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Abstract

I present ETHAN: Experimental Testing of Hybrid AI Node implemented entirely on free cloud
computing infrastructure. The ultimate goal of this research is to create modular reusable hybrid
neuro-symbolic architecture for Artificial Intelligence. As a test case I model natural language
comprehension of causal relations from open domain text corpus that combines semi-supervised
language model (Huggingface Transformers) with constituency and dependency parsers (Allen
Institute for Artificial Intelligence). The experimental results presented in this paper show potential
for SOTA-level performance and demonstrate hybrid Artificial Intelligence in action. On SemEval-
2020 Task 5 Subtask 1 ETHAN achieves F1 0.878 which is the second best result at the time of
my writing. On Subtask 2 ETHAN currently scores 0.673 which is within the top ten results. All
code used for experiments is available as open source and can be executed directly from the web
browser without any installation or configuration. I briefly discuss some theoretical approaches
that led to the proposed solutions and future directions of this research.

1 Introduction

Several hard open problems of machine learning and AI are intrinsically related to causality (?). One of
them is the algorithmization of counterfactuals (Pearl, 2011): what algorithms would allow machines to
recognize crucial semantic difference between sentences like

If Oswald didn’t kill Kennedy, someone else did,

If Oswald hadn’t killed Kennedy, someone else would have.(Adams, 1975)

What additional knowledge would a machine require to do such a binary classification? But going even
further, what linguistic features of the two sentences would need to be isolated and analyzed before any
form of causal inference can be performed? If the first question conveniently re-frames the linguistic
problem into statistical one, then the second question requires machine to identify some basic causal
relation in the text, namely the antecedent and consequent.

SemEval-2020 Task 5(Yang et al., 2020) asks these two question in a form of subtasks 1 and 21. Even
for a single language (English) the task so fundamental to natural language processing (NLP) that it
bridges the major divide in the artificial intelligence (AI) research between the good old fashioned AI
(GOFAI) and the methodology that led to the latest advances, namely the Deep Learning (DL).

It is worth mentioning the intense debates2 around the future of AI which inevitably circles back to the
role of causality in human and machine understanding of language or any data for that matter. My results
add to the position that any successful approach must be a hybrid between symbolic and connectionist
sides of the divide (Marcus, 2020) . I was able to achieve a SOTA F1 score 0.878 on the subtask 1 in
a short time using open source software. However, I found subtask 2 significantly more challenging,

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1https://competitions.codalab.org/competitions/21691
2https://montrealartificialintelligence.com/aidebate/
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reaching F1 score 0.673 by combining my own code with two leading open source AI projects. I have
released all my code3 as open source and my experiments can be easily reproduced by anyone with an
internet browser.

2 Background

NLP systems are typically built on a pipeline of different pre-processing modules, such as tokenization,
sentence segmentation as well as syntactic and semantic analysis. Such pipelines are prone to compounding
errors. One solution to these problems is to have fewer couplings. DL allows construction of the end-to-
end pipelines reducing language to n-grams or bag-of-words thus replacing compositional semantics with
distributional semantics (Boleda, 2019). However, this often results in ”linguistically ignorant” models
which severely limit the range of tasks that can be performed by the pipeline (Blunsom et al., 2017).

Another approach is to combine multiple modules each specialized in precise execution of one or few
NLP tasks, as opposed to the steps in a pipeline. Training of such modules can be done separately or
jointly using the same or different datasets (Pruksachatkun et al., 2020). Moreover, the modules can be
implemented using different methods of machine learning as appropriate for a particular task. Pretrained
DL models can be first fine-tuned on an intermediate task, before fine-tuning again on the target task
of interest. These models, also referred to as STILTs can target a narrowly defined model behavior or
linguistic phenomenon (Phang et al., 2018).

Linguists distinguish between two different complex constructions involving if, tense, aspect, and
modality: simple past conditionals vs. past perfect would-conditionals. The subtasks 1 and 2 target two
substantially different linguistic phenomena, namely counterfactuals:

-events that did not actually happen or cannot happen

and conditionals (antecedent and consequent):

-the possible consequence if the events have had happened

However, there is no consensus even among linguists, on treatment of the combined counterfactual
conditionals. There is no lexical ambiguity of if -. There are just different effects produced by the elements
with which if interacts. It may even be that there is no accurate binary semantic distinction between types
of conditionals (Declerck and Reed, 2001) Therefore, the algorithmization of the Task 5 demands an
extra-linguistic objective which is clear from its description:

A counter-factual statement can be converted to a contrapositive with a true antecedent and
consequent. Consider the “post-traumatic stress” example discussed above; it can be transposed
into “because her post-traumatic stress was not avoided, (we know) a combination of paroxetine
and exposure therapy was not prescribed”. Such knowledge can be not only used for analyz-
ing the specific statement but also be accumulated across corpora to develop domain causal
knowledge (McKinsey and Goodman, 1947)

This objective requires an epistemic modality - we know. That is - counterfactual past perfect would
conditionals (aka “subjunctives”) carry additional information as compared to regular past conditionals
(aka “indicatives”) - the contrapositive conversion merely makes explicit the information already present
in its surface form by converting it into its non-modal logical form. Therefore, analyzing the surface form
should allow that signal to be detected automatically. I will show how syntactic dependency parsing can
be used to that end.

