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Abstract

We present the results of our system for SemEval-2020 Task 1 that exploits a commonly used
lexical semantic change detection model based on Skip-Gram with Negative Sampling. Our system
focuses on Vector Initialization (VI) alignment, compares VI to the currently top-ranking models
for Subtask 2 and demonstrates that these can be outperformed if we optimize VI dimensionality.
We demonstrate that differences in performance can largely be attributed to model-specific sources
of noise, and we reveal a strong relationship between dimensionality and frequency-induced noise
in VI alignment. Our results suggest that lexical semantic change models integrating vector space
alignment should pay more attention to the role of the dimensionality parameter.

1 Introduction

Lexical Semantic Change (LSC) Detection has drawn increasing attention in recent years (Tahmasebi et
al., 2018; Kutuzov et al., 2018). SemEval-2020 Task 1 provides a multi-lingual evaluation framework to
compare the variety of proposed model architectures (Schlechtweg et al., 2020). An important component
of high-performance LSC detection models is an alignment method to make semantic vector spaces
comparable across time. In this paper we focus on a particular alignment method for type embeddings,
Vector Initialization (VI), and how its performance interacts with vector dimensionality. We compare
VI to two further state-of-the-art alignment methods, Orthogonal Procrustes (OP) and Word Injection
(WI), which have shown high performance in previous studies (Hamilton et al., 2016b; Schlechtweg et al.,
2019; Dubossarsky et al., 2019) and are also used in the top-ranking systems for Subtask 2. A systematic
comparison of performance across dimensionalities d reveals that the optimal d of the models on the
SemEval test data is lower than in standard choices, and that VI’s performance strongly depends on d,
showing large drops for high dimensionalities. We demonstrate that this effect is correlated with the
amount of frequency noise picked up by VI, i.e., the degree to which cosine distances between vectors
reflect frequency differences between words rather than semantic differences. If properly tuned regarding
dimensionalities and noise, VI outperforms OP and WI as alignment method.

2 Related Work

The semantic representations we test fall into the large body of work on distributional semantic vector
space models (Turney and Pantel, 2010) and represent specific instances of type-based word embeddings
(Mikolov et al., 2013a). The need for vector space alignment in LSC detection is shared with bilingual
lexicon induction (Ruder et al., 2019) and term extraction (Hätty et al., 2020) where corpus-specific
semantic representations need to be mapped to common coordinate axes.

Alignment techniques introduce varying levels of noise (Dubossarsky et al., 2019), and the noise
level (the signal-to-noise-ratio) determines the optimal dimensionality of word embeddings (Yin and
Shen, 2018). We regard information contained within the semantic representation capturing anything but
semantic relations between words as noise (e.g. word frequency). Sources of noise include the corpora, the
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representation method and alignment techniques. Consequently, a specific semantic representation learning
algorithm (such as Skip-Gram with Negative Sampling) may have a different optimal dimensionality
depending on the alignment technique it relies on. Up to now, previous research on LSC detection has
not paid much attention to this relationship between dimensionality and noise: models with different
susceptibilities to noise have typically been tested without varying the dimensionality (Hamilton et al.,
2016b; Dubossarsky et al., 2019; Schlechtweg et al., 2019; Shoemark et al., 2019).

3 System overview

Most models in LSC detection combine three sub-systems: (i) creating semantic word representations,
(ii) aligning them across corpora, and (iii) measuring differences between the aligned representations
(Schlechtweg et al., 2019). Semantic representations can either be token-based, keeping one representation
(e.g. a vector) per word use (Hu et al., 2019, e.g.), or type-based, collapsing information from different
uses into one representation (Hamilton et al., 2016b, e.g.). The alignment step is needed mostly for vector
space models, which might otherwise introduce arbitrary orthogonal transformations to the vector spaces
they produce (Hamilton et al., 2016b).

