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Abstract

Lexical entailment recognition plays an important role in tasks like Question Answering and
Machine Translation. As important branches of lexical entailment, predicting multilingual and
cross-lingual lexical entailment (LE) are two subtasks of SemEval2020 Task2. In previous
monolingual LE studies, researchers leverage external linguistic constraints to transform word
embeddings for LE relation. In our system, we expand the number of external constraints in
multiple languages to obtain more specialised multilingual word embeddings. For the cross-lingual
subtask, we apply a bilingual word embeddings mapping method in the model. The mapping
method takes specialised embeddings as inputs and is able to retain the embeddings’ LE features
after operations. Our results for multilingual subtask are about 20% and 10% higher than the
baseline in graded and binary prediction respectively.

1 Introduction

Lexical entailment (LE) refers to the hyponymy-hypernymy relation, also known as TYPE-OF, or IS-A,
which is a fundamental asymmetric lexical relation (Vulić et al., 2017). It is a basic requirement for
tasks like Question Answering (QA) and Recognizing Textual Entailment (RTE). And more general
reasoning over cross-lingual and multilingual LE relationships can improve language understanding in
multilingual contexts (Upadhyay et al., 2018). Cross-lingual LE recognition is crucial to tasks such as
recognizing cross-lingual textual entailment (Conneau et al., 2018) and machine translation (Padó et al.,
2009). Predicting binary and graded scores for multilingual and cross-lingual lexical entailment is the task
of SemEval 2020 Task 2 (Glavaš et al., 2020).

There are two subtasks. Subtask A is to predict binary or graded LE on a monolingual pair of words,
e.g., (building, construction) and the subtask is in six multiple languages (i.e., English, German, Italian,
Croatian, Turkish, Albanian). Subtask B, predicting cross-lingual LE, gives a pair of words in two different
languages with prefix, e.g., (en dinosaur, de kreatur1). There are 15 cross-lingual pairs as languages above
combine with each other, i.e., DE-X, EN-X, IT-X, HR-X and SQ-X sets2. Each subtask includes both
binary and graded prediction for a given pair of words. Binary prediction is to determine whether there is
a LE relation between two concepts, while graded lexical entailment (GR-LE) measures the strength of LE
relation on a continuous 0-6 scale (Vulić et al., 2017; Rei et al., 2018). For instance, (apple, fruit) gains a
score of 6, while the pair (apple, flower) gets 1.2. This is because apple is more like a kind of fruit instead
of flower. Since LE is an asymmetric relation, the score of (fruit, apple) is not the same as (apple, fruit).

Researches in monolingual GR-LE mainly focus on training LE-specialiased word embeddings based on
external linguistic constraints (Vulić and Mrkšić, 2018; Kamath et al., 2019; Glavaš and Vulić, 2019). The
constraints, namely external knowledge, are some synonymy (pretty, beautiful), antonymy (nice, bad) and
lexical entailment word pairs (sandwich, food). These are useful for LE relation and are extracted from

∗B Corresponding author
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://

creativecommons.org/licenses/by/4.0/.
1The word means creature in English
2The ISO codes are: German - DE, English - EN, Italian - IT, Croatian - HR, Turkish - TR, Albanian - SQ.



256

lexical resources (such as WordNet). The size of external constraints decides the size of word embeddings
get trained, thus for each language, the amount of external knowledge needs to be large enough.

For cross-lingual GR-LE prediction, previous works transfer the space from the source language to
the target language (Glavaš and Vulić, 2019). The basis of the methods is to obtain unified bilingual
word embeddings, which can also be trained by mapping two languages space into a shared one based a
bilingual dictionary (Ruder, 2017). After getting bilingual embeddings, operations in cross-lingual models
are similar with the monolingual one.

