection measures. They experimented various parameter
settings for comparing the models’ predictions with the true results. Schlechtweg et al. (2019) concluded
that we could use the same modelling methods for both Diachronic and Synchronic LSC Detection.
In addition, all model predictions had a strong positive correlation with the true results. The model
with the best performance was Skip-Gram with Orthogonal Procrustes alignment and Cosine Distance
(SGNS+OP+CD).

Since Schlechtweg et al. (2019) observed that topic distributions models (SCAN) (Frermann and
Lapata, 2016) have poor and unstable performance, in our system we integrated only the Semantic Vector
Spaces models (reminded at Schlechtweg et al. (2019)).

The combined models’ representations were: Raw Count, Positive Pointwise Mutual Information
(PPMI) (Church and Hanks, 1990), Singular Value Decomposition (SVD) (Golub and Van Loan, 1996),
Random Indexing (RI) (Eckart and Young, 1936; Basile et al., 2015) and Skip-Gram with Negative
Sampling (SGNS) (Mikolov et al., 2013; Baroni et al., 2014; Levy et al., 2015).

The integrated alignment methods were: Column Intersection (CI) (Hamilton et al., 2016b), Shared
Random Vectors (SRV) (Basile et al., 2015), Orthogonal Procrustes (OP) (Hamilton et al., 2016b; Artetxe
et al., 2017), Vector Initialization (VI) (Kim et al., 2014) and Word Injection (WI) (Ferrari et al., 2017).

Two types of measures were combined: Similarity measures (Cosine Distance (CD) and Local Neigh-
bourhood Distance(LND) (Hamilton et al., 2016a) ) and Dispersion measures (Frequency Difference
(FD), Type Difference (TD) and Entropy Difference (HD) (Shannon, 1948; Santus et al., 2014)). Table 1
summarizes the list of models’ combinations used by our system.

For running these models, we used the scripts for vector space representation, alignment, measuring
LSC and evaluation that available at https://github.com/Garrafao/LSCDetection. We set
the same parameters for all models’ combination (windowSize = 4, k=1, ts=None, dims=300, eps=5).

3 System Description

Two time-specific corpora for each of the four languages, German, English, Latin and Swedish, were
provided by the task organizers. Each line contains one sentence, where the punctuation was eliminated
and each token was replaced by its lemma. Within each corpus sentences were shuffled randomly.
One-word sentences were removed form the Latin corpus and for the other languages, sentences with
less than 10 tokens were removed. Due to the big size of the corpora, we removed low-frequency
words for improving the efficiency of the models. The input of the system for each language is a
corpus pair and a list of target words. Our system scripts are publicly available on GitHub https:
//github.com/efratiamar/CombinedModelsLSC.
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Representation Alignment Measure Representation Alignment Measure
1 COUNT CI CD 15 RI SRV LND
2 COUNT CI LND 16 RI WI CD
3 COUNT FD 17 RI WI LND
4 COUNT HD 18 SGNS OP CD
5 COUNT TD 19 SGNS OP LND
6 COUNT WI CD 20 SGNS VI CD
7 COUNT WI LND 21 SGNS VI LND
8 PPMI CI CD 22 SGNS WI CD
9 PPMI CI LND 23 SGNS WI LND
10 PPMI WI CD 24 SVD OP CD
11 PPMI WI LND 25 SVD OP LND
12 RI OP CD 26 SVD WI CD
13 RI OP LND 27 SVD WI LND
14 RI SRV CD

Table 1: Models’ combinations integrated by our system.

3.1 Analyzing the score distribution of the LSC detection models

Since we were not given any information on the amount of words that changed their meaning, we analyzed
the score distribution of the LSC detection models to learn the general behavior of words in our corpora.

First, for each language, we randomly selected n = 200 words with more that 30 appearances in each
of the two periods. Then, for each of the LSC detection models, we applied the following steps:

1. Calculate the scores for all the 200 words.

2. Draw a histogram of the scores, as illustrated in Figure 1.

3. Calculate the skewness of the score distribution. Skewness characterizes the degree of asymmetry
of a distribution around its mean. Positive skewness indicates a distribution with an asymmetric
tail extending toward more positive values. Negative skewness indicates a distribution with an
asymmetric tail extending toward more negative values. Skewness is defined as

Skewness =
n

(n− 1)(n− 2)

∑
(
xi − x

s
)3 (1)

where x is the sample average and s is the standard derivation.

