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Abstract

This paper describes our system that participated in the SemEval-2020 task 4: Commonsense
Validation and Explanation. For this task, it is obvious that external knowledge, such as knowl-
edge graph, can help the model understand commonsense in natural language statements. But
how to select the right triples for statements remains unsolved, so how to reduce the interfer-
ence of irrelevant triples on model performance is a research focus. This paper adopt a modi-
fied K-BERT as the language encoder, to enhance language representation through triples from
knowledge graphs. Experiments show that our method is better than models without external
knowledge, and is slightly better than the original K-BERT. We got an accuracy score of 0.97 in
subtaskA, ranking 1/45, and got an accuracy score of 0.948, ranking 2/35.

1 Introduction

In recent years, language models trained on large scale corpora (Peters et al., 2018; Devlin et al., 2019;
Lan et al., 2019) have performed exceptionally well on many benchmarks (Devlin et al., 2019), reaching
or even surpassing human performance. It seems to show that Natural Language Understanding (NLU)
is becoming easier. And the level of NLU may be seen in the ability to understand commonsense in
natural language statements. Therefore, it is important to be able to evaluate how well a model can do
for sense making(Wang et al., 2019).

For more direct research on commonsense in natural language statements, Commonsense Validation
and Explanation (ComVE) is proposed by Wang et al.(2020). The ComVE task consists of three subtasks,
and we participated in subtaskA and subtaskB. SubtaskA is validation, requiring the model to identify
which statement makes sense from the given two. Then for the against-common-sense statement, three
optional sentences are provided to explain why the statement does not make sense. In subtaskB, named
Explanation (multi-choice), the only one correct reason is required to be identified from two other con-
fusing ones.

Intuitively, knowledge graphs (KGs) can help language models understand commonsense. For exam-
ple, for the sentence, “all whales are small”, the triple <whale, hasproperty, big> are useful.
Under such motivation, K-BERT (Liu et al., 2019) injects triples into sentences as domain knowledge.
However, how to select the helpful triples from KG remains a problem. When we fuse too much external
knowledge, irrelevant knowledge will adversely affect the model, which is called knowledge noise (KN)
issue.

To overcome KN issue, K-BERT introduces soft-position and visible matrix to limit the influence
of the triples. But KN issue is still serious, especially when the number of injected triples increases.
Therefore, this paper introduce a variant of K-BERT for further reduction of KN. Besides, we choose
ConceptNet (Speer et al., 2017) as the commonsense repository. Different from the domain-specific KG,
ConceptNet contains more than 1,500,000 English nodes. This means that you can find almost every
word in ConceptNet, which make it more difficult to choose the relevant triples. So this paper adopt a
simple and junior threshold-based method to deal with this problem.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Tokens

Basic-level Masking

Whole-Word Masking

Entity-level Masking [mask] [mask] [mask] [mask] [mask] is a character

al ##bus [mask] [mask] [mask] is a character

al ##bus [mask] ##led ##ore is a character

al ##bus dumb ##led ##ore is a character

Sentence: Albus Dumbledore is a character.

(a) Whole-word masking and entity-level masking.
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(b) The model structure of K-BERT.

Figure 1: Some related work about pre-trained language models with knowledge integration.

2 Related Work

2.1 Pre-trained Language Models with Knowledge Integration

BERT-WWM (Cui et al., 2019) and Baidu-ERNIE (Sun et al., 2019) mask whole words or entire entities
during the BERT’s pre-training stage to introduce entity-level information. THU-ERNIE (Zhang et al.,
2019) modify the encoder of BERT for the further mutual integration of words and entities. These works
only utilize information at the entity level.

Kwon et al.(2019) proposes a method that integrates the triples from KG into texts. For an input
text, it first extracts triples whose head and tail entities appear in the text. Then each triple is encoded
as a single vector using an encoder, and these vectors are gathered to form a knowledge embedding.
Finally, knowledge embedding is selectively fused into text representation obtained by BERT. However,
this method may have Heterogeneous Embedding Space (HES) issue: the embedding vectors of words in
text and entities in KG are obtained in separate ways, making their vector-space inconsistent. Moreover,
in this method, triples don’t have an impact on the encoding process of BERT.

