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Abstract

In this paper we present a novel rule-based, language independent method for determining lexical
entailment relations using semantic representations built from Wiktionary definitions. Combined
with a simple WordNet-based method our system achieves top scores on the English and Italian
datasets of the Semeval-2020 task “Predicting Multilingual and Cross-lingual (graded) Lexical
Entailment” (Glavaš et al., 2020). A detailed error analysis of our output uncovers future directions
for improving both the semantic parsing method and the inference process on semantic graphs.
reported in this document.

1 Introduction

We present a rule-based, multilingual system for detecting monolingual binary entailment between pairs
of words using Wiktionary definitions, dependency parsing, and semantic graphs. We define entailment
over pairs of semantic graphs built from dictionary definitions and achieve near-perfect precision on the
Semeval-2020 task ”Predicting Multilingual and Cross-lingual (graded) Lexical Entailment” (Glavaš et al.,
2020), where we participate in the ANY track of the monolingual task that allows for the use of external
lexico-semantic resources. Our system improves the performance of strong WordNet-based baselines on
three languages, achieving top results on English and Italian and second-best on German. Our pipeline can
be easily extended to support any language given a monolingual dictionary and a Universal Dependency
(UD) parser. A detailed error analysis shows multiple directions for further improvement, most notably the
refinement of the mechanism responsible for recursively extending semantic graphs based on the definition
of its nodes. Section 2 briefly describes the lexical entailment task, the 4lang semantic representation
(Kornai et al., 2015), and the dict to 4lang tool (Recski, 2016) for generating graphs from dictionary
definitions (Recski, 2016; Recski, 2018). Section 3 outlines the architecture of our current system and
presents our method for detecting entailment over pairs of 4lang graphs. Our results on the shared task
and a detailed error analysis is presented in Section 4. Our system is available for download under an MIT
license from GitHub under https://github.com/adaamko/wikt2def/tree/semeval.

2 Background

2.1 Lexical Entailment
A common definition of lexical entailment, used also for the current shared task, is that of recognizing
IS A relationships between pairs of words (e.g. lettuce entails food). Datasets used in this shared task
are derived from the HyperLex dataset (Vulić et al., 2017), methods for measuring multi-lingual and
cross-lingual lexical entailment using specialized word embeddings are presented in (Vulić et al., 2019)
and outperform previous baselines in (Upadhyay et al., 2018). Another common lexical inference task
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is defined between pairs of predicates in context, where context can be defined as pairs of arguments
(Zeichner et al., 2012), pairs of argument types (Berant et al., 2011; Schmitt and Schütze, 2019), or
question-answer pairs (Levy and Dagan, 2016).

Dictionary definitions have recently been used for explainable modeling of lexical entailment: (Silva
et al., 2018) build semantic graphs from WordNet definitions (glosses) using a recurrent neural network
trained on thousands of annotated examples, then search for paths of distributionally similar words
between premise and hypothesis. Our method differs from their approach in its lack of training, which
makes its applicable to any language for which a monolingual dictionary and a dependency parser is
available. While the semantic formalism used in this paper treats lexical inference as a broader term
subsuming not just hypernymy but also attribution and predication (such that dog entails not only mammal
but also four-legged and bark), the context-free detection of IS A relations between pairs of largely
unambiguous words proves challenging enough to provide insight about the current shortcomings of our
semantic representations.

2.2 4lang

The 4lang formalism (Kornai et al., 2015) represents the meaning of linguistic units (both words
and phrases) as directed graphs of language- and syntax-independent concepts. Nodes roughly corre-
spond to content words, edges connecting them can have one of three labels: 0-edges simultaneously
represent attribution (dog 0−→ four-legged), hypernymy (dog 0−→ mammal) and unary predica-
tion (dog 0−→ bark). Predicates are connected to their arguments via edges labeled 1 and 2, e.g.
cat

1←− catch
2−→ mouse. Concepts have no grammatical attributes and no event structure, e.g. the

phrases water freezes and frozen water would both be represented as water 0−→ freeze.
We build 4lang graphs using a reimplementation of the dict to 4lang tool (Recski, 2016), essen-

tially a pipeline of dependency parsing and a set of simple, hand-written rules mapping UD substructures
(Nivre et al., 2018) to 4lang subgraphs. For example, dependency relations such as amod and advmod
are mapped to 0-edges but obj and nsubjpass are mapped to 2-edges (see (Recski, 2016) for the
full mapping). Figure 1 shows an example, the 4lang definition and corresponding UD parse of the
concept jewel, obtained by processing the Wiktionary definition A precious or semi-precious stone;
gem, gemstone. Optionally, the 4lang system allows us to expand graphs, a process which unifies the
graph with the definition graphs of each concept within the graph. Figure 1 is an example of applying
the expand method on the concept jewel. This operation will be essential to our method presented in
Section 3. Our system currently supports three languages, but extending dict to 4lang to further
languages only requires a trained UD parser and a language-specific extractor for Wiktionary1.