2.1 Related work
Loosely coupled hybrid processing architectures with a clear division between symbolic parsing, con-
nectionist semantic analysis, and symbolic restructuring were considered for a long time as means to
overcome the gap between neural and symbolic natural language representations (Wermter, 1997).

3https://github.com/lenyabloko/SemEval2020
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To enable automatic extraction of the causal relations from text, a new form of shallow semantic parsing
called surface construction labeling has been recently proposed (Dunietz et al., 2017), which detects
not only words and lexical units, but also instances of linguistic constructions such as cause-effect pairs.
Rather than specifying by hand the constraints and properties that characterize each construction, the
proposed DeepCx system relies on ML.

I took a hybrid approach very similar to (Sorgente et al., 2018) which first identifies a set of plausible
cause-effect pairs through a set of logical rules based on lexical and structural patterns then it uses
Bayesian inference to reduce the number of pairs produced by ambiguous patterns. The SemEval-2010
task 8 dataset challenge has been used to evaluate that model. Unlike that system, ETHAN relies on
hand-crafted rules for detecting the counterfactual conditionals.

3 System overview

ETHAN is implemented as ”cloud native node” that is essentially a pure algorithm executed in the
computing cloud and using tabular data as input and output. Its logic closely follows the aforementioned
linguistic interactions between if and would. According to (Declerck and Reed, 2006), there are nine
importantly distinct tense combinations in counterfactuals and its logical forms can be reduced to canonical
conterfactuals form if P, (then) Q, where P antecedent and Q is its consequent. I further reduced it to
combinatorial interactions between the part-of-speech(POS) tags obtained from the sentence constituency
parsing (Joshi et al., 2018).

3.1 Experimental setup

The organizers of Task 5 have made available 25000 separate open domain sentences (occasionally pairs)
which included transcribed speech with a lot of syntactic and semantic noise, meaning incomplete and
ill-formed sentences.

The Subtask 1 includes 13000 sentences manually classified by at least 3 humans as containing (or not)
counterfactual statements. This subtask requires a system to then perform classification of the remaining
7000 sentences.

The substask 2 includes 3552 training sentences annotated by humans who identified the causal
antecedent and the consequent (if any) present in that sentence by indicating the specific start and end
character positions. It then requires the system to automatically annotate the remaining 1950 sentences.

3.2 Subtask 1

One of the latest advancements of DL applications in NLP is so called ”transformers” (Wolf et al., 2019)
which make possible classification of symbolic sequences (made of POS) based on features that it learns
from the large corpus of training data. Although these features are not engineered, it must be linguistically
informed. That information or learning signal comes from a combination of patterns implicit in symbolic
sequences and annotations made by human experts. In other words, transformers perform semi-supervised
machine learning (Zhu and Goldberg, 2009). For subtask 1 ETHAN relies on HuggingFace Transformers
4 and pre-trained RoBERTa model (Liu et al., 2019) finetuned on the train dataset for binary classification.

3.3 Subtask 2

For subtask 2 ETHAN relies on Allen Institute for Artificial Intelligence (AI2) constituency parser 5

based on ELMo embeddings (Peters et al., 2018; Joshi et al., 2018). This allows ETHAN to intercept
linguistic patterns of interactions between if and would as discussed earlier. It then puts corresponding
textual chunks into sets of candidates for the binary classification task. Note how in this case the hybrid
AI becomes braided (neural precedes symbolic which in turn is succeeded by neural filtering). The
classification is done by the model finetuned on subtask 1 - just as it is done by the aforementioned STILTs.
This ”-intermediate” model, however, is not the one that scored highest on the subtask 1.

4https://huggingface.co/roberta-base
5https://demo.allennlp.org/constituency-parsing
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ETHAN’s pipeline, however, must continues because the results of classification are not conclusive
- there are often more candidate chunks of text than one antecedent and one consequent per sentence.
Sometimes all the candidates are classified as counterfactuals or as not counterfactual. However, the
filtering out of good candidates causal pairs works remarkably well. This agrees with the results obtained
by experiments with STILTs showing that tasks which involve commonsense reasoning are generally
useful as intermediate tasks.

Finally, at the end, ETHAN once more applies symbolic logic in order to determine which of the
candidate chunks should be classified as antecedents and which as consequents. This time the hybrid
AI becomes braided again since ETHAN applies neural attention-based (Dozat and Manning, 2017)
dependency parser 6 to each of the candidates in order to determine the direction of causality by following
the dependency tree.

