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Abstract

This paper contains a description of my solution to the problem statement of SemEval 2020:
Assessing the Funniness of Edited News Headlines. I propose a Siamese Transformer based
approach, coupled with a Global Attention mechanism that makes use of contextual embeddings
and focus words, to generate important features that are fed to a 2 layer perceptron to rate the
funniness of the edited headline. I detail various experiments to show the performance of the
system. The proposed approach outperforms a baseline Bi-LSTM architecture and finished 5th
(out of 49 teams) in sub-task 1 and 4th (out of 32 teams) in sub-task 2 of the competition and was
the best non-ensemble model in both tasks.

1 Introduction

Machines that can recognize and understand humor can prove to be invaluable in applications like
chat bots, personal digital assistants in order to make communication more fun and humane, story and
script generation to provide comical relief or even in recommendation engines that can provide better
recommendations to people on what Netflix stand-up show they can watch next. At the end of the day
we all live to laugh don’t we? Surprisingly enough, there hasn’t been much work in the field of AI along
these lines. The organizers of SemEval-2020 Task 7 (Hossain et al., 2020a) released a new dataset in the
English language and created a couple of sub tasks that can hopefully take us a step forward in creating
machines that better understand humor.

HAHA - Humor Analysis based on Human Annotation (Castro et al., ), (Chiruzzo et al., 2019) started
in 2018 was a similar task, where the dataset comprised of Spanish Tweets and participants were asked
to classify the tweets as either a joke or not and also rate the jokes on a scale of 0-5. In their overview
paper, the authors describe that teams that used Transformer Based Models such as BERT (Devlin et al.,
2019) and ULMFit (Howard and Ruder, 2018), along with techniques like slanted learning rates, domain
specific language modeling etc. proved valuable. My approach takes inspiration from this and focuses on
Transformer Models. SemEval 2017 Task-6 (Potash et al., 2017) consisted of sub-tasks asking participants
to rank the funniness of tweets that had a specific HashTag. They mention that some of the top teams used
Siamese Networks (Bromley et al., 1994), (Koch, 2015) based approaches.

He et. al., (2019) introduce the concepts of local surprisal and global surprisal their work suggests
that for a pun to be considered good, the pun-word must have high agreeableness in the local context
of where it occurs in the sentence but a lower level of agreeableness in the global context of the entire
sentence. I take inspiration from this idea as well. My hypothesis is that an edit in a sentence can be funny
if the edited sentence continues to make sense and also have a bit of a twist. My model attempts to model
the global agreeableness of the replaced and original word in the news headline. The remainder of the
paper will be as follows. In section 2, I will briefly describe the task. Section 3 will detail the System
design and architecture. Section 4 will state the implementation details. Section 5 will cover details of all
experiments, results and interesting findings. It will be followed by a small section containing my final
thoughts.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Original News Headline Edit
EU says summit with Turkey provides no answers to <concerns/ > stuffing
The GOP just ca n’t <escape/ > the 80s remember

Table 1: Sample Data from sub-task 1.

2 Task Review

Table 1 gives an example of entries in the provided dataset(Hossain et al., 2019). The words within the
angular brackets are substituted with the corresponding word in the edit column. The edited headline
would read The GOP just can’t remember the 80s. The score of the edited headline is a value between 0-3.
It’s worthy to note that there is only one edit per sample in the dataset. Sub-task 1 dealt with predicting
the funniness score given the original headline and the edit. In Sub-task 2 we were given the same original
headline, but there would be 2 different edited headlines and the edit could be made anywhere in the
original headline. Participants were asked to classify which of the two edits was funnier. In my approach
I create one model that can predict the funniness score of a given sample and I use the same model to
compute the results of Sub-Task 2, by finding the difference between the funniness scores of the two
edited headlines.

The organizers of the task were kind enough to provide additional training samples a few months into
the competition (Hossain et al., 2020b). I make use of both the initial dataset and the additional dataset
provided, to train my models.

3 System Design and Architecture

3.1 Dataset and Preprocessing

From hereon the original headline will be referred to as Xorg and the edited headline as Xedit. I will refer
to the word being replaced from the original headline and the edit word as focus words. My approach
centers around the idea that a model should learn features that are conditioned on the focus words, or
make use of the focus words either directly or indirectly. Wu and He (2019) show that in the task of
relationship classification between two entities adding special tokens between the span of the entities
leads to an improved performance. Similarly in this approach the token < is added before and after the
word to be replaced in Xorg and ˆ (symbol for exponent) is added before and after the edit word in Xedit.

3.2 Siamese Networks

Siamese Networks (Bromley et al., 1994), (Koch, 2015) are twin networks that share the same parameters
but each of the twins receive distinct inputs. Given that, for this task, we have an original and edited
headline, I hypothesized that extracting features from both the headlines would be beneficial since
humans require context of what the original sentence is, to deem an altered sentence to be funny. Each of
Xorg and Xedit is passed to one of the twins in the Siamese Network. Both of them comprise the tokens
Xorg/edit=[xorg/edit0 ,xorg/edit1 , ..xorg/editi ,..xorg/editn].