Our system focuses on the type-based Skip-gram Negative Sampling (SGNS) with Vector Initialisation
alignment (VI) and Cosine Distance (CD). We chose this method due to its surprisingly good performance
with d = 5 in a student shared-task project (Ahmad et al., 2020)1 and compare it to two variations of the
alignment method, (i) Orthogonal Procrustes (OP) and (ii) Word Injection (WI). For our experiments we
use the code provided by Schlechtweg et al. (2019).2

3.1 Semantic Representation
SGNS is a shallow neural network trained on pairs of word co-occurrences extracted from a corpus with a
symmetric window. It represents each word w and each context c as a d-dimensional vector to solve

argmax
θ

∑
(w,c)∈D

log σ(vc · vw) +
∑

(w,c)∈D′
log σ(−vc · vw), (1)

where σ(x) = 1
1+e−x , D is the set of all observed word-context pairs and D′ is the set of randomly

generated negative samples (Mikolov et al., 2013a; Mikolov et al., 2013b; Goldberg and Levy, 2014). The
optimized parameters θ are vwi and vci for i ∈ 1, ..., d. D′ is obtained by drawing k contexts from the
empirical unigram distribution P (c) = #(c)

|D| for each observation of (w, c), cf. Levy et al. (2015). After
training, each word w is represented by its word vector vw. To keep our results comparable to previous re-
search (Hamilton et al., 2016b; Schlechtweg et al., 2019) we chose common settings for most of the hyper-
parameters. We decided on a symmetrical context window of size 10, initial learning rate α of 0.025, num-
ber of negative samples k = 5 and no sub-sampling. Depending on corpus size we trained the model for
either 5 (German, Swedish) or 30 epochs e (English, Latin).3 As we focus on the effect of dimensionality,
each experiment was performed for each d ∈ {5, 10, 25, 50, 80, 150, 200, 250, 300, 350, 500, 750, 1000}.
Prior to the shared task application we validated all models with these hyper-parameters on the German
DURel dataset (Schlechtweg et al., 2018).

3.2 Alignment
Vector Initialisation. In VI we first train the SGNS model on one corpus and then use these vectors to
initialize the vectors for training on the second corpus (Kim et al., 2014). The motivation of this procedure
is that if a word is used in similar contexts in both corpora, the second training step will not change the
initial word vector much, while more different contexts will lead to a greater change of the vector. SGNS
represents each word by two vectors, a word vector and a context vector. The former is modified when
a word occurs as target w in a target-context pair (w, c), while the latter is modified when it occurs as
context c. While Schlechtweg et al. (2019) only initialize the word vectors on the first model and context

1These referenced results were achieved by us after experimenting with extreme and unusual parameter choices.
2https://github.com/Garrafao/LSCDetection
3We tried alternative numbers of epochs with mixed results.
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vectors randomly, we also initialize context vectors on the first model, as done by Ahmad et al. (2020). In
this way, we expect to introduce considerably less noise to the vectors in the second corpus.

Orthogonal Procrustes. SGNS is trained on each corpus separately, resulting in matrices A and B. To
align them we follow Hamilton et al. (2016b) and calculate an orthogonally-constrained matrix W ∗:

W ∗ = argmin
W∈O(d)

‖BW −A‖F (2)

where the i-th row in matrices A and B correspond to the same word. Using W ∗ we get the aligned
matrices AOP = A and BOP = BW ∗. Prior to this alignment step we length-normalize and mean-center
both matrices (Artetxe et al., 2017; Schlechtweg et al., 2019).

Word Injection. The sentences of both corpora are shuffled into one joint corpus, but all occurrences of
target words are substituted by the target word concatenated with a tag indicating the corpus it originated
from (Ferrari et al., 2017; Schlechtweg et al., 2019). This leads to the creation of two vectors for each
target word in one vector space, while non-target words receive only one vector encoding information
from both corpora. This is very similar to Temporal Referencing (TR) (Dubossarsky et al., 2019), the
difference being that with TR, the target-context pairs used for training never contain tagged target words
as contexts but rather the genuine (untagged) words.

