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Abstract

This article describes the system submitted to SemEval 2020 Task 5: Modelling Causal Reasoning
in Language: Detecting Counterfactuals. In this task, we only participate in the subtask A which
is detecting counterfactual statements. In order to solve this sub-task, first of all, because of the
problem of data balance, we use the undersampling and oversampling methods to process the
data set. Second, we used the ALBERT model and the maximum ensemble method based on the
ALBERT model. Our methods achieved a F1 score of 0.85 in subtask A.

1 Introduction

Now, with the rapid development of Internet technology, our society has entered a highly information
era. Life is full of different kinds of information. However, the messy information is likely to change or
even become the wrong information during the non-stop transmission process. This will have some bad
effects. In order to solve this problem, we have created some positions where the verification information
is right or wrong. However, this will consume a lot of labor costs and cause a waste of resources. At
the same time, there are usually some misjudgments in human detection. Therefore, we need some new
methods to deal. In the past two years, with the rapid development of artificial intelligence, some related
problems have emerged in the field of deep learning. For example, common sense discrimination and
natural language inference. The emergence of these problems provides some mechanical methods to solve
the problem of error messages. Our research is also carried out.

Semeval 2020 task 5 (Yang et al., 2020) is to model causal inference in language: detect counterfactuals.
This task is through the establishment of a model, and at the same time to detect whether it is a factual
statement based on a large amount of text data. The generation of this task can help us to make a
machine judgment of information correctness to a great extent. Subtask A is to detect counterfactual
statements. This subtask requires us to determine whether a given statement is counterfactual. A
counterfactual statement describes an event that has not actually occurred or cannot occur, and the possible
consequences of the event. More specifically, counterfactuals describe events that are contrary to facts,
and therefore naturally contain common sense, knowledge, and reasoning. Solving this problem is the
basis of using natural language for all downstream counterfactual causal reasoning analysis. Subtask B is
to detect precedents and consequences. This subtask states that causal insights are inherent features of
counterfactuals. For this task, we mainly participated in subtask A.

In this task, we only participate in subtask A: Detect counterfactual statements. For this task, we use
a combination of research and deep learning methods to deal with related tasks. In the task, we mainly
use the lightweight Albert model based on the Transform mechanism. According to the latest progress
of related research, the ALBERT model jointly researched by Google Research Center and Chicago
Toyota Research Center has become our preferred model. Because it has fewer parameters and better
performance than the BERT model. During data preprocessing, we found that the data set of subtask A has
serious data imbalance problems. In order to solve the problem of data imbalance, we used undersampling
and oversampling methods for comparative experiments. After data processing, we input the generated
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word vector into the pre-trained model. In the model, we also adopted the method of maximum voting
integration to optimize the performance of our model. In this task, our method is an effective way to get
good performance.

The rest of our paper is structured as follows. Section 2 introduces related work. Section 3 describes
data preparation. Methods are described in Section 4. Experiments and evaluation are described in Section
5. The conclusions are drawn in Section 6.

2 Related Work

In the field of natural language processing, common sense problems and natural inference problems are
relevant to our task. These two problems have large data sets. By describing the data set, we can show the
development of these two fields from the content of the data set. Meanwhile, the enlightenment of related
solutions can also be obtained.

In the field of common sense, this question has some data sets. Event2Mind (Rashkin et al., 2018) is a
crowdsourced corpus of 25,000 event phrases covering a diverse range of everyday events and situations.
Situations with Adversarial Generations (SWAG) (Zellers et al., 2018) is a dataset consisting of 113k multi-
ple choice questions about a rich spectrum of grounded situations. The winograd schema challenge (Trinh
and Le, 2018) is a dataset for common sense reasoning. It employs winograd Schema questions that
require the resolution of anaphora: the system must identify the antecedent of an ambiguous pronoun in
a statement. Reading Comprehension with Commonsense Reasoning Dataset (ReCoRD) (Zhang et al.,
2018) is a large-scale reading comprehension dataset which requires commonsense reasoning.

In the field of natural inference, there are also a large number of data sets. Such as, The Stanford Natural
Language Inference (SNLI) (Bowman et al., 2015) Corpus contains around 550k hypothesis/premise pairs.
The Multi-Genre Natural Language Inference (MultiNLI) (Williams et al., 2017) corpus contains around
433k hypothesis/premise pairs. It is similar to the SNLI corpus, but covers a range of genres of spoken and
written text and supports crossgenre evaluation. The SciTail (Khot et al., 2018) entailment dataset consists
of 27k. In contrast to the SNLI and MultiNLI, it was not crowd-sourced but created from sentences that
already exist in the wild.

3 Data Preparation

In this part, we mainly introduce our processing of the data set. At the same time, for the problem of
data imbalance, we will also introduce the methods of undersampling and oversampling. Through two
methods, we will solve the problem of data imbalance.

3.1 Data processing
The organizers provided train and test sets, containing 13000 and 7000 data respectively. Cleaning the text
before further processing helps to generate better functionality and semantics. We perform the following
preprocessing steps.

• We know that some repeated symbols have no meaning. As a result, repeated periods, question marks
and exclamation marks are replaced with a single instance with the special mark ”repeat” added.

• All contractions were changed to complete parts. This helps the machine understand the meaning of
words (for example:”there’re” changed to ”there” and ”are”.

• Twitter data contains a lot of emojis. Emojis can cause the number of unknown words to rise, which
can lead to poor pre-training effects. Emoticons (for example, ”:(”, ”:” ”,”: P ”and emoticons, etc.)
are replaced by emotional words with their own meaning. This will improve the pre-training effect.

• Generally, words have different forms according to the change of context. However, different forms
of words will cause ambiguity in pre-training and affect the effect of pre-training. Lexicalization,
through WordNetLemmatizer to restore language vocabulary to the general form (can express
complete semantics).

