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Abstract

Sentiment analysis is a process widely used in opinion mining campaigns conducted today. This
phenomenon presents applications in a variety of fields, especially in collecting information
related to the attitude or satisfaction of users concerning a particular subject. However, the task
of managing such a process becomes noticeably more difficult when it is applied in cultures that
tend to combine two languages in order to express ideas and thoughts. By interleaving words
from two languages, the user can express with ease, but at the cost of making the text far less
intelligible for those who are not familiar with this technique, but also for standard opinion mining
algorithms. In this paper, we describe the systems developed by our team for SemEval-2020 Task
9 that aims to cover two well-known code-mixed languages: Hindi-English and Spanish-English.
We intend to solve this issue by introducing a solution that takes advantage of several neural
network approaches, as well as pre-trained word embeddings. Our approach (multlingual BERT)
achieves promising performance on the Hindi-English task, with an average F1-score of 0.6850,
registered on the competition leaderboard, ranking our team 16th out of 62 participants. For the
Spanish-English task, we obtained an average F1-score of 0.7064 ranking our team 17th out of 29
participants by using another multilingual Transformer-based model, XLM-RoBERTa.

1 Introduction

A series of countries from our world are multilingual, which implies that there are multiple languages
spoken by their population. People tend to mix them at the phrase or sentence level in order to express
ideas with ease, thus creating a phenomenon called code-mixing or code-switching. As it is expected, this
embedding of a language into another one makes its appearance in the virtual space, as well. For example,
Twitter users combine Hindi or Spanish phrases with English words, thus creating a bilingual phrase that
can lead to understanding problems for non-natives.

However, the virtual space adds more layers of difficulty in identifying the sentiment of the author.
Usually, social media users tend to adopt phonetic typing, which implies that the words will not take their
original form, they will be adapted such that it will be faster to express the main idea. As a particular
case, for the Hindi-English users, a new problem arises: Hindi and English use different alphabets, which
determines the user to romanize the Hindi words such that both languages will use the same alphabet
throughout the text. At the same time, social media users tend to express their sentiments by repeating
certain vocals in words. Furthermore, they use emojis, which will add an extra layer of complexity for
analyzing the text.

This entire process creates new opportunities for research, given the importance of sentiment analysis
in this area. The SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text (Patwa et
al., 2020) challenges the research community to solve the previously mentioned problem by introducing
two subtasks, focusing on three of the world’s most spoken languages1: Hindi and Spanish, alongside
English. We proposed a series of neural models that intend to solve this issue, contributing under the
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1https://www.visualcapitalist.com/100-most-spoken-languages/



1323

usernames eduardgzaharia and clementincercel, respectively. Firstly, we experimented with Recurrent
Neural Network (RNN) (Rumelhart et al., 1985) solutions alongside word embeddings. After that, we
performed the leap towards Transformer-based (Vaswani et al., 2017) models that usually perform better
and offer more insight for the combined language models. Furthermore, adding an auxiliary task for
training a multi-task learning (MTL) (Ruder, 2017) architecture can lead to even better results, as the
models become able to learn new features from the input texts.

The paper is structured as follows. In section 2, we perform an analysis of existing solutions for several
code-mixed tasks and sentiment analysis. In section 3, we detail the proposed approaches for code-mixed
sentiment analysis. Section 4 details the performed experiments, including data and preprocessing,
experimental setup, and a discussion of the results. Finally, we draw conclusions in section 5.

2 Related Work

Wang et al. (2016) proposed a solution based on attention mechanisms for emotion prediction in code-
switched texts. They introduced a new network architecture, namely Bilingual Attention Network
consisting of two components. Firstly, a Long Short-term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) network is used for obtaining the representation of the texts. Secondly, the system contains two
types of attention, a monolingual one, which measures the importance of meaningful words from the
monolingual contexts, and a bilingual attention that captures the priority of the most prominent groups of
words, in order to create the bilingual attention vector. The authors used Chinese-English code-mixed
social media posts that are annotated with five classes for emotions: happiness, sadness, fear, anger, and
surprise. They managed to improve the baseline scores by a margin of up to 7% in accuracy.

MTL represents a distinct approach used for training neural networks for detecting the stance of the
user in code-mixed texts (Sane et al., 2019). The authors represented the main task as a classification with
three stance classes (neutral, favor, against). At the same time, the auxiliary task is binary: either the
author is neutral or has an opinion, positive or negative. Their approach obtains an accuracy of 63.2% on
the benchmark dataset proposed by Swami et al. (2018).