3.3 Measures

To quantify semantic change on the aligned vector representations, we use two vector similarity measures.
For Subtask 1 we apply Local Neighborhood Distance (LND), as it showed superior performance to CD
for binary change detection in Schlechtweg and Schulte im Walde (2020). LND is based on second-order
cosine similarity and measures to which extent ~x and ~y’s distances to a union of their k nearest neighbors
differ (Hamilton et al., 2016a). Similar to Hamilton et al. (2016a) we chose k = 25. We split the LND
scores into two equally sized groups; the group containing the high values was labelled as 1 (change). For
Subtask 2 we use a simple cosine distance (Salton and McGill, 1983).

4 Experimental setup

SemEval-2020 Task 1 comprises a binary classification task (Subtask 1) and a ranking task (Subtask 2) on
data from four languages: English, German, Latin and Swedish (Schlechtweg et al., 2020). Subtask 1 asks
participants to decide which target words lost or gained senses between corpora from two time periods t1
and t2, and which ones did not. Subtask 2 asks participants to rank a set of target words according to their
degree of LSC (change in sense frequency distribution) between t1 and t2. The tasks are different in that
it is possible for a word to show a high degree of LSC in Subtask 2, while not gaining or losing a sense in
Subtask 1 (or vice versa). For example the German word abgebrüht is used to describe (1) the process
of cooking food in water and (2) an emotionally insensitive person. Both senses are present across time
periods t1 and t2, but sense 1 dominates period t1 while sense 2 dominates t2. Thus, the number of senses
has not changed, but the word has undergone significant semantic change.

The four languages have a list of 31 to 48 target words, each annotated with values for Subtasks 1 and
2. Performance of a model is measured by accuracy and Spearman’s rank-order correlation coefficient.
For each of the four languages two corpora (corpus1, corpus2) are provided by the organizers, containing
sentences from different time periods. These corpora show strong differences in terms of size, time-period
and genre (see Appendix A), posing a very heterogeneous, challenging setting for evaluation and parameter
tuning.4

5 Results

Table 1 lists the evaluation phase scores of the top three contenders for both subtasks as well as our
system. During this phase, submission scores and leaderboards were hidden. At the end of the evaluation

4For pre-processing details see Appendix B.
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Phase Team Model Subtask 1 (accuracy) Subtask 2 (spearman ρ)
AVG English German Latin Swedish AVG English German Latin Swedish

E
va

lu
at

io
n

1. UWB SGNS+CA .69 .62 .75 .70 .68
2. Life-Lang. fastText .69 .70 .75 .55 .74
3. Jia. & Jin. SGNS+WI .67 .65 .73 .70 .58
1. UG Stud. SGNS+OP .53 .42 .73 .41 .55
2. Jia. & Jin. SGNS+WI .52 .33 .72 .44 .59
3. cs2020 SGNS+OP .50 .38 .70 .40 .54
13./8. IMS SGNS+VI .60 .54 .69 .55 .61 .37 .30 .66 .10 .43
d / e 5 / 30 5 / 30 5 / 30 5 / 30 5 / 50 5 / 50 5 / 50 5 / 50

Po
st

-
E

va
lu

at
io

n

IMS

SGNS+VI .73 .75 .74 .67 .74 .58 .46 .78 .39 .67

dim / epoch

10 / 30 50 / 5 80 / 30 300 / 10 10 / 30 50 / 5 80 / 30 300 / 10

SGNS+OP .65 .62 .80 .50 .68 .56 .44 .73 .41 .64
350 / 30 300 / 5 10 / 30 500 / 5 350 / 30 300 / 5 10 / 30 500 /5

SGNS+WI .67 .62 .71 .65 .68 .54 .36 .76 .41 .61
10 / 30 50 / 5 10 / 30 500 / 5 10 / 30 50 / 5 10 / 30 500 / 5

Table 1: Comparing our model to the top 3 of both subtasks in evaluation phase. Our results are annotated
with dimensionality d and training epochs e at each entry. CA = Canonical Correlation Analysis.

