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Abstract

In this paper we describe the HumorAAC system, our contribution to the Semeval-2020 Humor
Assessment task. We essentially use three different features that are passed into a ridge regression
to determine a funniness score for an edited news headline: statistical, count-based features,
semantic features and contextual information. For deciding which one of two given edited
headlines is funnier, we additionally use scoring information and logistic regression. Our work
was mostly concentrated on investigating features, rather than improving prediction based on
pre-trained language models. The resulting system is task-specific, lightweight and performs
above the majority baseline. Our experiments indicate that features related to socio-cultural
context, in our case mentions of Donald Trump, generally perform better than context-independent
features like headline length.

1 Introduction

Humor is an essential part of natural everyday human communication. A huge range of research was
devoted to the nature of humor in various fields such as psychology, linguistics and philosophy resulting in
various theories such as incongruity-resolution theory, non-cooperative theory, superiority theory, release
theories, semantic script theory and general theory of verbal humor (Attardo, 2008). None of these
theories could give a complete and comprehensive explanation of humor phenomena so far. For the field of
computational linguistics humor is being quite a difficulty as well. Because of its complexity and inherent
subjectivity, the development of automatic humor recognition and assessment poses a great challenge
in Computational Linguistics, and therefore is a popular subject in various shared task competitions
(Chiruzzo et al., 2019; Hossain et al., 2020) and independent research (Reyes et al., 2012; Mihalcea and
Strapparava, 2005; Zhang and Liu, 2014; Yang et al., 2015). This challenge is related to the meaning
extraction task in the domain of sentiment analysis since a great deal of naturally produced text contains
humor in one form or another. The system described in this paper was created for the humor assessment
task within the International Workshop on Semantic Evaluation SemEval-2020 (Hossain et al., 2020). This
task is aiming to develop a system that automatically evaluates the humorousness of the edited headlines,
made funnier with short one-word edits, and evaluated by human annotators. We believe, that this task
can be an important step on a way to the development of better speech recognition systems and to the
understanding of humor as a phenomenon in general.

The presented system is based on ridge regression and neural networks. In essence we pass a set
of count-based, semantic, and context-oriented features into the ridge regression algorithm. The main
discovery of our research is the importance of task- and data-specific features on the performance of
a humor-detection system. Due to the social, context-dependent nature of humor, the addition of two
features pertaining to Donald Trump, originally added only for experimental purposes, significantly
improved our score. Therefore we can conclude that social context features like this are even more
relevant to the perceived funniness than some other statistical features, for example those proposed by
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Hossain et al. (2020). This finding can help to improve humor detection systems by taking social context
into account. An automatic way of detecting a social context is a perspective topic for future research.

2 System Overview

2.1 Tasks & Data

The development of the system was based on the Humicroedit dataset (Hossain et al., 2019): Regular
English news headlines sourced from the r/worldnews and r/politics subreddit1 are paired with versions of
the same headlines that contain simple, one-word replacement edits designed to make them funny. These
were subsequently scored by 5 judges that assigned a score between 0 and 3 to each edited headline (0 =
not funny, 1 = slightly funny, 2 = funny, 3 = very funny). The data is stored as shown in Table 1. For Task
2 the data was stored as two headlines entries as in Task 1 with a common ID and the addition of a label
detecting which of the headlines is funnier (0 = both headlines are equally funny, 1 = the first headline is
funnier, 2 = the second headline is funnier). In total, the dataset contains 15,095 edited headlines. Both
the editing and judging was crowdsourced. The expected output of the systems in this competition for
task 1 is a predicted mean grade funniness score. The output for task 2 is a prediction of a label for the
funnier headline.

ID original headline edited word annotator scores mean grade
14530 France is ‘ hunting down its citizens who joined <Isis\>’ without trial in Iraq twins 10000 0.2
13034 “Pentagon claims 2,000 % increase in Russian trolls after <Syria\>strikes . What does that mean ?” bowling 33110 1.6
8731 Iceland PM Calls Snap Vote as Pedophile Furor Crashes <Coalition\> party 22100 1.0
3404 “President Trump ’s first year <anniversary\>report card , with grades from A + to F” Kindergarten 33333 3.0
6164 Trump was told weeks ago that Flynn misled <Vice\>President . school 00000 0.0

Table 1: Data example for task 1

2.2 Task 1

During our experiments with feature engineering the following features were tested:

• length of the headline

• absolute position of edited word within the headline

• relative position of edited word within the headline

• TF-IDF vectors

• word distance between original and edited word

• semantic similarity between original and edited word

• Trump mention

• Trump-hair co-occurrence

• Output of two alternative neural network architectures:

– a sequential feed-forward model with a recurring layer trained on the edited headlines to predict
the funniness score

– a similar model using the edited word in the headline as auxiliary input (Figure 1)

We based a few of the features we used in our system on possible features mentioned in Hossain et al.
(2020), namely length of the headline and the position of the edited word within the headline. The motive
behind these features was that a longer headline has more potential to be funny because there are more
possibilities to make edits, and that an edit in the later part of the headline could possibly contribute to the
funniness following the setup-punchline theory of humor. We experimented with both the absolute and
relative position of the word within the headline.

