
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 677–682
Barcelona, Spain (Online), December 12, 2020.

677

Pheonix at SemEval-2020 Task 5: Masking the Labels
Lubricates Models for Sequence Labeling

Pouria Babvey, Dario Borrelli, Yutong Zhao, Carlo Lipizzi
School of Systems and Enterprises

Stevens Institute of Technology
Hoboken, United States

pbabvey,darioborrelli,yzhao102,
clipizzi@stevens.edu

Abstract

This paper presents the deep-learning model that is submitted to the SemEval-2020 Task 5
competition: “Detecting Counterfactuals”. We participated in both Subtask1 and Subtask2. The
model proposed in this paper ranked 2nd in Subtask2: “Detecting antecedent and consequence”.
Our model approaches the task as a sequence labeling. The architecture is built on top of BERT;
and a multi-head attention layer with label masking is used to benefit from the mutual information
between nearby labels. Also, for prediction, a multi-stage algorithm is used in which the model
finalize some predictions with higher certainty in each step and use them in the following. Our
results show that masking the labels not only is an efficient regularization method but also improves
the accuracy of the model compared with other alternatives like CRF. Label masking can be used
as a regularization method in sequence labeling. Also, it improves the performance of the model
by learning the specific patterns in the target variable.

1 Introduction

Counterfactual statements describe events that did not actually happen or cannot happen, as well as the
possible consequence. For example, in the sentence “If I was tall just like a giraffe, I was eating the
leafs of those charming trees.”, the first clause is a counterfactual antecedent and the second clause is the
consequent. To model counterfactual semantics and reasoning in natural language, SemEval-2020 Task
5 (Yang et al., 2020) aims to provide a benchmark for two basic problems: (1) detecting counterfactual
statements as a binary classification task (2) detecting antecedent and consequent as a sequence labeling
task. The introduced model in this paper is designed for the 2nd task. The model approaches the antecedent
(ANT) and consequent (CONS) detection as a sequence labeling.

Sequence labeling is the assignment of a categorical label to each member of a sequence. Common
examples of a sequence labeling are part-of-speech tagging and named entity recognition. Although,
sequence labeling can be treated as a set of independent classification tasks, considering the dependency
of choices for nearby elements improves the accuracy to choose the globally best set of labels for the
whole sequence. It is specially the case for some sequence labeling tasks like SQuAD (Rajpurkar et al.,
2016), that the task is to find a set of consecutive tokens from a reading passage that respond to the specific
question. Likewise, in counterfactual detection task, individual tokens in the same noun phrase, clause, or
sentence are likely to get the same labels.

In order to benefit from the mutual information between the labels of nearby tokens our model is built on
top of BERT (Devlin et al., 2018). BERT benefits from two main features: (1) Pretraining: different forms
of information about the semantic and syntactic of the language is encoded in the model (Jawahar et al.,
2019), and this let fine-tuning the model on a much smaller dataset than it would be required for a model
that is built from the ground up. (2) multi-head attention layers: attention mechanism was first introduced
in (Bahdanau et al., 2014) to focus on the most pertinent parts of the text for language translation and
found applications in a wide range of NLP tasks (He et al., 2017; Babvey et al., 2019). Then, multi-head
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Figure 1: Consistency check for some sample outputs

attention mechanism (Vaswani et al., 2017) initiated a new epoch in NLP by allowing attention heads
to focus on different aspects of the language concurrently. Some of these heads correspond well to
linguistic notions of syntax, like direct objects of verbs, determiners of nouns, objects of prepositions, and
coreference mentions (Clark et al., 2019; Vig, 2019).

Although BERT generates a vector representation for each token as a function of syntactic and semantic
features of all tokens in the text segment (Devlin et al., 2018), using a typical linear layer with Softmax
function on top of BERT may not be the best fit for some specific sequence labeling like counterfactual
detection. To better understand the possible deficiencies of such models consider a simple case where a
model has to predict a sequence of two elements where ’AB’ and ’ab’ are both plausible outcomes but
’Ab’ and ’aB’ outcomes are highly unlikely. Then, in case one element is clearly ’A’ or ’a’ and the other
is uncertain, a reasonable sequence classification architecture like BERT can ensure that the information
flows to the uncertain element to get aligned to the correct value. However, if both elements are very
uncertain around 50% probability, then BERT will sometimes generates ’aB’ or ’Ab’ in the output.

