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Abstract

In this paper we present our submission to subtask A at SemEval 2020 Task 12: Multilingual
Offensive Language Identification in Social Media (OffensEval2). For Danish, Turkish, Arabic
and Greek, we develop an architecture based on transfer learning and relying on a two-channel
BERT model, in which the English BERT and the multilingual one are combined after creating
a machine-translated parallel corpus for each language in the task. For English, instead, we
adopt a more standard, single-channel approach. We find that, in a multilingual scenario, with
some languages having small training data, using parallel BERT models with machine translated
data can give systems more stability, especially when dealing with noisy data. The fact that
machine translation on social media data may not be perfect does not hurt the overall classification
performance.

1 Introduction

Concealed by perceived anonymity, users can often feel comfortable expressing offensive, abusive and
hateful thoughts on the Internet. Therefore, the task of identifying offensive language on social media
has increasingly gained attention in recent years, since the manual identification and deletion of such
messages can be very costly and time-consuming, given the ever-increasing quantity of user-generated
content online. In order to foster the development of offensive speech detection systems, more and more
shared tasks have been organized on the detection and identification of offensive language in the past few
years, covering several languages (Zampieri et al., 2019b; Basile et al., 2019; Wiegand et al., 2018; Bosco
et al., 2018). In this paper, we present our submission to SemEval 2020 task 12, Multilingual Offensive
Language Identification in Social Media (OffensEval 2) (Zampieri et al., 2020). We participated in subtask
A, focused on the identification of offensive messages in 5 languages: English, Danish, Turkish, Arabic
and Greek.

In the SemEval 2019 edition of OffensEval, the task was focused on Offensive Language Identification
in English (Zampieri et al., 2019a). The vast majority of the teams who obtained the highest macro-F1
scores in subtask A (focused on the binary identification of offensive language) used systems based
on Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019). Since the
2020 edition of the task covers five languages, we aim at improving the performance of a multilingual
pre-trained BERT system by using transfer learning. This is achieved by artificially creating more data for
fine-tuning two parallel pre-trained BERT models by translating existing corpora in a different language
and feeding the parallel data to a multiple input model.

2 Related Work

The increased interest in the detection of offensive language on social media has entailed an increase
in shared tasks on the topic (Wiegand et al., 2018; Bosco et al., 2018; Zampieri et al., 2019b), as well
as more data being annotated for this task (Waseem and Hovy, 2016; Davidson et al., 2017; Golbeck et
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al., 2017; Founta et al., 2018). The topic of offensive language detection has been explored in relation
to different subtasks, such as the detection of cyberbullying, hate speech, abusive language, aggression,
and more (Schmidt and Wiegand, 2017; Sprugnoli et al., 2018; Zampieri et al., 2019b). In general, the
methods used for identifying offensive language follow supervised learning approaches. While support
vector machines perform well on the task (Schmidt and Wiegand, 2017), deep learning approaches are
becoming increasingly popular (Corazza et al., 2020), in particular transformer-based ones (Zampieri et
al., 2019b). More specifically, in the 2019 instance of the OffensEval task, 7 out of the 10 best performing
systems used BERT-based approaches (Zampieri et al., 2019b; Devlin et al., 2019).

BERT models are typically pre-trained on large unannotated corpora. These models can then easily be
fine-tuned on task-specific data, and can achieve state-of-the-art performances on a number of NLP tasks
(Devlin et al., 2019). Devlin et al. (2019) provide pre-trained BERT models in English, Chinese, and a
multilingual model pre-trained on the 100 largest Wikipedias1.

Sohn and Lee (2019) successfully explore transfer learning for hate speech detection by fine-tuning
a three-channel BERT model, which is fed a tri-parallel corpus consisting of data in a language and its
automatic translations into English and Chinese. The data in each language is used to fine-tune the relative
BERT pre-trained model and, finally, the hidden states are added together through weighted sum. This
approach proves successful in improving or stabilizing the performance of systems for the identification
of hate speech in Italian, German, and Spanish tweets (Sohn and Lee, 2019). We therefore build our work
upon this framework using multi-channel BERT and machine-translated data.