To avoid HES issue, K-BERT (Liu et al., 2019) adopts a novel strategy to enhance language repre-
sentation with triples. As shown in the figure 1(b), for an input sentence, K-BERT first injects relevant
triples into it from a KG, producing a knowledge-rich sentence tree. Then the sentence tree is input into
a mask-transformer, where a visible matrix is used to make the triples visible only to the corresponding
entity. The difference with general transformer (Vaswani et al., 2017) is that mask-transformer uses a
mask-self-attention instead, which can be illustrated by equation (1).

Attention(Q,K, V ) = softmax(
QK>√
dk

+M)V, (1)

where Q,K ∈ Rn×dk , V ∈ Rn×dv , and M ∈ Rn×n denotes the visible matrix. The value in the visible
matrix takes 0 or a large negative number, such as -10000. If wj is invisible to wi, Mij will be set
to -10000, which will mask the corresponding attention score to 0, meaning wj make no contribution
to the hidden state of wi. In figure 1(b), for the entity Beijing, there two relevant triples, <Beijing,
capital, China> and <Beijing, is a, City>. In K-BERT, capital and China is only visible
to Beijing, but capital and is a are not mutually visible.
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2.2 ConceptNet

In this paper, we choose ConceptNet1 (Speer et al., 2017), an open multilingual knowledge graph, as
the commonsense repository. ConceptNet contains approximately 34 million edges and over 8 million
nodes. Its English vocabulary contains approximately 1,500,000 nodes, and there are 83 languages in
which it contains at least 10,000 nodes. Currently, 34 relationships are defined in ConceptNet, such as
IsA, Synonym, PartOf, UsedFor and so on.

3 System Overview

3.1 Notation

Given 5 sentences s1, s2, o1, o2, o3, of which s1, s2 are two similar statements and only one statement
makes sense; o1, o2, o3 are optional sentences, and only one sentence can explain why the against-
common-sense statement doesn’t make sense. We denote common-sense statement as sya, the against-
common-sense statement as sya, and the corresponding reason as oyb.

3.2 SubtaskA

In subtaskA, statement s first is encoded asH ∈ Rd1×|s| by a encoder, which will be illustrated in section
4, and then through the attention mechanism, each token of H is merged to get h ∈ Rd1×1.

H = Encoder(s), (2)

h =
∑
t

αa
tHt, (3)

where αa
t is the attention score, which could be obtained by:

αa
t =

exp(k>t q)∑
t exp(k

>
t q)

, (4)

kt = tanh(W1Ht + b1), (5)

where W1 ∈ Rd2×d1 , b1, q1 ∈ Rd2×1 are model parameters and d2 is the attention size.
After the above encoding stage, we can get the statement vector hs1 , hs2 for the statements s1, s2.

Next, as shown in equation (6), the class probabilities are calculated through the model parameters
W2 ∈ R1×d1 , b2 ∈ R1×1. Finally, we use the cross-entropy function to calculate the loss of subtaskA.

pi =
exp(W2h

si + b2)∑
j exp(W2hsj + b2)

. (6)

3.3 SubtaskB

In subtaskB, each sentence o will be concatenated together with sya and sya. With the same encoder in
section 3.2, we get Hsya ∈ Rd1×|sya|, Hsya ∈ Rd1×|sya|, Ho ∈ Rd1×|o|, and merge each token of Ho to
get ho ∈ Rd1×1, using same attention mechanism as equation (4,5).

Hsya , Hsya , Ho = Encoder(sya, sya, o), (7)

ho =
∑
t

αb
tH

o
t . (8)

Note that only ho will be used in the subsequent classification, and Hsya and Hsya will be discarded.
This means that s1 and s2 are only used to enhance the representation of sentence o during the encoding
stage. Next, the class probabilities are calculated similarly as equation (6) and the loss is calculated by
the cross-entropy function.
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Figure 2: A simple examples for our sentence tree, visible matrix and information flow. In the visible
matrix, if Mij is invisible, wj will make no contribution to the hidden state of wi.