Our exploration revealed that most of the models have positive skewness. This implies that there are
more words that preserved their meaning than words that changed their meaning. The percentage of
models with positive skewness for English, German, Latin, and Swedish are 62.96%, 81.48%, 74.07%
and 62.96%, respectively. Over 62% of the models in all languages have positive skewness. Therefore, in
our system, we combined only models with positive skewness.

3.2 Setting thresholds in an unsupervised setting

The setting of the LSC detection task is unsupervised, there is no labeled data nor training set. To eliminate
the need for tuning parameters for each LSC model separately, we defined a general classification threshold
(CT) parameter in terms of percentile and adjusted it to the various LSC models. For example, if the
threshold parameter is set to 90%, for each model, we calculated its numeric value which corresponds to
the score that 90% of the scores in our random sample (n = 200) are lower than it.

For each model separately, we set a numeric classification threshold (NCT). The NCT is used for
making a decision whether a word has changed it meaning or not as well as for measuring the certainty of
our decision, as detailed next.
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Figure 1: A histogram with positive skewness of the SGNS-OP-CD model on n = 200 random terms

3.3 Measuring the score’s decision certainty

After setting a numeric classification threshold (NCT) for each model based on our random sample and
the CT parameter, we took the input of the LSC detection task, a list of target terms and calculate the
models’ scores. Then, for each target and model, we compared its score with its numeric classification
threshold. If the score was higher than the numeric classification threshold, we assumed the target term
has changed its meaning. Next, for each target and model, we measured the decision certainty for each
score in the following way:

1. Calculate the percentile of the model score (percentile(score)) based on our random sample.

2. Calculate the distance between the score percentile and the model’s classification threshold (CT).
distance =| percentile(score)− CT | (i.e., the integral of some part of the curve).

3. Divide the distance by the range size, where the range depends on the placement of the score
percentile in relation to the classification threshold (CT):

certainty(score) =

{
distance
100−CT , if score ≥ NCT
distance

CT , otherwise

The impact of this division is illustrated in Figure 2. Since we uniformly divided all the values on
the same side of the classification threshold, scores above the threshold were weakly affected, while
scores below the threshold were strongly affected. In future work, we plan to apply a differential
division method.

3.4 Binary Classification

As detailed in the previous section, the binary classification for each model was determined by comparison
of the model score with the model numeric classification threshold. Additionally, for each classification,
we calculated its decision certainty.

A minimal required decision certainty (in percentage) is a parameter of our system, termed MRC. First,
For each target term, we ran all the models and got a binary classification for each of them. Then, we
filtered models with decision certainty below the MRC parameter. Finally, we applied the majority rule, a
decision rule that selects alternatives with a majority, i.e. more than half of the votes.
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Figure 2: An illustration of the certainty calculation for 5 target terms scores, with CT=90%

3.5 Ranking

For the ranking task, to rank a set of target words according to their degree of lexical semantic change, we
applied a similar approach.

First, for each target term, we ran all the models, got a score for each of them and normalized the
models’ scores to values between 0 and 1. Then, we filtered models with certainty below the MRC
parameter. Finally, we calculated a weighted average. Our weighted average takes into account the scores’
certainty by multiplying each score with its certainty. Thus, models with higher certainty had more affect
on the target term ranking.

Since the scores of each model had a different scale, it was essential to normalize the scores before
averaging them.

4 Results

Given the unsupervised LSC detection task, our concept was to use a minimum number of parameters
beyond the models’ parameters. Our system used two parameters (see Section 3): general classification
threshold (CT) and minimal required decision certainty (MRC). In Table 2 we report our system results in
the post-evaluation phase for the two sub-tasks with different configuration settings. For task 1, binary
classification, we report the Accuracy (ACC) and for task 2, ranking, we report the Spearman correlation
(SPR).

In the evaluation phase our system achieved the highest score with configuration number 4 (CT=90,
MRC=0.5). Our system was ranked 8th in task 1 (ACC=0.636) and 13th in task 2 (SPR=0.254). As seen in
Table 2, the score for this configuration in the post evaluation phase, is higher (ACC=0.647, SPR=0.283).
The reason for this gap is that in the post-evaluation phase we improved our system by normalizing the
models’ scores to values between 0 and 1, as explained in Section 3.5.