A precious or semi-precious stone; gem, gemstone

det

appos

amod

conj

cc

list

Figure 1: 4lang graph and UD parse of the definition of jewel

3 Method

In this section we describe the pipeline used for creating pairs of 4lang graphs from each word pair in the
SemEval dataset and our method for determining, based on these graphs, whether entailment between the
two words can be established. The only language-specific components of our pipeline are the UD parser,
which is available for 50+ languages from the stanfordnlp module alone, and the templates used to

1The mapping from UD representations to 4lang graphs can be extended to incorporate morphological tags for languages
where UD relations convey insufficient information, an example is presented in (Recski et al., 2016)
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extract definitions from Wiktionary dumps, which are currently implemented for English, German, and
Italian.

3.1 Parser

We use the dep to 4lang module (see Section 2) for mapping universal dependency parses of Wik-
tionary definitions to 4lang graphs. To obtain these definitions we process publicly available dumps
of Wiktionary for each language, extract markdown text from the XML format, find definitions using
language-specific templates, and finally strip all markdown to obtain raw text phrases or sentences. By
default our system uses the first definition of each word present on its page. Some definitions are explicitly
marked as obsolete, archaic, historical, or rare, if these appear in the first position we skip
them and use the second definition, if available. Based on manual error analysis this method appears to
choose in over 98% of cases a definition corresponding to the word sense used in the entailment dataset.
(Technically the entailment task may be considered ill-defined for highly polysemous words such as letter,
since the question of whether letter entails mail hinges on the choice between the definitions ’a written
or printed communication’ and ’a symbol in an alphabet’, only one of which entails any sense of mail.
Similarly, the entailment pair mole-animal in the dev dataset goes undetected by our system because it
chooses the definition ’pigmented skin’ instead of ’any of several small, burrowing insectivores of the
family Talpidae’. See Section 4 for details.)

3.2 Method on graphs

Given a Wiktionary dataset and a UD parser for some language we can generate the 4lang definition
graph for any word in the dataset using the system described in the previous sections. We therefore
develop a method for detecting entailment for a pair of graphs corresponding to premise and hypothesis
words. All relationships between concepts marked by 0-edges in 4lang graphs (attribution, predication,
hypernymy) constitute entailment, although the Semeval dataset is limited to hypernymy. We shall
extend premise graphs by recursively expanding nodes accessible from the root via a path of 0-edges. We
then define entailment to hold iff in this extended graph there is a directed path of 0-edges leading from
the premise word to the hypothesis word. The single tunable parameter of our system is the number of
times we perform the expand operation recursively, which we set to 2, as further expansion yields false
positive matches such as when four is found to entail two after the third expansion. The main source of
false positives generated by our method are word pairs where the hypothesis word is part of a locative
phrase accessible from the premise word via a dependency path that is mapped to a path of 0-edges in
the 4lang-representation. For example, in the Wiktionary definition of nose A protuberance on the
face, the dependency relation nmod(nose, face) is established, and in the resulting 4lang graph
the concept face becomes accessible via a 0-path from nose. We overcome this issue by deleting nodes
that connect to any of a short language-specific list of function words such as certain prepositions (e.g.
English in, of, on, German in, auf, Italian di, su, il) and words conveying negation (English not, German
keine, etc.).

This method detects about a third of all true entailments in the dev dataset (see Section 4 for details),
and achieves nearly perfect precision (only two false positives on both the English and Italian development
datasets). We combine this system with a simple method based on WordNet: we also establish entailment
between a pair of words if the hypothesis word is present in the set of hypernyms for any synset containing
the premise word in the WordNet of the given language. For English and Italian official WordNet releases
are available in the nltk2 package. For German we did not have access to a high-coverage WordNet
release, therefore we translated word pairs from German to English using the wikt2dict system (Ács et al.,
2013) and used the union of English WordNet synsets corresponding to each of the translations. These
hybrid systems proved superior in terms of F-score to both individual systems on all three languages.

2https://www.nltk.org/howto/wordnet.html
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Lang Method Precision Recall F-score

EN
wordnet 95.75 88.76 92.12
4lang 95.74 25.28 40.00
both 94.70 90.44 92.52

IT
wordnet 88.96 75.88 81.90
4lang 95.55 25.29 40.00
both 88.81 79.41 83.85

DE
wordnet (en) 61.61 79.22 69.31
4lang 90.38 30.51 45.63
both 61.97 85.71 71.93

Table 1: Performance of our methods on the development dataset

System en de it

GLEN baseline 79.87 59.88 66.27
BMEAUT 91.77 67.00 81.41
FERRYMAN 72.13 53.12 62.71
SHIKEBLCU 87.90 71.43 75.94

Table 2: Official monolingual LE results on the ANY track (F-scores)