Figure 1. Model architecture. In the figure U = concat([Cedit,Corg,Sorg,Eedit])
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3.3 Model Architecture

Over the last couple of years Transformer based Architectures (Vaswani et al., 2017) such as BERT (Devlin
et al., 2019), XLNet (Yang et al., 2019), Roberta (Liu et al., 2019) etc. have become extremely popular.
These models are pre-trained on language modeling tasks using large amounts of data and as a result are
capable of providing contextual token embeddings that can be fine-tuned to achieve state of the art results
in various downstream NLP tasks such as Question Answering, Sentiment Analysis, Natural Language
Inference tasks etc. I experiment with different transformer models that act as the Siamese twins in order
to obtain contextual token embeddings and choose the best one.

The token embeddings are used to create a set of useful features that are passed to a two layer perceptron
to predict the funniness score of the edited news headline. The features extracted are described in the
following subsection. Figure 1 depicts the model architecture.

3.4 Features

It’s been observed that different layers in a Neural Network capture different kinds of syntactic and
semantic information (Yosinski et al., 2014) . Sun et al., (2019) observed an improved performance
on classification tasks by concatenating the token embeddings of BERT with the embeddings from the
penultimate layer i.e. layer 11. I experimented with concatenating the outputs of different layers and
observed the same. I concatenate the final token embeddings with those from the 11th layer of the
Transformer. Please note that from hereon all features are concatenations of the Transformer’s token
embedding and its penultimate layer.

Most BERT (Devlin et al., 2019) based architectures that are fine tuned towards a downstream task tend
to use the first token i.e the [CLS] token as a vector that summarizes the entire input sequence in essence.
I make use of the first token from the Transformer twins for both Xorg and Xedit, these two vectors will
be referred to as Sorg and Sedit. I also extract the vectors that correspond to the focus words. This is done
easily thanks to the special tokens < and ˆ that demarcate these words. In the event that the word spans
more than one token the mean of all the tokens between the special tokens is computed to obtain a single
vector. These two word vectors will be referred by Eorg and Eedit from hereon.

Eorg/edit = mean([Eorg/edit1 ,Eorg/editi ...,Eorg/editn])

For each of Xorg and Xedit I compute context vectors Corg and Cedit. Corg/edit is computed as the
result of a Global Attention Mechanism (Bahdanau et al., 2015), (Luong et al., 2015). The idea is that the
Corg/edit

1 would contain information about how well the replaced word and the edited word fit into the
headline. Below · is the dot product operation.

In section 5, I describe experiments where different combinations of the features which will be referred
to as U are passed as input to a two layer perceptron. prelu (He et al., 2015) is used as the activation
function after the first linear layer.

attention scoresorg/edit = softmax(V · (WEorg/edit)) (1)

Corg/edit = attention scoresedit/org · V where V = (Xorg/editi /∈ Eorg/editi) (2)

Symbol Meaning
X Input Sequence
S Sequence Representation Token
E Focus word Representation Token
C Global Attention Vector

Table 2: Summary of symbols used.

A final list of notations used and what they stand for is summarized in Table 2.

1In (1) W is a learned parameter
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3.5 Baseline Architecture
I present two baseline architectures; In the first one I make use of a 2-layered Bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997), initialized with Glove (Pennington et al., 2014) Embeddings of size 300
followed by a self-attention layer. The mean of the output from the self-attention layer is then passed
as input to a 2 layer perceptron with tanh as the activation function. The input to this model is only the
edited news headline i.e. Xedit. The first linear layer projects a vector of size 600 to 128.

The second baseline is a Siamese 2-layered Bidirectional LSTM with a single head self-attention
layer on top of it. I pass U to the 2 layer perceptron where U is defined as below. The output from the
self-attention layer are treated as the token embeddings. Both of these models perform similarly with a
RMSE of 0.581 on the validation set and 0.577 on the test set.

U = concat([Cedit,Corg,Sedit,Eedit])

4 Implementation Details

All experiments mentioned below were conducted making use of Pytorch2, the HuggingFace3 (Wolf et
al., 2019) library was used for transformer architectures. Spacy4 for Glove (Pennington et al., 2014).
Batch size is fixed at 64, I use Adam (Kingma and Ba, 2014) with a learning rate of 2e-5 as my optimizer.
For all the experiments the best validation score and the test score of the model corresponding to the
best validation score are reported. I use a linear warm-up scheduler (Howard and Ruder, 2018) with
the warm-up period equal to 10% of the total number of steps. The model is trained for 5 epochs and
the model with the best validation score is used at test time. A dropout of 0.1 is applied to all the
transformer architectures and 0.3 to both the linear layers. I clip the norm of the gradients to 1.0. Unless
stated otherwise all of the transformer models were uncased apart from Roberta, for Roberta I use the
roberta-base model. All the transformer models are pre-trained models and are not trained from scratch.
For all experiments reported in this the random seed is fixed to be 12. The max sequence length is fixed to
50. I make my code publicly available5 in the form of a jupyter notebook.

