
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 683–689
Barcelona, Spain (Online), December 12, 2020.

683

YNU-oxz at SemEval-2020 Task 5: Detecting counterfactuals based on
Ordered Neurons LSTM and Hierarchical Attention Network

Xiaozhi Ou, Shengyan Liu, Hongling Li∗
School of Information Science and Engineering

Yunnan University, Yunnan, P.R. China

Abstract

This paper describes the system and results of our team’s participation in SemEval-2020 Task5:
Modelling Causal Reasoning in Language: Detecting Counterfactuals, which aims to simulate
counterfactual semantics and reasoning in natural language. This task contains two subtasks:
Subtask1–Detecting counterfactual statements and Subtask2–Detecting antecedent and conse-
quence. We only participated in Subtask1, aiming to determine whether a given sentence is
counterfactual. In order to solve this task, we proposed a system based on Ordered Neurons
LSTM (ON-LSTM) with Hierarchical Attention Network (HAN) and used Pooling operation for
dimensionality reduction. Finally, we used the K-fold approach as the ensemble method. Our
model achieved an F1 score of 0.7040 in Subtask1 (Ranked 16/27).

1 Introduction

In recent years, in order to simulate counterfactual semantics and reasoning in natural languages, the
introduction of counterfactuals in natural language understanding systems has received more and more
research attention. According to the problem of counterfactual conditionals (Goodman, 1947), counter-
factual statements can be transformed into opposing statements with true premises and results. Coun-
terfactual statements describe events that did not occur or cannot occur, and the consequences that may
occur after the event. More specifically, counterfactuals describe events that are contrary to facts and
involve common sense, understanding, and reasoning. Therefore, whether the system can correctly iden-
tify counterfactual natural language statements is very important. In SemEval-2020 Task 5: Modelling
Causal Reasoning in Language–Detecting Counterfactuals (Yang et al., 2020). The organizer has de-
signed two subtasks. Subtask1 requires determining whether a given sentence is counterfactual. Solving
this problem is the basis for all downstream counterfactual related causal reasoning analysis using natural
language. Subtask2 aims to locate the premises and results in of counterfactuals, and to point out that
causal insights are inherent characteristics of counterfactuals. This is to further test the causal knowledge
conveyed in counterfactual statements.

In this competition, we only participated in Subtask1. We used a deep learning method to build a
neural network model based on Ordered Neuron LSTM (ON-LSTM) (Shen et al., 2019) and Hierarchi-
cal Attention Network (HAN) (Wang et al., 2019). The difference between Ordered Neurons LSTM
(ON-LSTM) and original LSTM (Hochreiter and Schmidhuber, 1997) is that encodes the hierarchical
structure of sentences into features to enhance the expression ability of LSTM (Wang et al., 2018). The
Hierarchical Attention Network (HAN) model has two important characteristics. The first is layering,
the word-level layer and the sentence-level layer, which conforms to the document structure; the second
is the attention mechanism, which can give dynamic weight according to the content when weighting. In
addition, we have added the Pooling operation, and in the Pooling layer, we used Average Pooling and

∗Corresponding author: honglingli66@126.com

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/



684

Max Pooling operations to compress the amount of parameters and reduce overfitting. Finally, consid-
ering the reason for the small dataset and data imbalance, we used the K-fold approach as the ensemble
method.

The rest of the paper is structured as follows. Section 2 introduces related work to detect counterfactual
statements. Section 3 describes the dataset and our model. In Section 4, we analyze the experimental
results. We summarize and looked forward to future work in Section 5.

2 Related Work

Counterfactual statements that describe events that did not occur and their consequences. Counterfactuals
have been studied in many different fields. Logicians and philosophers are concerned with the literal
logical relationship between the cause and effect of counterfactual form and the result (Goodman, 1947).
In contrast, political scientists often conduct counterfactual thought experiments on policies, or other
aspects of society and evaluate them (Tetlock and Belkin, 1996). Despite extensive research in the field
of counterfactual thinking, counterfactuals have not been extensively studied in computational linguistics.
First, the base rate of counterfactual statements is lower; we found that only 2% of status updates and
1% of tweets on Facebook contain counterfactual statements. Second, counterfactual statements can take
many forms of natural language 1. They can use or not use explicit if- or then- clauses (for example,
consider ”if I haven’t met him, then I’ll be better” rather than ”I hope I haven’t met him”).