3 Data

The data we used for participating in this task consists of the annotated datasets provided by the OffensEval
task organizers and additional corpora that we use to increase the size of the training sets.

Language Size % Offensive
Danish 3 k 13%
Turkish 31 k 20%
Arabic 8 k 20%
Greek 8.7 k 29%
English (OLID) 14.1k 33%
English (silver) 37.5k 31%

Table 1: Datasets provided by OffensEval
organizers

OffensEval data The organizers of the OffensEval 2 task
provided the participants with a training set for each lan-
guage the task was focused on: English, Danish (Sigurbergs-
son and Derczynski, 2020), Turkish (Çöltekin, 2020), Ara-
bic (Mubarak et al., 2020), and Greek (Pitenis et al., 2020).
The annotation guidelines and labels for all datasets are
those of the Offensive Language Identification Dataset
(OLID) (Zampieri et al., 2019a). OLID consists of 14,100
English Tweets, annotated on three levels. The labels OFF
and NOT are used to indicate whether a tweet contains of-
fensive content, constituting the first level of annotation,
used in task A.

An additional corpus for English was provided as “silver data” (Rosenthal et al., 2020). This corpus
includes 9 million tweets automatically annotated for hate speech. The annotations consist of the average
of the confidences predicted by several supervised models for a tweet to belong to the OFF class, as well
as the mean standard deviation of the predicted confidences from the given average. Out of this corpus,
we extracted the tweets with scores below 0.11 to be representative of the NOT class, and tweets with
scores above 0.89 to represent the OFF class, amounting to 37.5k tweets overall.

The datasets are heterogeneous both in terms of size and percentage of tweets labeled as offensive. An
overview of their size and distribution is provided in Table 1.

Additional data We retrieve additional training data in English by merging five widely used datasets for
hate speech / abusive language detection, namely the ones from Waseem (2016), Waseem and Hovy (2016),
Davidson et al. (2017), Golbeck et al. (2017) and Founta et al. (2018), after mapping their annotation to the
OFF/NOT classes. We then extract around 30% of the tweets (27k messages) to extend the task training
data. We choose not to use all the merged data because the tweets are then automatically translated and
we want to limit the impact of wrong translations on classification performance.

1github.com/google-research/bert

https://github.com/google-research/bert


1541

Final datasets For each language other than English, we evaluate three different datasets: (1) Language-
specific OffensEval corpus only (OE), (2) OE + OLID automatically translated into the language of
interest (i.e. OLID-DA, OLID-EL, OLID-AR and OLID-TR), (3) OE + translated OLID + additional 27k
tweets from merged datasets, automatically translated into the language of interest.

All translations have been performed using Google APIs. For the classification of English tweets, we
used the OLID tweets and the filtered silver dataset as training data (last two rows in Table 1).

4 Classification Framework

Figure 1: A summary of the dataset translations we performed. English data is on dark background.

4.1 Danish, Turkish, Arabic, and Greek: Multi-channel BERT

Figure 2: The multi-channel model archi-
tecture. LANG is used to refer to any of
the four languages in the multilingual task.

Baselines For Danish, Turkish, Arabic, and Greek, our
baselines consist of a single-channel BERT multilingual
model fine-tuned on the available data for each language. A
subset of this data (20%) is used as development set.

Pre-processing In all the data we use, user mentions are
already replaced with @USER and URLs are replaced with
URL tags.

Approach We build a multi-channel BERT system in-
spired by that of Sohn and Lee (2019), in which we fine-
tune both a pre-trained English BERT base cased model
and a pre-trained multilingual BERT cased model in the
same architecture. Our methodology relies on two main
steps. First, we create multiple parallel offensive language
detection corpora by translating the corpus available for
each of the four languages (the OffensEval 2020 corpora)
into English and the corpora available in English (OLID
and 27k) into each of the four languages. A summary of
all the translation processes can be found in Figure 1. With
this process, we significantly extend the training data avail-
able for each language, although some tweets may not be
correctly translated.