Trivedi et al. (2018) introduced a multi-component neural network based on both word and character
representations, with the purpose of performing Named Entity Recognition (NER) on code-switched
data. The input words are defined as pre-trained fastText (Bojanowski et al., 2017) embeddings. A
Convolutional Neural Network (CNN) (Fukushima and Miyake, 1982) has the role of learning character-
level representations for words. More, another component is a Bidirectional LSTM (BiLSTM), used for
learning the contextual relationships between the words in the same sentence. Their performance is over
the considered baseline, surpassing it by a percentage of roughly 4% in accuracy.

Mandal and Singh (2018) proposed an architecture suitable for NLP tasks aiming to tackle the language
identification problem in code-mixed texts, called Multichannel Neural Network (MNN) that works
alongside a BiLSTM-CRF. The MNN module is based on the Inception architecture (Szegedy et al., 2016)
and consists of four channels, one of them entering a LSTM, while the other three being connected to
1-D convolutional networks. The convolutional layers are used for capturing word representations at the
n-gram level. The BiLSTM-CRF module is directly connected to the previous one, with the purpose of
learning the probabilities of switching language mid-sentence, based on the character embeddings. After
training the architecture on two code-mixed datasets (Hindi-English and Bengali-English), their results
surpassed the accuracy of the baseline model by 5%.

For performing sentiment analysis, Vilares et al. (2015) used an English-Spanish code-switching dataset
containing 3,062 tweets, as well as two monolingual corpora from SemEval-2014 (Velichkov et al., 2014)
and TASS-2014 (Román et al., 2014). At the same time, the authors used a multilingual corpus obtained
by merging the previously mentioned monolingual sets. Their approach for identifying the sentiment
implies extracting features by considering four atomic sets: words, lemmas, psychometric properties,
and part-of-speech tags. By using this solution, the authors obtained excellent results: 98.12% for the
monolingual English dataset, 96.03% for Spanish, as well as 98% for the multilingual dataset.
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3 Proposed Solutions

3.1 Multilingual Word Embeddings

Today, word embeddings represent a crucial aspect when performing natural language processing tasks.
A word embedding represents an N-dimensional vector, which encodes the meaning of a certain word.
Usually, the vector is created by analyzing the context in which the word is identified. The vector’s values
are adapted with every new encounter of a certain word, such that its meaning will be properly captured in
every context. As a result, two similar words, having almost the same meaning (for example, ”similar”
and ”related”) will have the two representation vectors close to each other. Also, unrelated words will
lead to distant vectors.

In order to speed up the training process, we have used pre-trained word embeddings. Thus, we were
able to give the model an idea about the context of the words even before going through the dataset
once. The embeddings were obtained using the 300-dimensional version of fastText (Bojanowski et al.,
2017). However, the Hindi embedding vectors were associated with words written in the Hindi alphabet.
Therefore, we needed to alter the embedding file by iterating over the words and romanizing each one of
them, and then creating a new file with the romanized content alongside the vectors.

Furthermore, we encountered an additional problem: the word embeddings for English, Hindi, and
Spanish, respectively, were trained separately, on different datasets. Therefore, the dimensions of the
vectors from the embedding files were not aligned in the same vectorial space. We have used MUSE
(Conneau et al., 2017) to map one vectorial space into the other such that words with similar meaning
from both languages are represented with extremely close vectors. MUSE is a tool which allows us, by
providing two separate embedding files from two separate vectorial spaces, alongside a parallel corpora
between the two languages, to map the vectors of one language into the space of the other. The MUSE
repository2 offers an English-Hindi, as well as an English-Spanish, parallel corpus. The English-Hindi
corpus needed some tweaking, considering the fact that we were required to romanize the Hindi words
once again. After running the tool, we managed to map the Hindi and Spanish embeddings into the space
of the English embeddings. Therefore, words with the same meaning will have similar representations,
being suitable to be used in code-mixed situations.

Similarly, we experimented with multilingual Transformer-based embeddings from multilingual BERT
(mBERT) (Pires et al., 2019) and XLM-RoBERTa (Conneau et al., 2019). These are more powerful sys-
tems, considering the larger amounts of pre-training data, including Hindi, Spanish, and also English texts.
The models allow a more precise representation of words in context because they use advanced encoding
mechanisms based on self-attention (Vaswani et al., 2017). Compared to the previous 300-dimensional
embeddings, the Transformer models output, for the base variant, a 768-dimensional representation of a
token, fact that adds even more precision.