In our work, we apply massive external constraints to train specialised word embeddings for monolingual
LE. And we introduce a bilingual word embedding mapping method on cross-lingual subtask. The inputs
of the mapping method are the LE-specialised word embeddings which are outputs of subtask A. Several
experiments are conducted to prove the effect of external constraints. Our contributions are as follows:

• We expand the number of external constraints in six given languages, and use them in the monolingual
LE model, receiving great scores.

• We merge the bilingual word embeddings mapping method with monolingual LE model for the
cross-lingual LE prediction.

• We conduct experiments with different number and kinds of external constraints to prove constraints’
effectiveness.

• We achieve competitive scores of two subtasks among the competitors, both binary and graded
prediction.

2 System Description

The components for our system are shown in Figure 1. We propose a system that focuses on transforming
word embeddings for LE relation. For monolingual LE subtask, the inputs are word pairs and external
lexical constraints in the same language. We employ LEAR (Vulić and Mrkšić, 2018) to train specialised
input vectors based on external constraints. The method was used for English GR-LE. Here we use the
model for all six languages with more external constraints added. After transforming the input embeddings,
the outputs are monolingual LE-specialised word embeddings (Section 2.1). Next, to solve cross-lingual
subtask, we treat the outputs of subtask A as inputs for a bilingual mapping method to map two different
vector spaces into a shared one (Section 2.2). The final step of both subtasks is to score the entailment
relation using the trained word embeddings (Section 2.3).

Figure 1: The flowchart for our system

2.1 Subtask A: Monolingual LE Training
The main part of our system for subtask A is the same as LEAR (Lexical Entailment Attract-Repel) (Vulić
and Mrkšić, 2018). It is a post-processing method that fine-tunes word embeddings observed in external
linguistic constraints. The constraints consists of synonymy pairs S such as (nice, kind), antonymy pairs A
such as (poor, rich), and lexical entailment pairs L such as (apple, fruit), i.e., C = S ∪A ∪ L . The model
defines two symmetric objectives: the ATTRACT (Att) objective aims to pull synonymy pairs (ATTRACT
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(a) The original pre-trained input
word embeddings.

(b) Step 1: adjusting word embed-
dings directions by pulling similar
words closer or pushing opposite
words away.

(c) Step 2: adjusting norms to re-
flect concept level according to LE
constraints.

Figure 2: The transformations of input word embeddings shown in 2D plane. Figure (a) shows the original
input word embeddings. In figure (b), vectors of (broccoli, food, vegetable) and (building, construction)
become closer according to external constraints. Next, as described in lexical entailment pairs L, building
is a kind of construction and broccoli is a type of vegetable as well as a kind of food. Thus food and
construction are higher-level concepts and their norms are larger than the others in figure (c).

pairs) closer, while the REPEL (Rep) objective pushes antonymy pairs (REPEL pairs) away from each
other. Meanwhile, the model adjusts vector norms so that the higher-level concepts have larger norms and
lower-level concepts have smaller norms in Euclidean space.

The set of K word pairs for which the Att or Rep score is to be computed is denoted by B =

{(x(k)
l ,x

(k)
r }Kk=1. These pairs are referred as the positive examples. The set of corresponding nega-

tive examples T is created by coupling each positive ATTRACT example (xl,xr) with a negative example
pair (tl, tr), where tl is the vector closest (within the current batch in terms of cosine similarity) to xl,
and tr the vector closest to xr. The Att objective for a batch of ATTRACT constraints BA is then given as:
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τ(x) = max(0, x) is the hinge loss and δatt is the similarity margin imposed between the negative and

positive vector pairs. Similarly, for each positive REPEL pair (xl,xr), the negative example pair (tl, tr)
couples the vector tl that is most distant from xl and tr, most distant from xr. The Rep objective for a
batch of REPEL word pairs BR is then defined as:
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(2)
In addition to these two objectives, LEAR defines a regularization term to preserve the useful semantic

content from the original distributional vector space. Let V (B) denote the set of distinct words in a
constraint batch B; the regularisation term is then: Reg(B) = λreg