The second step consists in fine-tuning two BERT models
in parallel: multilingual BERT cased and English BERT
base cased. Our model takes as input two parallel datasets,
one in the target language (LANG) and one in English.

We initialize the model weights for each model using the parameters from the two pre-trained BERT
models. Then, the hidden representation of the first token ([CLS]) of each sequence is pooled out
through a pooling layer. We then add a dropout layer (with 0.1 dropout rate) and a dense layer (768 units,
ReLu activation and L2 regularization), before adding the hidden states of each BERT model together.
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Finally, we add a softmax layer for classification. For all our experiments, both on our baseline and on the
multi-channel model, we use batch size 32, sparse categorical cross-entropy loss, and Adam optimizer with
learning rate 2e-5, similarly to Sohn and Lee (2019). A summary of our architecture can be seen in Figure 2.
The code used for our system is available at github.com/ca-milla/multi-channel-bert. In
order to choose our systems for the submission, a random sample of the training data in each configuration
was retained to be used as development set.

4.2 English: Standard monolingual BERT
Our experiments on English are performed on OLID (after we leave out 1k randomly selected tweets as
development set) and a portion of the distantly annotated corpus of 9 million English tweets provided by
the task organizers (Zampieri et al., 2020), which was selected as described in Section 3. The total training
data available after merging the two datasets and removing duplicates was 48,581 tweets, of which 33,172
tweets labeled as NOT and 15,409 were labeled as OFF.

Baseline Our baseline for English consists of a pre-trained BERT English base cased model trained on
the same data used for the system submission, but without any pre-processing.

Pre-processing The datasets provided by the organizers included <user> tags for user mentions and
<url> tags for URLs. We normalize the data and split hashtags and elongated words using ekphrasis2, a
tool made specifically for social media data normalization.

Approach Our architecture for the English submission consists of a pre-trained BERT English base
cased model, fine tuned on the corpus containing 48,581 tweets previously described. After initializing the
model weights using the pre-trained BERT weights, the hidden representation of the first token ([cls])
is pooled and fed into a dropout layer with dropout rate 0.2. Two dense layers are then added (sizes 768
and 128) and, finally, a softmax layer is used for classification. The hyperparameters used are the same
used for the multilingual systems.

5 Results and Discussion

Danish Turkish Arabic Greek

Baseline
Multi-channel

BERT
Baseline

Multi-channel
BERT

Baseline
Multi-channel

BERT
Baseline

Multi-channel
BERT

OE 0.41 0.41 0.43 0.43 0.44 0.44 0.70 0.42
OE + OLID 0.41 0.74 0.43 0.43 0.63 0.77 0.69 0.77
OE + OLID + 27k 0.70 0.78 0.43 0.74 0.60 0.79 0.73 0.79

Table 2: Macro F1 scores obtained by our baseline and system on development data.

5.1 Multi-channel BERT
The results obtained by our baseline and our multi-channel BERT system on the development set are
reported in Table 2. In general, multi-channel BERT was the best performing system, especially when
paired with large quantities of data. We therefore used multi-channel BERT trained on all available data
for our submissions on Danish, Turkish, Arabic, and Greek. Our main finding is that while a multi-channel
setting can offer little improvement when dealing with homogeneous language-specific data (as is the case
for the OffensEval corpora), it can improve systems when only small training data are available by adding
machine-translated data from different datasets. This could offer insight for research on low-resource
languages in the field of offensive language detection.