5 Experiments and Results

5.1 Identifying the best token embeddings

Neural Architecture Best RMSE on Validation Set RMSE on Test Set
Bi-LSTM + Self Attn. 0.581 0.577

DistilBERT 0.531 0.530
BERT 0.525 0.525

Roberta 0.516 0.516

Table 3: RMSE using different models to generate Token Embeddings.

I experiment with using DistilBERT (Sanh et al., 2019), BERT, Roberta for producing the token
embeddings along with the baseline Bi-LSTM model (non-siamese) mentioned above. The embeddings
are used to create U=concat([Cedit,Corg,Sedit,Eedit]) which is passed to the 2 layer perceptron.

The results are shown in the table 2. The LSTM based model has the poorest performance. Roberta
shows the best performance with 0.516 on both the validation set and the test set. All experiments listed
from hereon make use of the Roberta model to obtain the token embeddings.

5.2 Experiments for finding the best set of features
. The next set of experiments show the impact of using different combinations of the features explained
in section 3.4 to obtain the best U vector which is passed to the 2 layer perceptron. The model with the

2https://pytorch.org/
3https://huggingface.co/
4https://spacy.io/
5https://github.com/pramodith/Humor



1030

Composition of U Best RMSE on Validation Set RMSE on Test Set
Cedit,Corg 0.5256 0.5285
Sedit,Sorg 0.5250 0.5239

Cedit,Corg,Sedit 0.5245 0.5204
Cedit,Corg,Eedit 0.5175 0.5210

Cedit,Corg,Sedit,Eedit 0.5166 0.5169
Cedit,Corg,Sorg,Eedit 0.5218 0.5218
Cedit,Corg,Eorg,Eedit 0.5224 0.5160
Sedit,Sorg,Eorg,Eedit 0.5225 0.5237

Table 4: RMSE using different features.

best RMSE on the test set is with the features Cedit,Corg,Eorg,Eedit. Since the model with the features
Cedit,Corg,Sedit,Eedit gives the most consistent results on the test and validation set all experiments
following this section use the concatenation of these features as U . From these results it’s not too clear
that one feature or one set of features is more important than the other.

5.3 Importance of Siamese Architecture
In order to verify that using a Siamese architecture is advantageous. I train a non-siamese6 network in
which Xorg and Xedit are concatenated together. In order for Roberta to recognize Xorg and Xedit as a
text pair. They’re concatenated as follows:

Xconcat = < s > + Xorg + < /s > + < /s > + Xedit + < /s >

Xconcat is passed to the network to obtain the features mentioned above in section 3.4. The best RMSE of
this model on the validation set is 0.5194 and the corresponding test set RMSE is 0.5247. Despite the
Siamese architecture doing moderately better than this model it’s not too convincing that the Siamese
architecture is helping the model improve its performance. Here Sedit is the first token from Roberta.

5.4 Fine-Tuning the Language Model
Sun et al., (2019) and Chiruzzo et al., (2019) mention that fine-tuning the language model of transformer
based architectures against the task specific data improves performance of the models. I fine-tune the
Roberta model for masked language modeling against the original news headlines. The language model is
trained for 2 epochs with a batch size of 32. The model yields an RMSE of 0.5212 on the validation set
and 0.5194 on the test set. It’s observed that there is no notable improvement.

6 Conclusion

My final submissions to the competition for Sub-task 1 and Sub-task 2 resulted in a 5th and 4th place
finish in the competition and was the best non-ensemble model in both tasks amongst the final submis-
sions. The final submissions actually corresponded to a Siamese BERT based architecture, where U
= concat([Cedit,Corg,Sedit,Eedit] which I obtained by performing a search on random seeds. I didn’t
experiment with the Roberta model at that point of time after the release of the extra dataset. The submitted
model achieved a validation score of 0.5186. and a test score of 0.5202. For Sub-task 2 I observed that the
model with the best accuracy did not necessarily need to be the same as the one that had the lowest RMSE
for Sub-task 1, which is quite surprising. In Sub-task 2 my official submission obtained an accuracy of
0.6465 on the validation set and 0.6468 on the test set.

In conclusion, this paper presents a Siamese Transformer based approach, that makes use of features
that center around the focus words and their impact against other tokens. From the experiments shown
above its tough to conclude if the Siamese architecture or if any of the features in particular are responsible
for an improved performance of the model, it looks like just following the best practices of training
Transformer networks can yield very good results. In the future I would like to probe the model to better

6this experiment was conducted on a different GPU from that of 5.2 to accommodate longer sequence lengths.
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understand why it deems one sentence to be funnier than another, it would also be interesting to study if a
model that can generate jokes can also grade how funny a joke is and vice versa.
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