∑
x∈V (B) ‖y − x‖2, where y is the

transformed vector of any vector x, and λreg is the regularisation factor.
The most important objective of the method is an asymmetric distance-based objective which aims

to rearrange norms of vectors. This is to obtain specialised vectors reflecting the asymmetry of the LE

relation. We adopt the best-performing asymmetric objective from Vulić and Mrkšić (2018):

LE(BL) =
K∑
k=1
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l ‖ − ‖x

(k)
r ‖

‖x(k)
l ‖+ ‖x

(k)
r ‖

(3)

BL denotes a batch of LE constraints. Finally, the full objective is then defined as:

J = Att(BS , TS) +Rep(BA, TA) +Att(BL, TL) + LE(BL) +Reg(BS ,BA,BL) (4)

Figure 2 shows the whole transformation of word embeddings. First, the model adjusts the vectors
direction according to Att objective or Rep objective. This step captures the symmetric similarity of word
pairs. And next step is to rearrange vector norms according to LE(BL), so that norms reveal the concepts’
level. The final transformed word embeddings are saved for the following task.
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2.2 Subtask B: Cross-lingual LE Training

The main idea of cross-lingual subtask is to map any two transformed vector spaces from subtask A into
one shared space using a dictionary. Because the vector spaces are trained for LE relation, the symmetric
and asymmetric features are retained in the mapped spaces. We follow the bilingual word embeddings
mapping method proposed by Artetxe et al. (2018).

Let X and Z be the word embedding matrices in two languages for a given bilingual dictionary so that
their ith row Xi∗ and Zi∗ are the embeddings of the ith entry. The aim is to learn the transformation
matrices WX and WZ so the mapped embeddings XWX and ZWZ are close to each other. The core step of
the method is an orthogonal transformation3.

The outputs of the method is the mapped vectors of two languages. After the bilingual word embedding
training, we use the outputs and following function (Section 2.3) to compute the LE score.

2.3 Scoring Lexical Entailment

After obtaining LE-specialised word embeddings, LE scores are given by a distance function that reflects
both the cosine distance between the vectors and the asymmetric difference between their norms (Vulić
and Mrkšić, 2018) :

ILE(x,y) = dcos(x,y) +
‖x‖ − ‖y‖
‖x‖+ ‖y‖

(5)

x and y represent the vectors of any two words x and y in one subtask. We then normalise the results
of the function to a range of (0,6) as a requirement. And for binary detection, we simply transform the
graded score into the binary label, using a binarization threshold t. If ILE(x,y) < t, we predict that the
LE relation holds between two given concepts.

3 Experiments

3.1 Experimental Setup

Word Embedding. The English word embedding is the same with Vulić and Mrkšić (2018), which are
Skip-Gram with Negative Sampling (SGNS-BOW2) vectors (Mikolov et al., 2013) trained by Levy and
Goldberg (2014) on the Polyglot Wikipedia (Al-Rfou’ et al., 2013). And for the rest of the required
languages, we use word embeddings trained on Common Crawl and Wikipedia using FASTTEXT (Grave
et al., 2018). All the vectors are 300-dim.

For all languages except English, we first shrink the input vector spaces according to word frequency
lists that contains 50,000 words4. This is to make sure our model works smoothly and fast. However, this
raises a problem that some words may get word embeddings in the original larger vector space whereas
not in the reduced space. Also, we notice that there are some multiword expressions in the datasets, e.g.,
macchina per scrivere (typewritter in English), and they may not get the corresponding word embeddings
either. To address these problems, we conclude in different ways of loading the word embedding.

First, we try to obtain the embeddings from the reduced vector space. If the input word is not in the
reduced space, then there are three conditions: whether it is in the priginal larger space, whether it is
a multiword expression, or neither. The process is shown in Figure 3. For the words made of multiple
words, we separate them by underscores and try to get each part the corresponding word embeddings
from the larger vector space. Once one of the parts is not in the space, the embedding of the multiword is
randomly initialized. If all parts meet the criteria, the final embeddings of this multiword expression is the
average of word embeddings of each part. We distribute words random word embeddings if they do not
belong to the above situations.