4 Evaluation

We participated in the ANY track of the Semeval-2020 task “Predicting Multilingual and Cross-lingual
(graded) Lexical Entailment”, a detailed description of which is available in (Glavaš et al., 2020). We did
not experiment with detecting cross-lingual or graded entailment, our systems produce binary output for
pairs of words of the same language only, which we submitted to both the binary and graded subtasks of the
monolingual task. We implemented Wiktionary extractor modules for three languages: English, German,
and Italian. For each of these we measured on the development set not only the performance of our
best-performing hybrid system but also that of the stand-alone WordNet and 4lang-based systems. Figures
are shown in Table 1. Additionally, the official Semeval evaluation compared our system’s performance
on the test set to those of other participants and the GLEN baseline (Glavaš and Vulić, 2019), a hybrid
system that specializes distributional vectors for lexical entailment using English synonymy, antonymy,
and hypernymy constraints from WordNet and then transfers the specialization to other languages via
cross-lingual word embedding spaces. Results from this evaluation are shown in Table 2.

While WordNet baselines outperform our method in terms of F-score due to our low recall, the high
precision of the 4lang-based system allows us to improve overall performance on each language by
increasing recall by 2 (4, 6) percentage points, corresponding to 3 (6, 9) additional true positives for
English, Italian, and German, respectively. In Table 3 we list some examples of entailment pairs that have
been detected as such by our method but not by WordNet, along with their Wiktionary definition of the
premise that was used for building 4lang representations. Results from the official evaluation shows
that on all three languages our system outperforms a competitive baseline by a wide margin and scores
higher than any other system on English and Italian data. Since our method yields very high precision at
the cost of low recall, for the English dataset we conducted a detailed error analysis of false negative pairs
to better understand the shortcomings of our method and representation.

The most common case of our method failing to detect entailment between two concepts based on
their definition graphs is when the recursive extension of the premise graph contains most of the semantic
content of the hypothesis without actually making the connection with the right concept. An example is
the entailment pair lettuce→ food. The graph built from the definition of the premise (An edible plant,
Lactuca sativa and its close relatives, having a head of green and/or purple leaves.), then extended using
the definition of edible (can be eaten without harm) and finally with that of eat (to ingest) will still
fail to contain the concept food. Such mismatches highlight the need for reducing all such semantic
representations to a small common set of defining concepts, a step which could then be performed for
both premise and hypothesis words. Our future plans include implementing such a reduction along the
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premise hypothesis premise definition

graph chart a data chart (graphical representation of data) intended to illustrate the
relationship between a set (or sets) of numbers

Saturn Planet sechster und zweitgrößter Planet unseres Sonnensystem
‘sixth and second-largest planet of our solar system’

test esame esame per verificare qualcosa
‘exam to check something’

Table 3: Examples of entailment pairs detected by our system

principles outlined in (Kornai et al., 2015) and (Kornai, 2019). The second class of errors is caused by
definitions where the necessary pieces of information are expressed by prepositional phrases. As discussed
in Section 3, we block inference across nodes such as in, on, etc. to avoid false positive entailments such
as nose→ face. This filter also reduces our knowledge of husband, defined as A man in a marriage or
marital relationship, especially in relation to his spouse to husband 0−→ man

0−→ human
0−→ male

and missing the entailment husband→ spouse
A further error class is caused by words for which the first definition in Wiktionary does not correspond

to the sense intended in the entailment pair, most often because it is in fact not the most common sense of
the word. An example is submarine, whose first sense in Wiktionary is defined as underwater. Choosing
the first sense defined nevertheless remains a strong heuristic, but see Section 4.4.3 of (Recski, 2018) for a
discussion on how multiple definitions of a word might be incorporated in a single semantic representation.
Our current approach of choosing the first and usually most common sense of a word also fails when there
is no clear “main sense” of the word and it is only the entailment candidate that allows us to disambiguate
between multiple senses. An example in the dev dataset is letter→ mail which is labelled as entailment
but simply isn’t if we choose the definition ”A symbol in an alphabet.”. A possible remedy for this
issue might be to establish entailment if any of the multiple definitions of a word warrants it, but such a
modification of our method would cause many false positives due to the exponential growth in the number
of nodes involved in the expansion process.

5 Conclusion

We presented a system of entailment detection that relies on a considerable amount of manual work for
its data sources: both Wikitionary and WordNet were crafted by many years of human labor, and the
UD parser trainsets are generally hand-corrected silver or hand-parsed gold sets. But the adaptive layer
between these two, consisting mostly in trivial scripts that convert the formats, and a simple rule-based
parser to extract the pivot representations from UD parses, is relatively thin, and quite easy to extend to
further languages. Perhaps the most important takeaway from our work is that the classical resources of
computational linguistics are exactly the kind of structures a system needs to learn. As the old miners’
adage goes, gold is where you find it. Knowledge, in distilled and higly leverageable form, is in the
dictionaries. Even if our ultimate goal is, as it should be, to extract the knowledge from raw data,
experimentation with hybrid systems is warranted by the fact that symbolic systems, and so far only these,
can be meaningfully debugged on the kind of relatively small but well-crafted datasets our shared tasks
provide.
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