3.2 Neural Architectures

3.2.1 Bidirectional Long Short-Term Memory

LSTM networks are RNNs used for preserving the sequentiality of data. We used a Bidirectional LSTM
for learning the sentiment from the tweet. Being bidirectional, the tweet is fed once from the beginning to
the end, and once more from the end to the beginning.

The BiLSTM takes vector input sequences and performs different operations which will lead to a series
of annotated sequences, both in the forward and backward direction. For the final representation, the
BiLSTM performs a concatenation of the forward and backward results. The annotations come in two
dimensions, one for the timestep, the position of the word in the sequence, and the other for a certain
neuron in the BiLSTM’s hidden layer.

To avoid over-fitting, we use a dropout layer which randomly sets the output of a percentage of neurons
to be 0. The dropout layer is followed by a 1D convolutional layer, as well as a MaxPooling layer, used
for down-sampling the data. The output is a dense layer with three neurons, one for each class.

2https://github.com/facebookresearch/MUSE
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3.2.2 Gated Recurrent Units (GRUs)
The vanishing gradient problem (Pascanu et al., 2013) in RNNs proves to be harmful to the overall
performance of the model. The GRUs (Cho et al., 2014) intend to solve this problem. They use an
update gate and a reset gate that have the main purpose of deciding which information passes and which
information is discarded. GRUs can also store old information found in the training set, information
that is relevant for the overall performance. The update gate decides the quantity of already identified
information that will be able to pass through the network, while the reset gate decides which information
will be discarded.

3.2.3 Capsule Networks
While GRUs solve some of the problems of RNNs, Capsule Networks (Hinton et al., 2018) aim to solve
problems of CNNs. Capsules learn to recognize entities and encode them into vectors. Because they
are represented as vectors, the capsules require the existence of a function called squashing. A Capsule
Network3 can contain N layers, each layer is dedicated to a more general aspect of a task. Deeper layers
have a higher specificity or specialization. A layer can contain a variable number of capsules. The capsules
of two consecutive layers are interdependent, which implies the fact that the activations of a layer are
based on the output of the previous layer.

3.2.4 Hierarchical Attention Network (HAN)
HANs (Yang et al., 2016) are designed to capture details about phrase structures. They construct a phrase
representation by aggregating sentence representations and, for the next level, word representations. An
attention mechanism is focused on identifying the key elements in the phrase which can help in boosting
the overall performance. This is why the authors use two levels of attention, one for words and one for
sentences. The HAN is built by stacking a group of layers. Firstly, a GRU-based sequence encoder is
used for tracking the state of the sequences without using different memory cells. Then, the hierarchical
attention comes into play, with attention mechanisms for words and sentences, respectively. After that, an
output layer for the class prediction is added. We also use a BiLSTM at the character level, such that a
word will be traversed twice, in both ways.

In our case, the model architecture consists of an input layer which takes a 1-D input of a preset
dimension, the maximum length of a text, representing one entry from the training set. The input layer
is followed by an embedding layer, in which we load the embedding matrix obtained from the mapping
process we previously described. The input is represented by a group of n words, each one represented
by a vector of k dimensions. This ensemble forms a k x n matrix, where n is the maximum number of
allowed words.

3.2.5 Multilingual BERT (mBERT)
Based on the original breakthrough Transformer model, mBERT (Pires et al., 2019) intends to build over
its counterpart by allowing it to get good performances not only for the English language, but for over 100
other languages as well. mBERT proves to be a reliable model for multilingual tasks, including Language
Identification, Language Similarity, or Word Alignment. For our implementation, we used the base variant
offered by the Huggingface library4. We fine-tuned the model on the training dataset and used it for
sequence classification.

3.2.6 XLM-RoBERTa
XLM-RoBERTa (Conneau et al., 2019) is another Transformer-based multilingual model, trained with the
Masked Language Model objective. The training process consists of selecting text samples from different
languages and masking some tokens, such that the model will need to predict those missing tokens. The
initial model was XLM-100. Alongside XLM-RoBERTa, both models are capable of processing 100
different languages. However, XLM-RoBERTa was trained on even more data, making it more reliable
and accurate. In order to conclude that XLM-RoBERTa performs better, the authors used the GLUE

3https://www.kaggle.com/fizzbuzz/beginner-s-guide-to-capsule-networks/notebook
4https://huggingface.co/transformers/
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benchmark (Wang et al., 2018) and also compared the results to the ones obtained by other state-of-the-art
models, on tasks like Named Entity Recognition, Cross-lingual Question Answering, or Cross-lingual
Natural Language Inference.

