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Abstract

We (Team Skurt) propose a simple method to detect lexical semantic change by clustering
contextualized embeddings produced by XLM-R, using K-Means++. The basic idea is that
contextualized embeddings that encode the same sense are located in close proximity in the
embedding space. Our approach is both simple and generic, but yet performs relatively well in
both sub-tasks of SemEval-2020 Task 1. We hypothesize that the main shortcoming of our method
lies in the simplicity of the clustering method used.

1 Introduction

The meaning of a word can vary not only with context, but also with time. The former phenomenon is
commonly known as context-sensitivity, or, if the variation is of a more categorical nature, polysemy,
whereas the latter phenomenon is captured by the term diachronic semantic drift (Kutuzov et al., 2018), or
alternatively lexical semantic change (Schlechtweg et al., 2020). As an example, a term such as “beautiful”
has one main meaning, but will nonetheless imply slightly different things depending on its context of
use; “suit” on the other hand has several distinct meanings (e.g. as a verb or as a noun), while “mouse”
has acquired a completely new meaning with the introduction of computer hardware. Of course, the
distinction between context-sensitivity and polysemy is anything but clear-cut; this is a slippery theoretical
slope, on which it is best to tread lightly. Even so, enabling the detection of such diachronic lexical
semantic change across time could accelerate research in historical linguistics (Szymanski, 2017), and
also initiate the development of decision-making systems that exploit diachronically shifting information
(Rosin et al., 2017).

The backbone of a lexical semantic change detection system is word embeddings, which represent
the meaning (or at least the use) of words. Different systems rely on various types of language models,
nowadays predominantly distributional in nature. There is a comparably rich literature on distributional
approaches to modeling diachronic semantic drift; examples include Sagi et al. (2008) Hamilton et al.
(2016), and Yao et al. (2018). More complete overviews of existing diachronic semantic shift detection
techniques is provided in Tahmasebi et al. (2018) and Kutuzov et al. (2018).

Contextualized language models constitute a recent breakthrough in the field of NLP (Devlin et al.,
2018; Radford et al., 2018), by virtue of their ability to provide embeddings that are sensitive to a
specific context of use, which is different from standard word embeddings that aggregate all of a word’s
contexts into one global representation. Another way of characterizing this difference is to say that
contextualized language models provide token-based representations, while standard word embeddings
are type-based. Motivated by the success of contextualized language models for handling polysemy
and context-sensitivity, we investigate how such embeddings can be used to model diachronic semantic
change; we use a contextualized language model as the basis of our proposed system for both sub-tasks of
the Unsupervised Lexical Semantic Change Detection task, featured in SemEval 2020. More specifically,
we produce contextualized embeddings for each occurrence of a term, and cluster these embeddings to
arrive at a form of sense clusters. By leveraging multilingual contextualized representations, our approach
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is agnostic to which language is used in the input corpus, and it does not rely on any specific information
about when the corpus was written. Despite the simplicity of our approach, our system ranked 10th in
Subtask 1 and 8th in Subtask 2.

1.1 Subtask description

1.1.1 Subtask 1
Subtask 1 is Binary Lexical Semantic Change, as defined in Schlechtweg et al. (2020). Given a set of
terms and two corpora from two different time periods, the goal is to identify the terms with different
sets of senses between the two corpora, and consequently time periods. The fact that the corpora are also
provided in languages other than English pushes towards the direction of designing language-agnostic
systems (Kutuzov et al., 2018). No labels are provided, therefore the system should be unsupervised.
Annotations provided by Schlechtweg et al. (2020) will be used as ground truth labels in the evaluation
phase of the proposed systems.

1.1.2 Subtask 2
Subtask 2 is a modified version of Subtask 1, where a ranking of the given set of terms should be produced,
based on the degree that the distribution of senses has shifted between the two documents, or time periods.
This is referred as Graded Lexical Semantic Change in the literature (Schlechtweg et al., 2020). The
difference between the two normalized sense distributions, namely Jensen Shannon Divergence (Lin,
1991), is used as the ranking criterion. Both the corpora and the annotations are the same with the ones
used in Subtask 1.

1.2 Data description

The data for the two tasks are the same and consists of four languages with two corpora per language. The
four languages are English, German, Latin and Swedish. The two corpora are divided into two different
time periods.