phase the best submission (out of a maximum of ten) was put on the leaderboard for both subtasks. We
only submitted results for VI with d/e of 5/30, 3/50 and 8/30. The very low choice for d is motivated
by the results found in Ahmad et al. (2020), where VI has high performance with d = 5. With this
exceptionally low d we scored 13th in Subtask 1 and 8th in Subtask 2 out of 33 teams. Our methodology
for Subtask 1 has much room for improvement but we decided to point our attention towards Subtask
2 during post-evaluation. The three best teams for Subtask 2 used models based on OP and TR/WI.
Their average scores are very similar and ahead of ours. The models seem to consistently get the best
performances on German, then Swedish, followed by English and Latin. With this limited picture VI
alignment seems to be inferior to OP and WI. But after tuning each model to its optimal d, performances
are barely distinguishable (see Table 1, Post-Evaluation). This is most prominent for Latin. We attribute
the low score (0.10) during the Evaluation phase to the Latin data-set being very challenging due to its
size and heterogeneity in combination with high discrepancies between the number of vector updates in
the second training step (see below). Performance significantly improved after switching training order
(see Appendix C).

5.1 Analysis
We now tested the performance of VI, OP and WI on the four languages with varying dimensionality.
Training epochs were adjusted to compensate differences in corpus size: German and Swedish were
trained for 5 epochs, Latin and English for 30 epochs. We realized that VI is very sensitive to training
order (see Appendix C): this was very prominent with Swedish and Latin, as corpus1 and corpus2 show
big differences in size. To get comparable results, we switched training order for these two languages,
which means instead of first training on corpus1 and then corpus2, we train on corpus2 and then corpus1.

As shown in Figure 1 all models were able to achieve high correlations for German and Swedish
(0.6–0.7). On English and Latin correlation was lower (0.3–0.4), which is probably related to corpus
size, and performances are barely distinguishable, see Figure 1 bottom. For German, VI and WI show
a clear global peak in performance at d = 50, while for other languages we find several local peaks. In
German, highest performance is obtained by VI, closely followed by WI, while in Swedish OP is best.
In all languages performance of OP is very consistent across different d > 25, and it is the most robust
model in high d. WI also shows robust performance in high d, but is mostly outperformed by OP. In all
languages, we see a steep drop-off in performance of VI with higher d.

What is each model’s optimal dimensionality? For VI and WI the optimal d in our models is much
lower than the common choice of 200–300 (Hamilton et al., 2016b; Dubossarsky et al., 2019; Schlechtweg
et al., 2019; Shoemark et al., 2019).5 In Swedish, which has the largest training corpus, optimal ds are
higher, suggesting a possible correspondence between corpus size and optimal d.

Across all corpora, OP tends to have higher optimal values than VI and WI. This may be because
orthogonal alignment works better in high dimensions, as there are more degrees of freedom to rotate the

5Find an overview in Table 1 Post-Evaluation
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Figure 1: Comparing all models with varying dimensionality. The line refers to the mean of 5 runs; error
bars show the max/min values.‘ BW’ indicates switched training order.

vectors. In Swedish, all methods show two local maxima instead of a global one. This behavior becomes
more pronounced with increasing numbers of training epochs (see Figure 2). This could be explained by
the two Swedish corpora having different optimal ds (due to their different sizes and homogeneity).