In the post-evaluation phase, we realized that low CT and MCR achieved higher accuracy, but lower
spearman correlation. As seen in Table 2, the best configuration for task 1 is configuration no. 8 (CT=80,
MRC=0.4) with ACC=0.664 and SPR=0.321. Whereas, in task 2, the best configuration is configuration
no. 12 (CT=70, MRC=0.3) with ACC=0.632, SPR=0.355.
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System
Conf. English German Latin Swedish

AVG
for all

languages
CT MRC ACC SPR ACC SPR ACC SPR ACC SPR ACC SPR

1 95 0.5 0.649 0.35 0.625 0.367 0.525 0.588 0.71 0.047 0.627 0.338
2 95 0.4 0.649 0.263 0.625 0.352 0.525 0.607 0.71 0.069 0.627 0.323
3 95 0.3 0.622 0.172 0.604 0.298 0.5 0.644 0.742 0.03 0.617 0.286
4 90 0.5 0.649 0.208 0.729 0.322 0.5 0.633 0.71 -0.032 0.647 0.283
5 90 0.4 0.676 0.126 0.667 0.429 0.525 0.59 0.71 -0.001 0.644 0.286
6 90 0.3 0.649 0.082 0.625 0.416 0.5 0.569 0.71 0.071 0.621 0.285
7 80 0.5 0.649 0.219 0.75 0.491 0.5 0.53 0.645 0.058 0.636 0.325
8 80 0.4 0.649 0.212 0.771 0.452 0.525 0.513 0.71 0.107 0.664 0.321
9 80 0.3 0.622 0.186 0.729 0.478 0.55 0.507 0.71 0.111 0.653 0.32

10 70 0.5 0.595 0.139 0.708 0.553 0.525 0.513 0.613 0.104 0.61 0.328
11 70 0.4 0.595 0.161 0.75 0.556 0.525 0.494 0.613 0.13 0.621 0.335
12 70 0.3 0.622 0.168 0.729 0.571 0.5 0.501 0.677 0.18 0.632 0.355

Table 2: Our system results in the post-evaluation phase for the two sub-tasks with different configuration
settings. In each column, the result with the maximum score is bolded.

We also looked at what the results could have been if we were trying to fine-tune the system parameters
(CT and MCR) and set for each language the configuration with the highest performance. In this case,
our system obtains an average accuracy of 0.685 and average Spearman correlation of 0.436. This can
be deduced from Table 2 as follows: if for each language we select the bolded configuration with the
maximum ACC, we can see that their averaged ACC is 0.685. In the same way an average of 0.436 will
be obtained in the SPR column.

To test the performance of our system, we analyzed the results of the best configurations (no.8 and no.
12). We compared the score of each model separately to the score of our system that weighs all the models’
scores together. We found that there is no consistent behaviour. In other words, there was not any model
that consistently outperformed all the other models or our weighted score. In the case of the German and
the Swedish languages, the SGNS-based models produced better results than the other models. In the other
languages, other models performed better. For example: In task 1, the PPMI-WI-LND and COUNT-TD
models produced the best results in English, while in the Swedish language, the best results were obtained
by the PPMI-WI-LND and COUNT-TD models. In task 2, the SGNS-WI-CD model produced the best
results in English, while in the Swedish language, it was the SGNS-OP-CD model.

We also noticed that dispersion measures models, which strongly rely on frequency, had low perfor-
mance. This could be resulted from the fact that the organizers’ controlled each test set for frequency
(which we could not know before they published the task description paper).

5 Conclusions and Future Work

We have implemented a system that systematically incorporates existing models to identify LSC over
time in text corpora of four languages. We evaluated the score distribution of existing models, suggested
a general classification threshold and applied it to each of the models individually. We calculated the
models’ score certainty and used it to aggregate the models. In the evaluation phase of the SemEval-2020
Task 1, our system was ranked 8th and 13th in the classification and ranking sub-tasks, respectively.

We plan to investigate additional aggregation methods and explore the impact of the individual models
on the combined system to improve our system results. We also plan to try our system on other languages
of different families, such as Semitic languages (Liebeskind and Liebeskind, 2020) and use LSC models
to construct diachronic thesaurus, which bridges the lexical gap between modern and ancient language
(Zohar et al., 2013; Liebeskind and Dagan, 2015; Liebeskind et al., 2016; Liebeskind et al., 2019).
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