Language Corpora Period 1 Period 2

English CCOHA (Alatrash et al., 2020) 1810-1860 1960-2010
German DTA, BZ and ND 1 1800-1899 1946-1990

Latin LatinISE (McGillivray and Kilgarriff, 2013) -200-0 0-2000
Swedish Kubhist (Språkbanken, ) 1790-1830 1895-1903

Table 1: Data used in the different tasks.

The data has been lemmatized and converted to lowercase. For each of the corpora there are some
particularities noted in the SemEval-2020 Task 1 data description2. The most important particularity is
the frequent OCR errors found in several of the corpora, lowering the quality of the data.

2 Solution

2.1 Solution Outline & Main Idea

Given a word W we generate the contextualized embeddings for all occurrences of W in the two corpora
(C1 and C2) while keeping a reference to the source corpora. The contextualized embeddings from both
corpora are then clustered. Each occurrence of a word is thus represented by its contextualized embedding,
source label and cluster label. We then solve the tasks using cluster labels as a direct proxy for senses. We
refer to this method as SenseCluster.

1Berliner Zeitung. Diachronic newspaper corpus published by Staatsbibliothek zu Berlin [online]. 2018. Deutsches Textarchiv.
Grundlage für ein Referenzkorpus der neuhochdeutschen Sprache. Herausgegeben von der Berlin-Brandenburgischen Akademie
der Wissenschaften [online]. 2017. Neues Deutschland. Diachronic newspaper corpus published by Staatsbibliothek zu Berlin
[online]. 2018.

2https://competitions.codalab.org/competitions/20948\#learn\_the\_details-data
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The main idea is that contextualization, in part, serves to disambiguate between senses: we hypothesize
that the contextualized embeddings of cell in the phone-sense, in general, are closer to each other in
embedding space than the contextualized embeddings of cell in the chamber-sense, and vice versa. In other
words: we hypothesize that the senses of a word W manifests themselves as clusters in the contextualized
embeddings of W . The origins of this idea can be traced back to the work of (Schütze, 1998). Recent
work in Lexical Semantic Change using BERT gives credence to our hypothesis : (Giulianelli et al.,
2020; Martinc et al., 2020) perform k-means clustering on BERT representations of target words in order
to detect temporal semantic change in a large diachronic English corpus (Davies, 2012). Additionally,
(Wiedemann et al., 2019) show that a simple k-Nearest Neighbor classifier (Cover and Hart, 1967) on
contextualized representations can be used for word sense disambiguation.

2.2 Contextualized Embeddings: XLM-R

Word embeddings can handle synonymy, but not polysemy (at least not in any obvious way; but there
are some attempts at uncovering polysemy in word embeddings, such as Relative Neighborhood Graphs
(Cuba Gyllensten and Sahlgren, 2015)). Contextualized language models on the other hand do; for each
occurrence of a term, a contextualized language model will produce a contextualized embedding, which
takes into account the surrounding context. Prominent examples of contextualized language models are
BERT (Devlin et al., 2018) and GPT (Radford et al., 2019). BERT is a Transformer-based model (Vaswani
et al., 2017), which produces deep bidirectional representations, as a result of the masked language
training objective. On the other hand, GPT is a unidirectional, Transformer-based model (Vaswani et
al., 2017), which is pre-trained using the standard language modeling objective (Radford et al., 2019).
Pre-trained contextualized language models are often transferred to task-specific architectures (Devlin et
al., 2018), (Radford et al., 2019), based on previous work (Howard and Ruder, 2018).

Contextualized language models are extensively used in the domain of cross-lingual language un-
derstanding (Lample and Conneau, 2019), (Conneau et al., 2019). Apart from being beneficial for
cross-lingual understanding tasks, contextualized cross-lingual embeddings enable model transfer between
languages (Ruder et al., 2019). The latter can be beneficial for low-resource languages.

We use XLM-R (Conneau et al., 2019) for producing term representations. XLM-R is a Transformer-
based masked language model, trained on 2.5T of filtered CommonCrawl data in 100 languages. Com-
paring to previous multilingual masked language models, such as multilingual BERT (mBERT) (Devlin
et al., 2018) and XLM (Lample and Conneau, 2019), the size of the pre-training dataset of XLM-R is
increased by several orders of magnitude, especially for low-resource languages (Conneau et al., 2019).
XLM-R outperforms mBERT (Devlin et al., 2018) and XLM (Lample and Conneau, 2019) in cross-lingual
classification, as well as monolingual tasks (Conneau et al., 2019).