• Tokens are converted to lower case.
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3.2 Undersampling and Oversampling
In this task, by counting the number of label categories in the train set, we found that the label of the data
has an imbalance problem. The number of label categories in our train data set is shown in Figure 1.

Figure 1: The number of label categories in train datasets

In Figure 1, we clearly see that the data set has a very unbalanced problem. These problems will reduce
the performance of our model. Therefore, we need to solve the problem of data imbalance. In order to
solve the problem of data imbalance, we mainly adopted the methods of undersampling and oversampling.
The two methods are as follows.

• Undersampling is to sample only a part of the samples from the major category, and select as many
samples as the minority category. This sampling maintains the original data distribution of the
category. We only need to use fewer samples to make the data balanced. In our task, we sample the
data of label ’0’ to make it the same as the data of label ’1’.

• Oversampling is that we copy the samples in a few categories, so that the number is as large as most
samples. The copy operation needs to maintain the original data distribution of a few samples. We
don’t need to get more data to make the data set balanced. The sampling method is a good method
for class balance. In our task, we copy the data of the label 1 as much as the data of the label 0.

Our data set is processed by these two methods. The label distribution is shown in Table 1.

methods label 0 label 1 all
original 11546 1454 13000

undersampling 1546 1454 3000
oversampling 11546 11632 23178

Table 1: The label distribution in the train datasets.

4 Methods

In this part, we mainly introduce the ALBERT model and the maximum ensemble method based on the
ALBERT model.

4.1 ALBERT
Google company introduces a new language representation model called bert, which stands for Bidirec-
tional Encoder Representations from Transformers. Unlike other language representation models, BERT
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is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on
both left and right context in all layers.

However, the large-scale parameters of the BERT model cause the exponential growth of training time
and the shortage of computing resources. At the same time, too many parameter scales will cause the
performance of the model to decline. Therefore, Google and Toyota technological institute have proposed
a new model, which is the ALBERT model (Lan et al., 2019).

ALBERT incorporates two parameter reduction techniques that lift the major obstacles in scaling
pre-trained models. The first one is a factorized embedding parameterization. By decomposing the
large vocabulary embedding matrix into two small matrices, we separate the size of the hidden layers
from the size of vocabulary embedding. This separation makes it easier to grow the hidden size without
significantly increasing the parameter size of the vocabulary embeddings. The second technique is
cross-layer parameter sharing. This technique prevents the parameter from growing with the depth of
the network. Meanwhile, a self-supervised sentence order prediction (SOP) loss is also introduced. SOP
focuses on the coherence between sentences, and aims to solve the invalidity of the sentence prediction
loss.

In this task, we used the ALBERT model to get good performance. Our model is shown in Figure 2.

Figure 2: The architecture of the ALBERT model in our task

where E represents the embeddings of ALBERT and T represents the process of transformer mechanism.
Meanwhile, the E[CLS] and E[SEP] are added at the beginning and end of each instance, respectively.

4.2 Max ensemble
We know that common ensemble methods are based on voting ensemble (Wang et al., 2018). In this paper,
we first fine-tune the ALBERT model with different random seeds. For each input, we will output the best
predictions and probabilities made by fine-tuned ALBERT, and summarize the prediction probabilities of
each model. The output of the integrated model is the prediction with the highest probability. We call this
integration method voting ensemble, and the ALBERT model after voting ensemble (Xu et al., 2020) has
been significantly improved.

In our task. Our voting ensemble is chosen when outputting the maximum performance. Our voting
ensemble is shown in Figure 3,where x represents our input and y represents the model integrated output.

5 Experiments and evaluation

In this task, we use the ALBERT model to train the task. For the ALBERT model, the main hyper-
parameters we focused on are the training step size, batch size, warm steps, and learning rate. After
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Figure 3: The architecture of max ensemble in our task

learning the hyper-parameter adjustment for similar tasks, we fine-tune the model hyper-parameters. As
show in Table 2.

train step learning rate batch size warm steps
23800 5e-6 32 1256

Table 2: Details of the hyper-parameters.

This task mainly uses precision, recall and F1 score for performance evaluation. In this task, we mainly
use the ALBERT model for experiments. Meanwhile, in order to optimize the model performance, we
also adopted different sampling methods and maximum ensemble methods. Our experimental results are
shown in Table 3.

Model Dataset Precision Recall F1
Albert(single) original 0.78 0.76 0.77
Albert(single) undersampling 0.79 0.78 0.78
Albert(single) oversampling 0.77 0.78 0.77

Albert(ensemble) original 0.84 0.82 0.83
Albert(ensemble) undersampling 0.85 0.84 0.85
Albert(ensemble) oversampling 0.85 0.84 0.84

Table 3: Performance with our methods.

From this table, we can see that the undersampling data processing method and the maximum ensemble
method can effectively optimize the effectiveness of our model. So, for this task, our method is an effective
method.

6 Conclusion

In this task, we mainly use the ALBERT model. Based on the model, we also adopted the method of
maximum ensemble. At the same time, due to the imbalance of the task data set, we also used the methods
of undersampling and oversampling to deal with the problem of data imbalance. In this task, we found
that using undersampling and maximum ensemble methods can achieve optimal performance. In the task,
we did not think too much about why undersampling brought more improvements in results. In the future
work, we will devote ourselves to finding the reason.

However, in the rankings, the performance of our model is still not the best. We analyze that the
reason for this situation may be that the model parameter fine-tuning has not reached the best and the data
imbalance processing method is not good enough.
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In the future, we will improve our methods towards these reasons. We believe that we can get a good
result. Meanwhile, in order to solve the problem more comprehensively, we will try to participate in
subtask B.
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