4 Encoder Enhanced by Triples

In this section, we describe our encoder, which is a variant of K-BERT (Liu et al., 2019). Its general
framework is the same as K-BERT presented in Figure 1(b), but some details are modified.

4.1 Knowledge Layer
For an input sentence, the knowledge layer first recognizes entities in it according to a threshold-based
strategy, and then these entities will be sent to a KG to get relevant triples. With these triples, original
sentence will be transformed into a knowledge-rich sentence tree.

Let’s denote the input sentence as s = {w1, w2, · · · , w|s|}. If the word frequency of the word wi,
denoted as f(wi), is less than a given threshold θ, wi will be regarded as a entity. Therefore, the entities
we recognize are all single words. Then each recognized entity is input into the KG K as a query to
obtain the corresponding triples. Because the knowledge graph we choose is too large, a query is only
performed on a given relation. Hence, the query process can be formalized as:

E = query(e,K, rel). (9)

After recognizing the entities and querying the triples, for the sentence s, we get E = {(wi, Ei), (wj ,
Ej), · · · }, whereEi = {(wi, ri1, wi1), · · · , (wi, rik, wik)}. As shown in figure 2, triples in E are stitched
in the corresponding position in s, producing a sentence tree. This process can be formulated as equation
(10). Note that the head entity is preserved when stitching, which is different from the original K-BERT.

T = inject(s,E). (10)

4.2 Soft-Position Embedding
Since the self-attention mechanism cannot make use of the order of the sequence, the transformer
(Vaswani et al., 2017) adds a position embedding to the input embedding, named hard-position em-
bedding in this paper. Similarly, K-BERT introduces soft-position embedding to preserve the structure
information of the sentence tree. As shown in the figure 2, the hard-position index of token has property

1we use ConceptNet 5.7.0 version, which could be downloaded at: https://s3.amazonaws.com/conceptnet/
downloads/2019/edges/conceptnet-assertions-5.7.0.csv.gz
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Subtask Train Dev Test
A 10770 997 1000
B 10808 997 1000

Table 1: Data statistics.

and token is are 3 and 9 respectively, but their soft-position index are 2 and 3. This means that with
soft-position, the injection of triples doesn’t affect the position index of tokens in the original sentence.

4.3 Mask-Self-Attention and Visible Matrix
The basic idea of mask-self-attention can be illustrated by equation (1), namely using a visible matrix
M ∈ Rn×n to control the information flow, where n is the length of the input sequence.

There are some differences in the visible matrix between our encoder and the original K-BERT. For
the given entity e in the sentence and the corresponding triple < h, r, t >, the information flow in the
following three directions is allowed:

1. from the entity e to the relation r and the tail entity t of the triple;

2. from the relation r and the tail entity t to the head entity h of the triple;

3. from head entity h to the entity e.

Unlike in K-BERT, the direct information flow from the relation r and the tail entity t to the entity e
is masked. This means that in the triple < h, r, t >, the entity e can only be affected by the head entity
h, which could be understood as a representation of the entity e enhanced by the relation r and the tail
entity t.

5 Experiment Results

5.1 Experiment Setup
Data. We merge the given train data and the given trial data into the new train data, and remove duplicate
samples and false samples2. Table 1 shows the statistics of the data used.

Model and Hyper-parameters. The implementation of our encoder is based on Google ALBERT3

(Lan et al., 2019). In ALBERT we used, the hidden size d1 is equal to 4096, and we set the attention size
d2 as 1024. Our model is trained for 4 epochs with a initial learning rate4 of 1e-5 and the batch size of
16.