1www.reddit.com



1021

Figure 1: Neural network architecture

To catch humor related to just switching a few letters within the edited word but changing the meaning
(e.g. “The Latest: BBC cuts ties with Myanmar TV station” replaced by “pies”), we added the feature of
edit distance.

Another feature we experimented with is semantic similarity between the substituted word in the original
headline and the edited word. We compared the lemmas from both words with the path similarity method.
This method returns a score denoting the similarity of the two word’s senses in a hypernym/hyponym
relation. The motivation behind this was to catch funniness resulting from seeing a word in a context that
it does not fit into, as it is pretty likely that the substituted word will not fit into the context if it is very
semantically different from the original word.

The most unique and experimental features in our system are two binary features we added after
noticing a particular quirk within the dataset: Quite a lot of headlines feature President Trump and most
of them are scored as funny, especially if there is some additional mention of hair. More than a third of
the edited headlines in the trainset (35.5%) contained a reference to Trump. The likelihood of a headline
mentioning Trump to be very funny (score of 2 or higher) is 9%, but when a headline contains both a
reference to Trump and hair, the likelihood of it being scored as a 2 or higher is 45.3%. For reference,
only 6.5% of all edited headlines in the trainset score this high.

We experimented with the integration of tf-idf vectors, comparing using the vectors for the original
headlines, edited headlines, the edited word and the replacement word and even n-grams around the
edit. Unfortunately we were not able to find a way to include these vectors in a productive way into our
system that improved the score significantly enough to make up for the higher computational cost and
long runtime. We suspect that this may be because tf-idf vectors work best on long texts and the headlines
were pretty short. Furthermore the short style of the headlines that omits most function words may not
have been the best fit for this method.

In order to integrate context information, we decided to build a neural network that uses pre-trained
word representation vectors as input and predicts a funniness score. This prediction is also used as an
additional feature for the final ridge regression. The first neural network we built and experimented with
works on just the edited headlines: They are transformed into GloVe (Pennington et al., 2014) vectors and
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passed to an embedding layer, an LSTM layer with 10 units and tanh activation function, a dropout layer
with dropout rate 0.2 and two consecutive dense layers with one unit and linear activation function each.
The model was then trained for 50 epochs maximum and Early Stopping was used to prevent overfitting.

Since we wanted to not only model the funniness of the edited headline but also take the original
headline into consideration, we built a second network that also uses the replaced words. This network
has the same general architecture, input and output as the first, but uses the vector of the replaced word
as additional input (see Figure 1). This auxiliary input is added to the network after the LSTM layer by
adding a concatenated layer that concatenates the output of the LSTM layer with the auxiliary input.

2.3 Task 2

Our system for task 2 uses almost the same features as in task 1 but two different scoring alternatives.
The first calculates a funniness score for both headlines like in task 1 and scores them according to the
specifications for task 2. The second alternative uses this scoring as additional information, meaning it
uses all the features from task 1 plus the calculated funniness scores between 0 and 3 for both headlines
and the overall funnier headline based on these scores as features. A logistic regression is then fit on this
feature set and the actual scores indicating which headline is funnier. The idea behind this is that the
model can learn from its own predictions and balance out some of its assumptions that way, as well as
allowing for additional tuning. The only feature that was dropped from the model in task 1 is the semantic
similarity because it affected the runtime too much for how little improvement it provided.

3 Experimental setup

The competition’s evaluation metric is the root-mean-square error (RMSE) for Task 1 and label accuracy
for task 2. To evaluate our system, we both used a 80/20 train/test split on the train set as well as using the
development set (both sets provided by task organizers). The final evaluation to determine our ranking
was based on an additional test set. For all evaluation not through Codalab, building and tuning linear
models, and feature extraction with TF-IDF we used the Python scikit-learn2 library. For tokenizing,
part-of-speech tagging and semantic similarity information (WordNet) as well as calculating the edit
distance, NLTK3 was used. As input for our neural network, headlines were preprocessed using Keras4

and transformed with gloVe. We chose the pre-trained 100d vector variant sourced from Wikipedia and
Gigaword 5 containing 6 Billion tokens 5. The neural networks themselves are also implemented with
Keras. We did not tune our neural networks when it comes to the number of layers or parameters but we
used early stopping as a callback to prevent overfitting.