ISO code Language Tokens (M) Size (GiB) ISO code Language Tokens (M) Size (GiB)
en English 55608 300.8 de German 10297 66.6
la Latin 390 2.5 sv Swedish 77.8 12.1

Table 2: Languages and statistics for CC-100 corpora used by XLM-R (Conneau et al., 2019).

We hypothesize that our multilingual setting can benefit from the use of XLM-R, by virtue of cross-
lingual transfer. This can be especially advantageous for less resourced languages such as Latin, and
perhaps also Swedish.

2.3 Clustering: K-Means

Our approach to the problem of semantic shift detection is cluster-based. We use K-Means++ (Arthur
and Vassilvitskii, 2006) to induce the optimal set of sense-clusters in the contextualized embedding space.
K-Means++ is a modified version of the widely used K-Means clustering algorithm, which splits the input
data points into a predefined set of clusters, by minimizing the in-cluster average square distance (Lloyd,
1982). Trying to alleviate the dependency of K-Means performance on proper initialization of the cluster
centroids, K-Means++ introduces a randomized seeding technique (Arthur and Vassilvitskii, 2006).
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Previous work (Wiedemann et al., 2019) shows that distance-based methods, such us k-Nearest Neighbor
classifier (Cover and Hart, 1967), can be used to group contextualized embeddings which encode the same
sense-information. Given the unsupervised nature of our task, K-Means++ is a reasonable choice for our
system.

2.4 Method
We generate contextualized embeddings of target words using XLM-R.3 Given, for example, target word
edge, and the sentence “they sit down together upon the edge of the bed”, the whole sentence is passed as
input to XLM-R, we then extract the embedding from the output layer corresponding to the word edge,
i.e. its contextualized embedding. In the case when the target word consists of several wordpieces, and
thus several embeddings, we take the average of these. We then cluster all contextualized embeddings
for a target term using K-Means++ 4 with the distance metric set to euclidean. For simplicity, we set the
number of clusters to 8 for all target terms and languages.

To measure diachronic shift between the two corpora we aggregate this clustering into a table as seen in
Table 3 by counting the number of occurrences per cluster label and source.

Word# Corpus 1 Corpus 2
Cluster / Sense 1 12 40% 1 3%
Cluster / Sense 2 18 60% 11 37%
Cluster / Sense 3 0 0% 18 60%

Table 3: Example of a cluster assignment for the contextualized embeddings of a word. For Subtask 1
we say that there has been a sense change if there exists a cluster such that it contains < 2 occurrences
from corpus 1 and > 5 occurrences from corpus 2, or vice versa. In this example, going from Corpus 1
to Corpus 2, the word lost Sense 1, but gained Sense 3. For Subtask 2 we measure the Jensen Shannon
Divergence between the sense distributions of the corpora. In this example, Corpus 1 has sense distribution
(0.4, 0.6, 0), whereas Corpus 2 has sense distribution (0.03, 0.37, 0.6), which results in a Jensen Shannon
Divergence of ≈ 0.73.

2.5 Subtask 1
Using the cluster labels as a proxy for senses, we solve the first task using the method described in the task
reference (Schlechtweg et al., 2020). If there exists a cluster such that it contains < k occurrences from
corpus 1 and > n occurrences form corpus 2, or vice versa, we say that there has been a sense change.

We always let k = 2, n = 5, and set the number of cluster to 8, regardless of language and the total
number of occurrences. For example, given the cluster assignments in table 3 we would say that there has
been two sense changes: Going from Corpus 1 to Corpus 2, the word lost Sense 1, but gained Sense 3.

We consider this our baseline approach and while the hyperparameters for the number of clusters, k and
n can be tuned, we believe that a different choice of clustering algorithm would yield larger improvements
in performance.

2.6 Subtask 2
Subtask 2 is also solved by a direct translation of the task definition (Schlechtweg et al., 2020), i.e. we
solve it by computing the Jensen Shannon Divergence between the cluster distributions of the two corpora.
We use the same cluster assignments in Subtask 2 as in Subtask 1.