In this section, we review some studies and briefly discuss their findings. Son et al. (2017) created
an anti fact tweet dataset and explored the method of detecting anti fact using rule-based and supervised
statistical methods. Counterfactual Examples for Bias (CEB) is designed for non-experts to discover
potential biases. Using counterfactual examples is a technique for developing a fairer model (Kusner et
al., 2017; Sokol and Flach, 2019; Wachter et al., 2017). Myers et al. (2020) proposed a preliminary design
of an interactive visualization tool, CEB, in order to reveal the bias in the neural network (NN), which
is commonly used in artificial intelligence. CEB combines counterfactual examples with the abstraction
of neural network decision-making processes, enabling non-experts to discover biases. In relational
classification, counterfactual conditionals can be viewed as a subset of Condition type of Contingency
class in the Penn Discourse Treebank (PDTB) (Prasad et al., 2008) or the Condition relation of Rhetorical
Structure Theory (RST) (Mann and Thompson, 1987). Moreover, many researchers have tried to use
PDTB and RST for end-to-end discourse relationship analysis (Biran and McKeown, 2015; Lin et al.,
2009; Ji and Eisenstein, 2014).

3 Methodology and Data

3.1 Data description

In this task, we only used the official provided training dataset. In Subtask1, the purpose is to distinguish
whether a given sentence is counterfactual, so data labels are divided into two categories: if the sentence
is counterfactual, it is represented by label 1, otherwise it is represented by label 0. Counterfactuals
describe events that are contrary to facts. In addition, we also conducted statistics on the categories of the
training dataset. The training dataset contains 13,000 instances, of which there are 1454 counterfactual
instances and 11546 factual instances, the ratio is about 88.82% : 11.18%. We found that the category
labels were severely imbalanced, especially the amount of label 1 only accounts for 11.18%. But in this
task, we did not take effective measures to solve the imbalance of data.

3.2 ON-LSTM with HAN and Pooling

Our proposed network architecture is shown in Figure 1. Our model is based on Ordered Neurons LSTM
(ON-LSTM) with Hierarchical Attention Network (HAN) and adds Pooling operations. Next, we briefly
describe the details of the system.

• Input Layer: This layer mainly inputs all pre-processed text data into the model.

1Just looking for words like ”if” will not produce useful results; only 2% of tweets containing ”if” are counterfactual



685

Figure 1: Architecture based on ON-LSTM with HAN and Pooling

• Embedding Layer: This layer vectorizes the words input by the pre-trained word vector model in
the existing dictionary.

• Encoding Layer: In the encoding layer, we use ON-LSTM to encode vectorized text. ON-LSTM
aims at the characteristics of grammatical layering for natural language. From the perspective of
the grammatical structure, the cell states are arranged in an orderly manner according to the gram-
matical level, and then different update rules are implemented according to the different grammat-
ical levels, so as to achieve the retention of higher grammatical level information. In other words,
ON-LSTM integrates the hierarchical structure (tree structure) into the LSTM through a specific
ordering, thereby allowing the LSTM to automatically learn the hierarchical structure information
to express richer information. ON-LSTM is a new variant of LSTM (Shen et al., 2019). The main
difference between them is that the update mechanism from ĉt to ct is different. The update formula
for the entire ON-LSTM is as follows:

ft = σ(Wfxt + Ufht−1 + bf ) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

ĉt = tanh(Wcxt + Ucht−1 + bc) (4)

f̃t = −→cs (softmax(W
f̃
xt + U

f̃
ht−1 + b

f̃
) (5)

ĩt =←−cs (softmax(W
ĩ
xt + Ũ

i
ht−1 + b̃

i
) (6)

wt = f̃t ◦ ĩt (7)

ct = wt ◦ (ft ◦ ct−1 + it ◦ ĉt) + (f̃t − wt) ◦ ct−1 + (ĩt − wt) ◦ ĉt (8)

ht = ot ◦ tanh(ct) (9)

Among them, the ft, it, ot are called forget gate, input gate, output gate respectively, the input is the
historical information ht−1 and the current information xt. −→cs and←−cs are cumsum() operations in
the right and left directions, respectively. The newly introduced f̃t and ĩt represent the master forget



686

gate and master input gate respectively. wt represents a vector where the intersection part is 1 and
the rest is all 0. In this way, the high-level information remains a considerable long distance, while
the low-level information may be updated at each step of input, thereby embedding the hierarchical
structure through information grading.