4 Results

Our system ranked 27th of 49 participating teams during the evaluation phase in task 1 with a RMSE
score of 0.5645. Because of a bug in the tuning for task 2 we placed last in the evaluation phase although
we did also score average in the development and post-evaluation phase. The overall best score our
system reached was 0.5593 for task 1 and 58.60% accuracy for task 2. Interestingly, the scores for this
competition were relatively close in range to each other: The majority of scores were less than 0.05 RMSE
apart.
As shown in the table 1, the Trump and Trump-hair features show the most improvement on their own.
This gives us interesting insights in how humor could work, and what can be necessary for humor detection
task besides various language models: even encoded by language humor is not only linguistic, but also
a complex socio-cultural phenomenon. Measuring the length of the headline did not improve the score
much, this feature just barely surpassed the majority baseline on its own. This seems to support what
Hossain et al. noted: Longer headlines might have more potential to be funny because there are more
possibilities to place the micro-edit, but a short headline with economical word use places more focus

2https://scikit-learn.org/stable/index.html
3https://www.nltk.org
4https://keras.io/
5https://nlp.stanford.edu/projects/glove/
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Feature development score test score
random baseline (mean of 10 random predictions) 1.1839 1.1837
majority baseline 0.5784 0.5747
headline length 0.5783 0.5743
absolute position 0.5763 0.5738
relative position 0.5758 0.5742
semantic similarity 0.5784 0.5745
edit distance 0.5781 0.5745
Trump mention 0.5750 0.5698
Trump and hair mention 0.5769 0.5718
tfidf originals 0.6104 0.5980
tfidf originals with SVD 0.6087 0.5988
best features combined 0.5715 0.5664

Table 2: Feature scores on untuned Ridge Regression (used features in bold)

Feature development score test score
random prediction baseline 33% 33%
majority baseline 45.82% 43.55%
no regression, voting based on task 1 51.62% 47.02%
basic configuration without tuning 55.41% 50.02%
added tuning 56.69% 51.71%
added predictions and prediction of funnier headline 56.65% 52.28%
added tuning 58.60% 52.54%

Table 3: Accuracy scores for Task 2

on a funny edit (Hossain et al., 2019). We suspect that very short headlines are not likely to be funny
because editors were too constrained to choose a good word to replace and very long headlines are either
too complicated to be funny or editors were overwhelmed with choosing the best word to edit. The
position of the edited word within the headline performed better and affirmed that an edit in the later part
of the headline (modeled by the relative position) acts as a punchline and positively affects the perceived
funniness. The absolute position in the headline describes a kind of hybrid between the aforementioned
features and fittingly this feature’s score lies between these two. When it comes to the neural networks,
we found that simply concatenating the original and edited headline does not work well to model the
funniness difference between them. On the other hand, adding the replaced word as additional input
improved our model compared to our basic sequential model that only uses the edited headlines. The
average RMSE score of predictions of the basic network (without regression) was around 0.6342 but
the improved version reached 0.5712. For Task 2, using an additional logistic regression and adding the
scoring using the predictions did improve the score a bit but also increased the runtime since the feature
set is rather large.

5 Conclusions

To conclude our research we would like to reflect a bit more on a humor nature and humor recognition
challenges. Humor is not only a linguistic phenomenon, but it can be represented by text and therefore
provides a significant challenge for the NLP field. It is clear that humor cannot be accessed only by a
language model by itself, no matter how good it is. Therefore the humor detection systems should be
provided with some context not only in the sense of linguistic context but a broader, socio-cultural context.
In our case such a context was provided by manual data exploration and implementation of corresponding
features, but there are ways of doing it automatically. Just checking if a sentence contains a reference to
Trump is not enough information to assess funniness of course, especially since his specific relevancy in
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culture might fade over the years. One of the possible ways to detect social-context related features would
be named entity recognition in the dataset. Names can be crucially important to the task of obtaining
social context, since they carry a lot of social-related information, being at the same time a references to
certain common ground of readers. Thus in our example Trump denotes not just a person, but a whole
social phenomenon related to him, including associations, attitudes and ideas. Therefore recognising,
categorising and evaluating named entities can be helpful to detect socio-cultural context, being significant
for the overall performance of a humor detection system.
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6 Appendix

Parameter tuning
alpha 6.0
fit intercept True
normalize False
copy X True
max iter None
tol 1e-3
solver auto

Table 4: Tuning for ridge regression in task 1

Parameter tuning
penalty l2
dual false
tol 1e-4
C 1.0
fit intercept True
intercept scaling True
class weight None
random state None
solver lbfgs
max iter 100
multi class auto
verbose 0
warm start False
n jobs None
l1 ratio None

Table 5: Tuning for logistic regression in task 2