To address this issue, conditional random fields (CRF) were used typically to filter out inconsistent
labeling patterns. CRF is a standard model for prediction where contextual information or state of the
neighbors affect the current prediction (Lafferty et al., 2001). CRF found its application in sequence
labeling especially as a complement for LSTMs (Huang et al., 2015). However, the application of CRF
became limited after the advent of BERT and other transformers. For some tasks adding CRF on top of
BERT shows no improvement and in the original BERT paper a Softmax was used for sequence labeling.
And since then, few works observed improvement using CRF on top of BERT (Souza et al., 2019). Our
experiment results show very limited improvement for using CRF with BERT.

As an alternative we tried a multi-head attention layer on top of the BERT while part of the labels
are revealed to the layer during training, a technique we call “label masking”. Inspired by the Cloze
task (Taylor, 1953) masking was used as a preliminary task for pretraining the BERT model. The mask
language model randomly masks some of the tokens from the input, and then the model has to predict
the masked tokens (Devlin et al., 2018). In this study, however, we mask part of the labels and then
the model has to predict the remaining labels based on the text and the revealed labels. We observe a
notable improvement in the results while using label masking. Our results suggest label masking as an
efficient method for sequence labeling task both for regularization and accuracy improvement for sequence
labeling.

The contribution in the model architecture are as follows: (1) a multi-head attention layer is added on
the top of BERT. The input of the layer are the sequence of hidden-states from BERT and part of labels,
then, the model has to predict the missing labels in the output. (2) for prediction, a multi-stage algorithm
is used, in which during an iterative process, the model finalize some predictions with higher certainty,
and in the next iteration it can use the knowledge from the finalized labels to predict the remaining labels.

The code is available at http://github.com/pbabvey/label_masking.

In the following, section 2 describes the model architecture and the experiment results are reported in
Section 3.

http://github.com/pbabvey/label_masking
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Figure 2: The architecture of the model

2 Model Description

2.1 model architecture

Our model approach the counterfactual detection task as a sequence labeling. Although a few cases exist
in training set in which the antecedent and consequent are overlapping (in 0.3% of all training samples),
our model is set to predict non-overlapping antecedent and consequent. Then, the task becomes a sequence
labeling where each token can be labeled as ANT (as part of antecedent), or CONS (as part of consequent),
and OUT (as part of none).

The model is built on top of BERT. Moreover, as the labels follow a limited set of patterns in coun-
terfactual detection we used a new technique, called label masking, to filter out inconsistent patterns in
the output. Figure 1 shows some examples of outputs with inconsistent patterns. In the first example,
discontinuous antecedent is invalid, and in the second example, discontinuous consequent is invalid. To
adjust such inconsistencies in the output of our model a multi-head attention layer is added on top of the
architecture. During the training, the layer, gets all the token outputs from BERT and part of the labels,
and has to predict the missing labels accordingly.

Figure 2 shows the model architecture. As can be seen in the figure, the masking layer receives the
labels embeddings and the token outputs of BERT model (sequence of hidden-states at the output of
the last layer of BERT), and then, mask a subset of labels. Then, multi-head attention layer predicts the
missing labels based on the partially labeled sequence. For the multi-head attention layer the hidden size
is set to H = 768 and the number of self-attention heads is A = 12. Thus, the size of each self-attention
head is dk = 768/12 = 64. Although the original version of multi-head attention model (Vaswani et al.,
2017) use the same (key, value) pairs, in this study the token hidden states and label embeddings are
used as key and values. Thus, the attention from token wi with an unknown label to token wj with label
yj is calculated as follows:

Attention(ewi , ewj , eyj ) = Softmax(
ewi · eTwj√

dk
)eyj (1)

With this strategy the model learns to predict an individual label not only based on the token hidden
states from BERT, but also based on the predicted label for nearby tokens.