Other Details. We used a python library named wordfreq (Speer et al., 2018) to look up the word
frequency. It can output the zipf frequency of words, ranging from 0 to 8. And we empirically set the
frequency threshold θ as 4. For ConceptNet, we select 10 relations, as shown in table 2. Among the 34
relations of ConceptNet, we filter out relations that contain little commonsense, such as RelatedTo,
and relations with too few triples that cannot involve enough samples, such as CreatedBy. For a given
entity and a given relationship, we choose the k triples with the highest confidence, which is provided by
ConceptNet. k ranges from 1 to 4, and the best k of each relation is determined on the development set
in subtaskA.

5.2 Results
As shown in table 2, on the test set of subtaskA, the accuracy score of our method is best to reach
0.9670, which exceeds 0.9600 obtained by naive ALBERT. In terms of the average accuracy score on 10
relations, our method is slightly better than K-BERT. This shows that the injection of triples is helpful

2In some samples, s1 and s2 are the same statement.
3We initialize our model with albert-xxlarge-v2.
4We apply the cosine with hard restarts schedule with warmup with warmup proportion of 0.2 to automat-

ically adjust the learning rate.
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Relation
Dev Test

Avg1K-BERT Ours K-BERT Ours
IsA 0.9669 0.9669 0.9620 0.9630 0.9647
Synonym 0.9649 0.9679 0.9670 0.9670 0.9667
HasContext 0.9699 0.9709 0.9630 0.9650 0.9672
CapableOf 0.9669 0.9659 0.9620 0.9660 0.9652
AtLocation 0.9669 0.9669 0.9630 0.9620 0.9647
UsedFor 0.9659 0.9679 0.9600 0.9640 0.9645
HasProperty 0.9639 0.9679 0.9650 0.9640 0.9653
ReceivesAction 0.9629 0.9659 0.9630 0.9660 0.9645
HasA 0.9649 0.9659 0.9670 0.9660 0.9660
PartOf 0.9629 0.9669 0.9670 0.9650 0.9655
Avg2 0.9656 0.9673 0.9639 0.9648 0.9654
naive-albert 0.9649 0.9600 0.9625

Table 2: Result of classification accuracy for different ConceptNet relations on subtaskA development
set and test set. Naive-albert means that the triples in conceptnet is not used. Avg1 refers to the average
accuracy of K-BERT and our method on the development set and test set. Avg2 refers to the average
accuracy on all relations.

for the understanding of commonsense in natural language statement, and our method may be better than
the original K-BERT for knowledge integration.
HasContext and Synonym are the best two relations for subtaskA. As shown in four statements

below, this may be because triples of these relation provide some optional context to enhanced the entity
representation or reduce the difficulty of the model in understanding low-frequency words.

Statement1(False): “the family adopted a dinosaur (dinosaur, hascontext, proscribed) to be
their new pet”.

Statement2(True): “the mclaren (mclaren, hascontext, automotive) is a well-designed vehi-
cle.”.

Statement3(False): “robot be such omniscient (omniscient, synonym, all knowing) as human”.

Statement4(False): “cat be bipedal (bipedal, synonym, two footed) creature”.

Note that in the official submission, we train our model in the train data and the development data to-
gether, and adopt 5-fold cross-validation and soft-vote strategy to obtain the final probability distribution
on the test set. Besides, only two types of relations, IsA and Synonym, are used. Under such setting,
we achieved an accuracy score of 0.970 on subtaskA, ranking 1/45, and achieved an accuracy score of
0.948 on subtaskB, ranking 2/35.

6 Conclusion

In this paper, we propose a variant of K-BERT as the language encoder to help the model understand
commonsense. We adopt a simple threshold-based method for triple selection and apply our encoder on
SemEval-2020 task 4: Commonsense Validation and Explanation, and achieve good performance (rank-
ing 1st place in subtskA). This shows that our system can effectively enhance the language representation
with multiple knowledge triples.

However, when the number of injected triples is further increased, or triples of different relations are
injected into the sentence, the performance of our model will deteriorate. Therefore, we believe that
future work can be carried out in the following points: (1) pre-training language models on sentences
injected with triples; (2) recognizing multi-word entities an d developing better selection methods, such
as those based on similarity; (3) designing a robust and noise-resistant knowledge integration model to
integrate more triples.
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