For our task, we fine-tuned the XLM-RoBERTa base variant on the provided dataset and performed
sequence classification by using the fine-tuned model. We also used the implementation provided by the
Huggingface library.

4 Results

4.1 Data and Preprocessing
The competition datasets are provided in the CONLL format. The first one, Hindi-English, contains
17,000 entries (14,000 for training and 3,000 for validation) annotated with the sentiment, either positive,
negative, or neutral. The Hindi-English dataset is balanced regarding the distribution of the sentiment
labels. It contains 4,992 negative examples, 5,616 positive examples, and 6,392 neutral examples. In terms
of word distribution, we can conclude that the Hindi language is dominant, with 206,897 words (36,862
unique), followed by English, with 147,027 words (33,450 unique) and universal words and symbols, with
89,695 words (2,991 unique).

Similarly, the Spanish-English dataset has a comparable structure, with 12,002 entries for training and
2,998 for validation. The classes are also balanced while the Spanish language is dominant inside the
tweets.

As in online environments users tend to write in informal ways, we needed a way to clean the texts such
that they can be used as an input for a neural network. Firstly, we transformed the text to all lowercase
characters, such that two identical words with at least one character in different cases will not be treated
the same. Then, we removed tags (structure like ”@username”) as they are not helpful for identifying the
overall sentiment of the tweet. Apart from tags, we also removed the stopwords for all languages.

Furthermore, emojis represent groups of characters which do not convey useful information. However,
if transformed in the right format, they can be further used for sentiment analysis. Therefore, we used a
dictionary5 that maps each emoji to a word or group of words describing the message of the emojis.

Another issue in text preprocessing is represented by the usage of repeated characters. They are used
to emphasize the user’s idea or excitement but they are be perceived by our network as individual and
separate words. Therefore, we decided to identify groups of three or more characters and replace them
with a group of two of the same character.

Punctuation is another issue because characters such as comma or single period do not contribute to the
meaning of the entry. However, question marks, exclamation marks, and ellipses can be used for detecting
the sentiment, being a way to accentuate the writer’s sentiment. We decided to keep them in our analysis.

4.2 Experimental Settings
We fine-tuned all the neural networks used in our experiments to maximize their performance. The
hyper-parameters for each network architecture are available in Table 1.

In order to prevent overfitting, we concluded that a Dropout rate of 0.15 represents the best choice
for our models. On the other hand, regarding the capsule implementations, 10 capsules each with a
dimension of 16 neurons offered the best performance. By applying an early stopping policy, we ran the
experiments for 4 epochs in the case of the BiLSTM, BiLSTM+Capsule, BiGRU+Capsule, mBERT, and
XLM-RoBERTa models, and 12 epochs for the HAN architecture.

4.3 Experiments
We experimented with six different neural architectures and one set of word embeddings (i.e. MUSE).
Firstly, we trained the networks on the provided dataset, without any augmentation. Secondly, we
augmented the training dataset by adding 4,981 additional code-mixed tweets, similarly annotated, taken
from an online source6. The resulting dataset is then preprocessed and fed to the neural networks.

5https://emojipedia.org/
6https://github.com/mankadronit/Code-Mixed-Dataset/blob/master/codemixed.txt
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Table 1: Neural model hyper-parameters.
Model Hyper-parameters
BiLSTM SpatialDropout=0.35, Layer=1, MaxPooling (default)

BiLSTM+Capsule SpatialDropout=0.2, NumCapsules=10, DimCapsule=16, Dropout=0.12,
LR=0.001

BiGRU+Capsule SpatialDropout=0.2, NumCapsules=10, DimCapsule=16, Dropout=0.12,
LR=0.001

HAN SpatialDropout=0.35, Layer=1, MaxPooling (default)
mBERT Optimizer=AdamW, LR=2e-5, eps=1e-8
XLM-RoBERTa Optimizer=AdamW, LR=2e-5, eps=1e-8

Tables 2 and 3 contain the results. For the Hindi-English task (see Table 2), the best results are obtained
by using the Transformer-based solutions. Moreover, mBERT has increased performance, surpassing the
next result by a margin of 0.0103 accuracy and average F1-score of 0.0119 as well as 0.0765 accuracy
and 0.0771 average F1-score compared to the BiLSTM model. As baselines, we used two well-known
classifiers, Support Vector Machines and XGBoost (Chen and Guestrin, 2016), and also a CNN. The HAN
model obtains an average F1-score 0.0989 lower when compared to the mBERT architecture, but yields
better results than the BiLSTM+Capsule model.