• HAN and Pooling Layer: In this layer, we use HAN and Pooling operations. HAN uses a hi-
erarchical Attention architecture to apply two levels of attention to word-level and sentence-level,
respectively. When weighting, dynamic weight can be given according to the content, so that the
words biased to counterfactual language are more prominent, so as to classify sentences. The core
structure of the HAN network consists of two parts. The bottom part of the model is a word en-
coder plus an Attention layer based on word encoding. The upper part of the model is a sentence
encoder and a sentence-based Attention layer. At the same time, because the output of ON-LSTM is
three-dimensional, we use Global Average Pooling and Global Max Pooling operations to reduced
three-dimensional to two-dimensional.

• Fully Connected Layer: This layer extracts and integrates useful information.

• Output Layer: This layer uses a softmax activation function and classifies and predicts the final
aggregated information.

3.3 K-folding ensemble
In this task, due to the small dataset, we use the K-fold method to improve the performance of the model.
The design idea of this method comes from K-fold cross-validation, we randomly divide the source data
into K parts and use the K-1 subsets to do the training, the remaining subset is the validation set, and then
this process is repeated K times. Finally, the K results are summed and do an averaging operation on
the accumulated objects to get the final output. From the K-fold idea, we know that when using K-fold,
the value of K needs to be greater than 1. The purpose of performing the K-fold ensemble is to train to
different data sets during each fold training process, and to extract different features during the model
feature extraction process, which can further improve the generalization ability of the model.

4 Experiment and results

4.1 Data preprocessing
We perform some simple preprocessing operations on the data, such as using NLTK to download stop-
words and removing stopwords2, replacing repeated full stop, question marks, and exclamation points
with single instance punctuation marks with the special mark ”repeat”. Replaced all uppercase letters
with lowercase letters. Restored abbreviated words. Lemmatization, using WordNetLemmatizer to re-
store language vocabulary to its general form (which can express complete semantics). The stopwords
are removed to delete some meaningless words, and the purpose of lemmatization is to reduce the num-
ber of unknown words. Here we have not considered that some modal verbs should be deleted due to
stopwords affecting performance, which may be one of the reasons for the low effectiveness of our mod-
el. Finally, since the official did not provide a validation set, we randomly selected 1,000 instances from
the official training set as the validation set.

4.2 Experiment setting
In our model, the pre-trained word embedding we used is FastText 3, which is provided by Mikolov et al.
(2017). It is a 2 million word vector trained using subword information on Common Crawl with 600B
tokens, and its dimension is 300 (crawl-300d-2M.vec). For the training data we used 10-fold, we set the
batch size to 256 and epoch to 20. In our model, for the ON-LSTM layer, we set the hidden unit to 128.
To prevent the model from overfitting, a Dropout layer was added between the ON-LSTM layer and the
HAN layer, and the Dropout was set to 0.5. At the Pooling layer, we used AveragePooling1D () and

2http://www.nltk.org/nltk data
3https://fasttext.cc/docs/en/english-vectors



687

MaxPooling1D (), and set pool size to 2. At the fully connected layer, we set the hidden unit to 256 and
selected Relu as it’s activation function. Finally, we added the Dropout layer and the BatchNormalization
layer, where Dropout was set to 0.5. In the output layer, we used the sigmoid activation function for
binary classification. The loss function of this model is binary cross-entropy (unweighted), and the
optimizer is Adam (standard parameters of Adam optimizer in keras.opimizers).

4.3 Result

This Subtask1 evaluates the classification system by calculating the F1 score. The left side of Table
1 shows the results of different models running without the K-fold method. We can observe that the
F1 score of the ON-LSTM model is higher than that of LSTM and GRU, which are 0.109 and 0.036,
respectively. This shows that the ON-LSTM model is effective in detecting counterfactuals, because
there are conditional and logical relations in counterfactual sentences, and there are complex hierarchi-
cal structures in sentences. The ON-LSTM model can learn the syntactic structure of sentences, and
make use of the order information of neurons, so that the model can encode the hierarchical structure of
sentences, so as to obtain more abundant semantic information, enhance the expression ability of LSTM
and effectively improve the performance of the model.

Model K value F1 Run K value F1
LSTM+HAN k=0 0.503 ON-LSTM+HAN(run 1) k=0 0.612
GRU+HAN k=0 0.576 ON-LSTM+HAN(run 2) k=5 0.637
ON-LSTM+HAN(run 1) k=0 0.612 ON-LSTM+HAN(run 3) k=10 0.704

Table 1: Running results of different model(Left). Running results of different K values(Right)

The right side of Table 1 shows the running results of different K values of the same model. We can
observe that run 1 is the result of not using the K-fold method, while run 2 and run 3 are the results of
using the K-fold method. For run 2, the performance of the model is improved by 0.134, which shows
that the K-fold method greatly improves the performance of the model. For run 3, we adjusted the K
value slightly on the basis of run 2. In our experiment, the maximum value of K is 10, and the value of
K depends on the situation of different tasks.