3 Results

The code for the experiments is made publicly available5. Table 4 and 5 show the results of the top three
submissions, our submission, and the best performing baseline on Subtask 1 and Subtask 2. In both cases,

3https://github.com/pytorch/fairseq/tree/master/examples/xlmr
4https://scikit-learn.org/stable/modules/clustering.html#k-means
5https://github.com/Apsod/sensecluster
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Score
Team All English German Latin Swedish
UWB 0.687 (1) 0.622 0.750 0.700 0.677
Life-Language 0.686 (2) 0.703 0.750 0.550 0.742
Jiaxin & Jinan 0.665 (3) 0.649 0.729 0.700 0.581
Skurt 0.629 (9) 0.568 0.562 0.675 0.710
Baseline (CNT+CI+CD) 0.613 (11) 0.595 0.688 0.525 0.645

Table 4: Subtask 1 results (Accuracy). Our method was the ninth most performant method in the evaluation
phase.

Score
Team All English German Latin Swedish
UG Student Intern 0.527 (1) 0.422 0.725 0.412 0.547
Jiaxin & Jinan 0.517 (2) 0.325 0.717 0.440 0.588
cs2020 0.503 (3) 0.375 0.702 0.399 0.536
Skurt 0.374 (7) 0.209 0.656 0.399 0.234
Baseline (CNT+CI+CD) 0.144 (18) 0.022 0.216 0.359 -0.022

Table 5: Subtask 2 results (Spearman rank correlation). Our method was the seventh most performant
method in the evaluation phase.

the best performing baseline is the CNT+CI+CD model, a co-occurrence counting method (Schlechtweg
et al., 2020). For Subtask 1 our method outperforms the best performing baseline on average, but performs
worse for English and German. For Subtask 2 our method outperforms the best performing baseline for
all languages by a wide margin except for Latin, where the performance is only slightly better.

4 Discussion & Conclusion

We chose XLM-R because it is a pre-trained, performant, single, contextualized model trained on all the
languages in the task. As such, the method easily extends to all other languages XLM-R has been trained
on. However, the choice of XLM-R has certain drawbacks. It is trained on CommonCrawl data, which
we assume is heavily skewed towards contemporary language. This might have a negative impact on
model performance, since the task is dominated by historical data. More importantly, we believe that
the biggest drawback of using XLM-R (or similar language models) is that it is trained with minimal
preprocessing. The task data, on the other hand, was heavily lemmatized, PoS-tagged (for English), and
had frequent OCR errors. We believe this mismatch in preprocessing methods and data quality has had a
very detrimental effect on the quality of the contextualized embeddings we extract from XLM-R.

Our approach, while not yielding great results, outperformed the baselines and scored relatively well on
task 2. We argue that it performed surprisingly well given the simplicity of the approach: our method can
be condensed into:

(i) the hypothesis that clusters of tokens in contextualized embedding space approximate senses (a
conjecture that is also further corroborated by other recent work (Wiedemann et al., 2019)),

(ii) the implicit (and completely preposterous) assumption that every term has eight senses

If we assume that (i) is true, then the apparent falsehood of (ii) poses two problems: if a term has more
than eight senses, our method will conflate senses by putting them in the same cluster, a supersense, if you
will. If it has less than eight senses, our method will split senses into subsenses. Both of these scenarios
are problematic for our model: a subsense change might occur without a sense change, and conversely,
a sense change might occur within a supersense without a supersense change. We hypothesize that this
effect is greater in Subtask 1 than in Subtask 2, due to the more discrete nature of Subtask 1. One possible
remedy to this is to use a data driven method to determine the number of clusters, for example X-means
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(Pelleg et al., 2000) or Affinity Propagation (Frey and Dueck, 2007), rather than choosing an arbitrary
constant. An alternative direction could be to employ non-parametric density-based clustering methods,
such as DBSCAN (Ester et al., 1996).

Based on the simplicity and shortcomings of the clustering approach we believe the relatively good
performance can be attributed to the use of contextualized language models, and by extension that (i) is at
least partly true. We believe that by improving the second step, i.e. the grouping of sets of contextualized
embeddings into appropriate clusters, we could improve performance significantly.
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