For most models, the augmented dataset helps to obtain slightly better results. Adding extra training
tweets can help the network with the entire process of identifying the meaningful aspects of the phrase.

For the Spanish-English task, we only experimented with the top two models from Hindi-English (i.e,
mBERT and XLM-RoBERTa) and their performance has swapped. That is, XLM-RoBERTa proves to be
the most efficient, marginally surpassing mBERT by a difference of 0.002 in terms of precision, 0.0142
for recall, and 0.0105 for average F1-score (see Table 3).

Table 2: Experimental results on the Hindi-English test set.

Method Competition Dataset Competition Dataset +
Augmentation Dataset

Accuracy Average F1 Accuracy Average F1
XGBOOST 0.4399 0.4375 0.4391 0.4255

SVM 0.3880 0.2122 0.3712 0.2078
CNN 0.5477 0.4713 0.5199 0.0940

BiLSTM 0.6080 0.6115 0.6101 0.6144
BiLSTM+Capsule 0.5822 0.6147 0.5839 0.6063
BiGRU+Capsule 0.5954 0.5860 0.6002 0.5901

HAN 0.5853 0.5855 0.5903 0.5926
mBERT 0.6856 0.6901 0.6866 0.6915

XLM-RoBERTa 0.6716 0.6743 0.6763 0.6796

Table 3: Experimental results on the Spanish-English test set.
Method Precision Recall Average F1
mBERT 0.8044 0.6297 0.6959

XLM-RoBERTa 0.8064 0.6439 0.7064

Furthermore, we also experimented with another level of augmentation, a synthetic one. Thus, we
identified short tweets from the dataset, with a length below a threshold (i.e., the number of words minus a
quarter of its average) and combined them in pairs such that we obtained new entries. However, we needed
to combine tweets that were part of the same class. For example, two negative tweets can form another
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negative tweet. We managed to extend the dataset to 21,919 entries (including the initial augmentation),
instead of 14,000.

On the other hand, we also proposed a MTL approach by training the Transformer-based networks
on a secondary task. That way, the model was able to learn additional features, in order to enhance its
performance. The auxiliary task consisted of predicting the tweet’s dominant language. Because the
dataset came in the CONLL format, we were able to determine the main language (English or Hindi) and
label the tweet accordingly. Table 4 shows the results obtained for this second experimental stage. Once
again, the Transformer-based solution proves to offer enhanced performance, surpassing the version that
does not use MTL. The average F1-score of 0.6968 obtained by the XLM-RoBERTa experiment surpasses
the previous iteration by a margin of 0.0053, when compared to mBERT and 0.0172 when compared
directly to XLM-RoBERTa.

Table 4: Experimental results on the Hindi-English test set using synthetic data and MTL (after task
deadline).

Method Accuracy Average F1
mBERT, synthetic data extension 0.6810 0.6857

XLM-RoBERTa, synthetic data extension 0.6883 0.6912
mBERT, MTL 0.6755 0.6790

XLM-RoBERTa, MTL 0.6905 0.6968

5 Conclusions

This paper presents our solutions for the code-mixed sentiment analysis shared task, organized by SemEval
2020. We experimented with state-of-the-art natural language processing models, alongside training
dataset extensions and a MTL technique. Sentiment analysis proved to become challenging if the subject
data is written in a code-mixed format. Because of the difficulty imposed by detecting ideas and sentiments
from texts based on two different languages, merged into a single one, it becomes a requirement to develop
ways to analyze the sources.

However, the performance of our models is vastly influenced by a series of prerequisites, one of them
being represented by the word embeddings. Proper word embeddings can boost performances by a
large margin, considering the fact that it already offers the model an insight into that language. The
problem becomes more complicated if we deal with two languages instead of one. This situation requires
a modality of mapping two sets of embeddings into a single vectorial space for the solutions that are not
based on Transformers.

Furthermore, various network architectures can lead to different results. Networks that intend to capture
the sequentiality of the text prove to be extremely efficient, obtaining better results. At the same time,
networks with layers that increase in specificity can perform certain analysis tasks for distinct levels of
the text. Additionally, XLM-RoBERTa performs better when exposed to synthetic data alongside a MTL
training technique. This aspect can be attributed to its ability to better identify features inside the texts,
including synthetic ones, considering that it was trained on the largest amount of data out of the models
used for experiments.

For future work, we intend to experiment with the large versions of the previously mentioned language
models. Theoretically, a greater number of parameters should help us improve our performance. Moreover,
we also intend to include a different auxiliary task for the MTL approach, by avoiding the hard assignment
of the language class and replacing it with a soft assignment.
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