External Resources. For all the provided languages, one part of external constraints is extracted from
ConceptNet5 (Speer et al., 2017) following the idea of LEAR. For each language, word pairs of synonym
and antonym relations are included as symmetric resources and concepts of IsA relation are regarded as

3https://github.com/artetxem /vecmap
4https://github.com/hermitdave/FrequencyWords/tree/master/content/2016
5https://github.com/commonsense/conceptnet5/wiki/Downloads
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Figure 3: Different situations of loading input word embeddings

asymmetric LE constraints. The number of constraints for each language is displayed in Table 1a. And
for English, the other part is the same set as LEAR (Vulić and Mrkšić, 2018): synonymy and antonymy
constraints from (Zhang et al., 2014; Ono et al., 2015) are extracted from WordNet (Fellbaum, 1998) and
Roget’s Thesaurus (Kipfer, 2009), and asymmetric LE constraints are also extracted from WordNet. We
add these 1,023,082 pairs of synonyms, 380,873 pairs of antonyms, and 1,545,630 LE pairs into English
external lexical constraints.

Language Antonyms Synonyms LE pairs Total

EN 10108 48443 46068 104619
DE 1247 29699 21807 52753
IT 675 4992 1395 7062
TR 451 1048 107 1606
HR 106 703 57 866
SQ 55 298 6 359

(a) The total number of ConceptNet constraints used in
model

Language Antonyms Synonyms LE pairs Total

EN 187258 593702 1520948 2301908
DE 68801 296700 467482 832983
IT 63121 252227 460798 776146
HR 38665 169151 319863 527679
TR 51110 180748 267724 499582
SQ 21542 138143 280620 440305

(b) The total number of all constraints (both ConceptNet
and translated ones) used in model

Table 1: Summary of the number of constraints used in our model.

Expansion of Lexical Constraints. With more lexical constraints, more embeddings will get trained
for LE relation. However, for languages like Turkish and Albanian, available external resources are
not sufficient (see Table 1a). Therefore, instead of directly searching constraints in such language, we
use Google Translator6 to translate English constraints into other languages to expand their constraints.
Furthermore, we apply the translations to construct the bi-dictionaries between every two languages for
the cross-lingual subtask. The final number of lexical constraints applied in our model is displayed in
Table 1b.

Training Setup. For subtask A, the hyperparameters are: δatt = 0.6, δrep = 0, λreg = 10−9. The
threshold t = 3.5. The models are trained for 4 epochs with the AdaGrad algorithm (Duchi et al., 2011).
We use the original experimental settings in the bilingual mapping method (Artetxe et al., 2018).

3.2 Results and Discussion

Our final results on the test set and the comparison with the baseline systems for two subtasks are shown
in Table 2 and Table 3. The baseline model is from (Glavaš and Vulić, 2019).

Subtask A. Our system surpasses baseline in every monolingual language as a result of external
constraints expansion. Our best performing language is the same as baseline: English, but our results are
much higher than baseline by 18% and 8% in graded and binary LE scores respectively. Albanian, as the
language performs the worst in baseline, we improve the results from 0.32 to 0.56 in graded LE and from
0.57 to 0.72 in binary LE. Even for our worst performing language, Turkish, the score of graded LE is
0.53 and the binary one is 0.70, while the baseline is 0.43 and 0.64.

6https://translate.google.com
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Type Model en de it hr tr sq

Graded
(Spearman ρ scores)

Baseline: GLEN 51.24 43.31 43.2 38.29 43.06 32.25
Our System 69.63 63.17 63.6 58.85 52.52 56.45

Binary
(F1 scores)

Baseline: GLEN 79.87 59.88 66.27 64.27 64.35 56.86
Our System 87.9 71.43 75.94 75.37 69.85 72.12

Table 2: Results on Monolingual LE prediction of our system and the organizer’s baselines.