In the test step, the model use a multi-stage process to predict all the labels. The process is similar
to decoding step in Transformers for language translation (Vaswani et al., 2017), in which the decoder
predict the first word in the target language, and then, predicts the subsequent words one-by-one based on
the previous predicted words. However, here as the length of the target sequence is fixed (the number
of labels is equal to the number of tokens) we used a more efficient approach: In each round, the model
finalize a subset of labels with confidence higher than a threshold, then, the model use the finalized labels
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You would feel differently if it was your home my friend

0.03 0.8 0.2 0 0.9 0 0.4 0 0 0 0

You would feel differently if it was your home my friend

0.4 1 0.95 0.3 1 0.85 0.9 0.4 0.6 0.1 0.1

You would feel differently if it was your home my friend

0.9 1 1 0.85 1 1 1 0.9 0.95 0 0

Figure 3: An example of multi-stage prediction with certainty threshold 0.8; red tokens are likely to
be part of consequent while blue ones are part of antecedent. The numbers show the certainty of each
individual prediction. The inderlined words are finalized at the end of the previous round

to predict the remaining labels in the following rounds. In this study we simply used a linear decremental
threshold to determine the finalized labels, however non-linear alternative may fit better as inquired in the
other scenarios (Xie et al., 2019). Figure 3 shows an example to demonstrate how the model predicts all
the labels in some steps.

2.2 Post-processing

In the post-processing step we use a backtracking algorithm to find the antecedent and consequent spans
based on the sequence of logit values in the output of the linear layer (the output of the linear layer is
in the form of (α0, α1, α2) in which α0 represent the possibility that the token belongs to OUT, and α1

and α2 respectively show the possibility that the token is part of the ANT and CONS). While with a
hard classification, the label for each token is simply max index(α0, α1, α2), our model aggregates the
knowledge from individual tokens by summing up the logit values for each possible span. We define the
fitness of a span assignment S as follows:

F (S) =
∑
i∈A

αi,1 +
∑
i∈C

αi,2 +
∑
i∈O

αi,0 (2)

WhereA, C,O are the set of token indices with ANT, CONS, and OUT labels in the span assignment S .
Then, the backtracking algorithm finds the optimized span assignment by maximizing the fitness function
F (S) based on a sequence of logits. In each step, it maximize the fitness function for the first k tokens of
the sequence based on the optimized assignments for the first k − 1 tokens.

3 Experiment Results

The model specifications are as follows: The BERTBASE module is borrowed from Transformers library
(Wolf et al., 2019) in PyTorch. For the multi-head attention layer the hidden size is set to H = 768, and
the number of self-attention heads is A = 12. In the masking layer, between 30% to 100% of all the
tokens are selected at random for masking.

The learning rate of multi-head attention layer is set to 2 · 10−3 to expedite its convergence, while the
learning rate of other layers is set to 2 · 10−5 to maintain the accumulated knowledge in BERT during
training.

The train-validation ratio is set to 90%-10%. Table 1 compares the results for the three alternatives. As
the access to the test labels was limited during the competition, the results are based on the average of 5
run for each model. As can be seen, the improvement using the multi-head attention layer is noticeable.
The improvement by multi-head attention layer for the exact matches (0.53 instead of 0.49), suggest it
allows the model to better find the boundaries.
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F-1 Recall Precision Exact match
BERT 87.05 87.8 88.9 0.49
BERT+CRF 87.09 87.9 88.9 0.5
BERT+MultiHead 87.7 87.5 91.1 0.53

Table 1: Test results for BERTBASE model and two other alternatives, the improvement using multi-head
attention and label masking is notable

4 Conclusion

In this paper we introduced a deep-learning model to solve the counterfactual detection task. The model
approaches the task as a sequence labeling. We used label masking with a multi-head attention layer
on top of the BERT to exploit the mutual information between nearby labels. Moreover, we used a
multi-stage procedure for label prediction in which the model learns to use the knowledge from predicted
labels with high certainty in labeling the remaining tokens. Our model achieved considerable results in
SemEval-2020 Task 5 (Yang et al., 2020). Our results suggest label masking plus a multi-head attention
layer as an efficient method both for regularization and accuracy improvement. The improvement with
label masking was higher than the CRF, however, further studies is needed to evaluate the advantage of
the introduced method in other sequence labeling tasks.
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