Team Name F1 Recall Precision
HIT 0.9090(1) 0.9190 0.9000
BUT-FIT 0.9030(2) 0.9070 0.9000
YNU OXZ 0.7040(16) 0.6610 0.7520

Table 2: Official leaderboard results

Table 2 shows the results of ours and the top two teams on the official leaderboard, the best team
obtained an F1 score of 0.9090, and the F1 score of our model is only 0.7040 (Rank16 / 27). It can
be seen from the confusion matrix that our model is more focused on predicting label 0, the prediction
correct rate reached 0.97, and mispredict a lot of label 1 as label 0, which may be because the class label
in the training dataset is heavily imbalanced (label 0 accounts for 88.82% in training set), and our model
fails to effectively solve this problem. The confusion matrix of the model prediction results in subtask1
is shown in Appendix A.

5 Conclusion

This paper introduces the general idea and specific scheme of our participation in Subtask1 in SemEval-
2020 Task5, which aims to identify which of the two sentences is a counterfactual statement. We use
the model based on the combination of ON-LSTM with HAN and Pooling for classification, and used
the K-fold approach to ensemble which could improve model performance. We found that the data is
seriously unbalanced. Undersampling or oversampling the data can effectively solve the problem of data



688

imbalance, and transfer learning can effectively improve the performance of the model. We will explore
these methods in the future.

References
Or Biran and Kathleen McKeown. 2015. Pdtb discourse parsing as a tagging task: The two taggers approach.

In Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages
96–104.

Nelson Goodman. 1947. The problem of counterfactual conditionals. The Journal of Philosophy, 44(5):113–128.

S Hochreiter and J Schmidhuber. 1997. Long short-term memory. 9:1735–1780.

Yangfeng Ji and Jacob Eisenstein. 2014. Representation learning for text-level discourse parsing. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
13–24.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfactual fairness. In Advances in
Neural Information Processing Systems, pages 4066–4076.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009. Recognizing implicit discourse relations in the penn discourse
treebank. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages
343–351.

William C Mann and Sandra A Thompson. 1987. Rhetorical structure theory: A theory of text organization.
University of Southern California, Information Sciences Institute Los Angeles.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand Joulin. 2017. Advances in
pre-training distributed word representations. CoRR, abs/1712.09405.

Chelsea M Myers, Evan Freed, Luis Fernando Laris Pardo, Anushay Furqan, Sebastian Risi, and Jichen Zhu.
2020. Revealing neural network bias to non-experts through interactive counterfactual examples. arXiv preprint
arXiv:2001.02271.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Livio Robaldo, Aravind K Joshi, and Bonnie L Webber.
2008. The penn discourse treebank 2.0. In LREC. Citeseer.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and Aaron C. Courville. 2019. Ordered neurons: Integrating tree
structures into recurrent neural networks. abs/1810.09536.

Kacper Sokol and Peter A Flach. 2019. Counterfactual explanations of machine learning predictions: Opportuni-
ties and challenges for ai safety.

Youngseo Son, Anneke Buffone, Joe Raso, Allegra Larche, Anthony Janocko, Kevin Zembroski, H Andrew
Schwartz, and Lyle Ungar. 2017. Recognizing counterfactual thinking in social media texts. In Proceed-
ings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 654–658.

Philip E Tetlock and Aaron Belkin. 1996. Counterfactual thought experiments in world politics: Logical, method-
ological, and psychological perspectives. Princeton University Press.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2017. Counterfactual explanations without opening the
black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841.

Jin Wang, Bo Peng, and Xuejie Zhang. 2018. Using a stacked residual lstm model for sentiment intensity predic-
tion. Neurocomputing, 322:93–101.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. 2019. Heterogeneous graph
attention network. abs/1903.07293:2022–2032.

Xiaoyu Yang, Stephen Obadinma, Huasha Zhao, Qiong Zhang, Stan Matwin, and Xiaodan Zhu. 2020. SemEval-
2020 task 5: Counterfactual recognition. In Proceedings of the 14th International Workshop on Semantic
Evaluation (SemEval-2020), Barcelona, Spain.



689

A Appendix A : Confusion matrix of model for subtask1