Briefly, universal dependency(UD) framework proposes a “universal” annotation scheme that should
be applicable to all languages. To date the scheme has served as guidance for the creation of treebanks
for more than 70 languages 7. The annotation scheme is based on an evolution of (universal) Stanford
dependencies (de Marneffe and Manning, 2008), Google universal part-of-speech tags (Petrov et al.,
2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008). Its main feature is the
rule-based transformability into functional head schemes and back which implies that this transformation
could be picked up implicitly by a sufficiently complex learning algorithm. However, its potential has not
being fully explored (Hernán et al., 2019).

One of the main obstacles is the high cost of annotating UD tree. Considering that it is much cheaper
to annotate POS tags than parse trees, it was even suggested that POS tagging alone may avoid using
dependency parsing (Zhang et al., 2020). One of the goals I set for ETHAN was to explore the limitations
of DL and to show the crucial role of rule-based dependency analysis for causal inference (Pearl, 2018).

3.4 Causal Inference
Identification of causal information from text data is one of the key challenges in NLP (Nazaruka, 2019)
that has not been met despite advancements in DL and other statistical approaches. UD framework
provides an avenue for combining neural and symbolic approaches by providing semantically reach set of
linguistic types which can be used for annotation, learning and causal inference. Specifically, the later can
be accomplished by automatically searching dependency trees for a particular type of path. For example,
here is a sentence (#202610) from Task 5 train dataset:

Figure 1: Universal dependency parse

The UD parse of this sentence (Figure 1) is using grammatical types like PRON,VERB,ADJ etc, as
well as semantic types like NSUBJ which stands for nominal subject and DEP unspecified dependency

6https://demo.allennlp.org/dependency-parsing
7http://universaldependencies.org/
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(for a complete list of types see Appendix.) The UD scheme is designed to subordinate function words
to content words. This allows ETHAN to follow functional dependency between clauses and match the
dependants with the candidate chunks of text coming down the pipeline in the output of Subtask 1. So,
for example, there are two chunks of text dependent on the verb ”accumulated” (bottom left and right of
Figure 1). Both chunks contain the If but the left one is of ADVCL type (that is adverbial clause modifier)
and contains the verb ”started” which opens another branch in the dependency tree. In order to determine
which one of the two chunks can be a counterfactual conditional ETHAN follows the dependencies and
looks for the NSUBJ type clauses - those not allowed in the antecedent and thus point to the potential
consequent. This logic leads to identifying the left side as a potential antecedent. In other words, you can
only reach the consequent by going upwards the dependency tree and forward to the nominal subject.

3.5 Results

For Subtask 1 finetuning the RoBERTa base 12-layer, 768-hidden, 12-heads, 125M parameters model
results in F1 score 0.874. Increasing the size of model from base to large 24-layer, 1024-hidden, 16-heads,
355M parameters results in only slightly higher F1 score 0.878. Omitting the details of many experiments
I performed to reach this score, the other notable model was XLM 8 for causal language modeling(CLM)
in which a given word is trained based only on the previous words and not using the masking technique
(Lample and Conneau, 2019).

For Subtask 2 the candidate chunks of text were further classified by XLM-CLM model before passing
it to final stage in the pipeline. The resulting F1 score 0.673 reflects the lower precision. Space does not
allow me to go into details but the UD-based filtering at the end of the pipeline has identified approximately
1/8 of the proposed causal pairs as a suspect. I have analysed random samples from that set and found few
cases where the rules had failed which was expected. However, most of the identified violations were real.

4 Conclusions

DL is very effective at isolated tasks but is not sufficient for causal inference over language. Causal
modeling of language requires a modular architecture combining DL models trained on intermediate tasks
with rule-based specialist modules. Expansion can be achieved by layering symbolic modules with neural
networks on a basis of the universal dependency scheme. Cloud computing provides a flexible and open
environment for developing hybrid AI modules at a very low cost.

5 Future work

There exists a large body of work on semantic parsing. Starting with 2014 and 2015 SemEval shared tasks
(Oepen et al., 2014), the entire spectrum of approaches has been developed. However, the work is very
fragmented and narrowly focused on SOTA efficiency. What’s still missing is the unification of semantics
in a broader context of AI. Causal reasoning offers a unique opportunity to address the robustness of
the approaches against expanding scope and diversity of tasks (Zhang et al., 2019). In my view, the UD
scheme provides a context for bringing different ideas together.
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A Appendix

Type Description
acl clausal modifier of noun (adjectival clause)
advcl adverbial clause modifier
advmod adverbial modifier
amod adjectival modifier
appos appositional modifier
aux auxiliary
case case marking
cc coordinating conjunction
ccomp clausal complement
clf classifier
compound compound
conj conjunct
cop copula
csubj clausal subject
dep unspecified dependency
det determiner
discourse discourse element
dislocated dislocated elements
expl expletive
fixed fixed multiword expression
flat flat multiword expression
goeswith goes with
iobj indirect object
list list
mark marker
nmod nominal modifier
nsubj nominal subject
nummod numeric modifier
obj object
obl oblique nominal
orphan orphan
parataxis parataxis
punct punctuation
reparandum overridden disfluency
root root
vocative vocative
xcomp open clausal complement

Table 1: Universal Dependency types.