Type Model de-en de-hr de-it de-sq de-tr en-hr en-it

Graded
(Spearman ρ scores)

Baseline: GLEN 50.4 40.8 48.8 39.6 46.6 36.8 54.1
Our System 56.7 42.1 45.7 52.9 45.8 49.4 53.2

Binary
(F1 scores)

Baseline: GLEN 74.3 62.6 63.7 58.8 63.2 65.9 77.2
Our System 80.6 64.0 63.8 61.4 62.7 78.8 81.4

(a) Results on Cross-Lingual LE prediction (Part A).

Type Model en-sq en-tr hr-it hr-sq hr-tr it-sq it-tr sq-tr

Graded
(Spearman ρ scores)

Baseline: GLEN 39.3 50.4 35.3 36.6 40.2 35.4 47.4 37.2
Our System 55.9 51.0 43.2 49.0 38.6 54.4 45.9 51.0

Binary
(F1 scores)

Baseline: GLEN 65.7 74.3 61.6 57.6 63.7 59.8 67.6 61.2
Our System 74.8 77.8 69.0 63.6 65.0 67.0 67.5 62.2

(b) Results on Cross-Lingual LE prediction (Part B).

Table 3: Official submission results on Cross-Lingual LE prediction of our system and the organizer’s
baselines.

We also evaluate the system on the evaluation set to certify that an increase in the number of external
lexical knowledge is beneficial to the model. We compare the performance of the model for graded
LE prediction in two situations. One is training the model only with lexical constraints extracted from
ConceptNet and the other is with all constraints including the translated constraints. Since Albanian is not
published in the evaluation set, the comparisons only contain other five languages.

Figure 4a depicts the results for the five languages. The evaluation results reveal the similar pattern
as the test results. The scores of English files are the highest, since the number of English constraints is
much more than others. As Italian and German hold approximately equal number of constraints, their
scores are close to each other. The lowest is Turkish for both evaluation and test sets.

We analyze other factors that may affect the results. We find that among all three kinds of external
lexical constraints, LE pairs contribute the most to the model. Figure 4b demonstrates the importance of
each kind of constraints. When training with the same number of different constraints, the model performs
the best with the help of LE pairs, and the performance of only with antonyms condition is the worst. The
number of Turkish LE constraints is the smallest among all languages. This explains why the number of
Turkish lexical constraints is not the least, but the results are the lowest. And translations also influence
the effectiveness of constraints, so we cannot get as useful Turkish LE word embeddings as others.

Subtask B. The circumstances for cross-lingual LE are complex. The bilingual mapping method is not
effective for all the bilingual combinations. The baseline surpasses our system in DE-IT, DE-TR, EN-IT,
HR-TR, IT-TR sets for graded LE task and DE-TR and IT-TR sets for the binary LE prediction. One of
the reasons is that word embeddings from subtask A, as the inputs of mapping method, determine the
results of the method. Turkish specialised embeddings are trained not as well as others, so graded results
of combinations with Turkish are not outstanding enough.
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(a) (b)

Figure 4: Spearman ρ scores of five languages training on evaluation set for graded LE. Figure (a) trains
under two situations: 1) Training with constraints only extracted from ConceptNet. 2) Training with all
constraints including translated constraints. Figure (b) shows the results of model training with only one
kind of external constraints for each time. The number of constraints applied is the same.

4 Conclusion

We use LEAR model to fine-tune the input word vector spaces, and expand the number of external
constraints used in the model to obtain more global word embeddings. The results demonstrate that with
more knowledge added into the model, especially LE constraints, the relation among vectors will be more
significant and beneficial to the monolingual LE relation prediction. And we apply above specialised word
embeddings and the mapping method in cross-lingual word embeddings models to predict cross-lingual
LE.

For future work, we think bi-dictionary and proper polysemy process should improve the performance.
Besides, we will consider applying external constraints in both languages into the cross-lingual model
since they work well in monolingual LE prediction.
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