Why does VI’s performance drop in high d? We tested several hypotheses to explain the drop. We
first speculated that the embeddings for corpus2 generally drift away from their initial state, as seen in
(Kim et al., 2014) where even the word with the least amount of measured semantic change had cosine
distance scores of almost 0.1. This drift could be repaired by post-hoc alignment. However, additional OP
alignment did not eliminate the drop. We then tested the hypothesis that the number of training updates
influences cosine distances (Schlechtweg et al., 2019). Hence, we calculated the correlation between the
predicted ranking of target words (according to cosine distance) and their frequency (reflecting the number
of training updates) in the second corpus, and compared this correlation across d (see Figure 2, top). There
is a clear frequency bias for VI becoming stronger with increasing d. Thus, the predicted cosine distances
do not reflect LSC but rather frequency, leading to poor performance. The bias correlates negatively with
performance as comparing the top to the bottom figures. Interestingly, the number of training epochs also
has a strong effect on this bias: An increasing e reduces the bias for low d and consequently drastically
improves performance (see Figure 2, cf. top and bottom). We were not able to find an explanation for the
cause of this behaviour.

The extend of the frequency bias is determined by several parameters, the main one being word
frequency in the second corpus. We experimented with modified corpora wherein the frequency of all
target words was fixed to 200, and less frequent target words were ignored. This completely removed the
frequency bias. However, if frequency differences amongst target words exist, as is the case with most
data sets, the noise induced by those differences may be exaggerated by dimensionality or reduced by
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2 epochs 5 epochs 10 epochs

2 epochs 5 epochs 10 epochs

Figure 2: Top figures show correlations between CD and frequency in Swedish corpus2 across d, with
increasing numbers of epochs. Gray lines indicate true correlation in gold data. Bottom figures show
performance on Swedish data for Subtask 2.

number of training epochs. Understanding and explaining the frequency bias is outside of the scope of
this work, but will be part of future work.

6 Conclusion

Our shared task system investigated Vector Initialization (VI) alignment in a commonly used LSC
detection model based on Skip-Gram with Negative Sampling, while focusing on the role of vector-
space dimensionality. Our results suggest that LSC detection models integrating vector-space alignment
should pay more attention to model-specific characteristics and the dimensionality parameter in particular.
Current state-of-the-art models are often dominated by applying OP and WI to alignment, as a wide
variety of reasonable parameters yield good results, whereas VI is very susceptible to parameters like
training order, dimensionality and epochs. However we demonstrate that VI is able to outperform OP and
WI alignment if tuned properly. Due to time limitations we could not fully explore the effects of epochs on
VI, which have proven to play a significant role for dimensionality-dependent performance. Future work
will include a closer look at the connection between dimensionality, frequency noise and training epochs.
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A Details on Corpora

Table 2 shows basic corpus statistics.

t1 t2 tokens1 tokens2 types1 types2 TTR1 TTR2

English CCOHA 1810–1860 CCOHA 1960–2010 6.5M 6.7M 87k 150k 13.38 22.38
German DTA 1800–1899 BZ+ND 1946–1990 70.2M 72.3M 1.0M 2.3M 14.25 31.81
Latin LatinISE -200–0 LatinISE 0–2000 1.7M 9.4M 65k 253k 38.24 26.91
Swedish Kubhist 1790–1830 Kubhist 1895–1903 71.0M 110.0M 3.4M 1.9M 47.88 17.27

Table 2: Corpus statistics. The SemEval corpora are samples from CCOHA (Davies, 2012; Alatrash et al.,
2020), DTA (Deutsches Textarchiv, 2017), BZ (Berliner Zeitung, 2018), ND (Neues Deutschland, 2018),
LatinISE (McGillivray and Kilgarriff, 2013) and KubHist (Språkbanken, Downloaded in 2019).
TTR = Type-Token ratio (number of types / number of tokes * 1000).

B Pre-Processing Details

Table 3 shows our thresholds for infrequent words that we removed from the corpora.

corpus1 corpus2
English German Latin Swedish English German Latin Swedish

threshold 4 39 1 42 4 39 6 65

Table 3: Corpus-specific frequency thresholds.

C Influence of training order

We switched the training order for Swedish and Latin due to their size differences across corpora. The
switch led to noticeable increases in performance for both languages, see Figure 3.

Figure 3: Comparing performances on Swedish and Latin when changing the training order.
VI: normal order, VI BW: backwards order