Danish We find that the multi-channel BERT architecture, featuring both BERT multi pre-trained and
BERT English base pre-trained can perform better than a system using BERT multilingual alone. This
is especially the case when we feed the system more data, since both models assign our development
set the most frequent label when fine-tuned on OffensEval data alone. The best performing combination

2github.com/cbaziotis/ekphrasis

https://github.com/ca-milla/multi-channel-bert
https://www.github.com/cbaziotis/ekphrasis
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(BERT multi-channel fine-tuned on all data available) was chosen for our submission. Our macro F1
score on the OffensEval test set was 0.777, and among our submitted runs it was the best ranked one,
scoring 4th in the ranking for Danish (the best performing system achieved 0.812 F1). The integration
of machine-translated data probably yields good results because English and Danish are typologically
similar, being both Germanic languages, which could positively affect the translation quality.

Turkish Turkish was the language with the largest OffensEval corpus. However, both systems assigned
the most frequent label when tested on our dev set both when fine-tuned on Turkish OffensEval data alone
and when fine-tuned on OLID. Our best performing configuration is multi-channel BERT trained on all
data available. This is the configuration we used for our OffensEval submission. The macro F1 score we
obtained on the OffensEval Turkish test set is 0.62, almost 0.20 F1 lower than the top-ranked one.

Arabic As with Danish and Greek, both the baseline and multi-channel BERT assign the most frequent
label to instances in our development set when fine-tuned on OffensEval data alone. Our best performing
system, which was used for our submission, is BERT multi-channel trained on all available data. On the
OffensEval Arabic test set, our multi-channel system achieves a macro F1 score of 0.46. The contrast
between the score obtained on our development set and the test set of the task is still an open issue which
we would like to explore in the future, also checking wrong classifications by hand.

Greek When fine-tuned on OffensEval data only, the pre-trained BERT multi model performs much
better than the multi-channel BERT. However, when the systems are fine-tuned on larger quantities of data,
i.e. in the OE+OLID and OE+OLID+27k configurations, the multi-channel BERT architecture achieves
higher macro F1 scores. Our best performing system is again BERT multi-channel fine-tuned on all data
available. This is also the system we used for our submission. Our macro F1 score on the OffensEval
Greek test data is 0.77, i.e. 0.08 F1 lower than the best performing system.

5.2 English

OE + OLID
Baseline

0.76
(BERT EN - no pre-processing)
Pre-processing + BERT EN 0.79

Table 3: Macro F1 scores obtained on our
English development set.

The F1 scores obtained on our English development set,
consisting of a randomly selected subset of OLID, can be
found in Table 3. We notice improvements in the perfor-
mance of the system when fine-tuning the pre-trained BERT
base model on normalized data, reducing data sparsity prob-
lems, mostly due to elongated words and hashtags. Our
system achieved a macro F1 score of 0.903 on the task test
data. Most of the runs submitted to the task yield F1 > 0.90,
showing that when large amounts of training data are available, the architecture chosen for classification
is not very relevant, in that also simple ones like ours obtain very good results.

6 Conclusion

In this paper, we present our system participating in the SemEval 2020 task 12. Our goal was not to
develop different systems optimized for each language of the task, but rather to implement a framework
based on two-channel BERT and machine translated data that could be applied to Danish, Turkish, Arabic
and Greek without many changes. We show that this approach yields good results, always outperforming
single-channel BERT, especially when few training data are available, since the system takes advantage of
larger machine translated datasets in English. The most promising results using multi-channel BERT are
obtained on Danish, and we will explore in the future whether it depends on the small size of the training
data or on the similarities between English and Danish, which may positively affect translation quality.

While our approach is inspired by Sohn and Lee (2019), there are some differences both in the
architecture and in the results: our framework is simpler, in that we implement a two-channel BERT, while
they rely on three channels using also machine-translated texts from Chinese. This makes our framework
less computationally-intensive. As regards the results, we observe that in our experiments multi-channel
BERT is generally beneficial, while in Sohn and Lee (2019) results on Italian and German are better when
using a single channel.
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In the future, we plan to perform an error analysis to understand why the run we submitted for Arabic
performed remarkably worse than the results obtained on the development set. We will also evaluate the
classifier performance when using only machine-translated data, in a zero-shot learning setting.
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