
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 871–875
Barcelona, Spain (Online), December 12, 2020.

871

YNU-HPCC at SemEval-2020 Task 7: Using an ensemble BiGRU Model
to evaluate the Humor of Edited News Titles

Joseph J. Tomasulo, Jin Wang and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, China

Contact:{jtomasulo, wangjin, xjzhang}@ynu.edu.cn

Abstract

This paper describes a ensemble model designed for Semeval-2020 Task 7. The task is based on
the Humicroedit dataset that is comprised of news titles and one-word substitutions designed to
make them humorous. We use BERT, FastText, Elmo, and Word2Vec to encode these titles then
pass them to a Bidirectional GRU with attention. Finally, we used XGBoost on the concatenation
of the results of the different models to make predictions.

1 Introduction

The Humicroedit dataset was created for research in computational humor (Hossain et al., 2019). The
authors employed Amazon Mechanical Turk annotators to edit a single word of some fifteen thousand
news headlines in order to make them funny. Five other annotators then graded each edited title on
a scale of 0-3, with 3 being the funniest. Titles, despite being very short (the longest were around
twenty words), convey a lot of information. Using one word edits is a way to make minimal changes
for an expressed purpose. These two factors make the Humicroedit dataset a useful tool for studying
computational humor.

During the competition, the organizers published the Funlines dataset, which improved on Humi-
croedit in terms of cost per title by gamifying the process: they provided cash rewards for the best
annotators (Hossain et al., 2020b). The performance of annotators was measured on a mix of how funny
their edits were and how well their grades tracked the overall average. Players were able to improve in
both categories and the authors posit that this was due to the availability of live feedback. On average, the
Funlines dataset is funnier than Humicroedit and there was better agreement on the grades. The Funlines
dataset was made available to participants of the competition in January.

There were two sub-tasks for SemEval Task 7: 1) for each headline and its edit, predict the mean of
the grades assigned by the five annotators; 2) decide which of two title–edit pairs is funnier. We use a
few popular pretrained language models in a BiGRU ensemble for the first task, and we use those results
for the second task.

The rest of the paper is organized as follows. Section 2 presents a brief review on humor assessment
and some NLP tools. Section 3 presents the BiGRU ensemble model in detail. Section 4 contains some
discussion of the results and section 5 is a short conlcusion.

2 Background

Humor presents some challenges that other NLP tasks like entailment and analogy, for example, do not:
it is highly contextual and subjective. Because of the latter, we may prefer to ask how funny something
is or to whom is it funny, and when, over a question like “Is this funny? Yes or No”. So, attempts at
computational humor lend naturally to regression tasks.

Continuous representations have proven to be a good basis from which to transform a natural language
task into a computational one. In order to produce continuous representations, many researchers have
relied on the distributional hypothesis, which states that the meaning of a word is the assortment of

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/.



872

Humicroedit

Light Heavy

FastText
Wiki News

FastText
Com. Crawl

Word2Wec
Google News

BERT
base uncased

BERT
large uncased

BiGRU
Attention
Dense(50)

RELU
Dense(1)

tanh

BiGRU
Attention
Dense(50)

RELU
Dense(1)

tanh

BiGRU
Attention
Dense(50)

RELU
Dense(1)

tanh

BiGRU
Attention
Dense(50)

RELU
Dense(1)

tanh

BiGRU
Attention
Dense(50)

RELU
Dense(1)

tanh

FastText
Wiki News

FastText
Com. Crawl

Word2Wec
Google News

BERT
base uncased

BERT
large cased

ELMo
lstm1

BiGRU
Attention
Dense(50)

RELU
Dense(1)

tanh

BiGRU
Attention
Dense(50)

RELU
Dense(1)

tanh

BiGRU
Attention
Dense(50)

RELU
Dense(1)

tanh

BiGRU
Attention
Dense(50)

RELU
Dense(1)

tanh

BiGRU
Attention
Dense(50)

RELU
Dense(1)

tanh

BiGRU
Attention
Dense(50)

RELU
Dense(1)

tanh

XGBoost

Prediction

Preprocessing

Embedding

15-fold
Cross-Validation

Concatenate
individual model
predictions

Figure 1: The structure of the model. Light preprocessing removes only irrelevant context while heavy
preprocessing removes the context as well as all punctuation except for apostrophes.

contexts in which it appears. Here we briefly mention the four language models for producing continuous
representations that we use for Task 7.

Word2Vec trains a shallow neural network to predict a word from its context (skip-gram) model or
the context from a word (continuous bag-of-words) (Mikolov et al., 2013a; Mikolov et al., 2013b).
FastText does something similar but trains on characters, whose n-grams are averaged to get word vectors
(Bojanowski et al., 2017). This allows fastText to perform better than word2vec on out-of-vocabulary
(OOV) words.

ELMo trains continuous representations by using an LSTM to predict the next token in a sequence of
tokens, and it does this in reverse too, with a bidirectional LSTM (Peters et al., 2018). The representations
are then combined linearly, creating context dependent word representations.

BERT uses an attention style, multi-level encoder-decoder structure called a transformer, which can
model relationships between tokens that are farther apart than can LSTMs (Devlin et al., 2019). The
BERT transformer uses masking on about 15% of tokens—sub-word entities of a non-fixed length. In
pretraining, BERT also asks the model to predict whether two sentences are sequential. BERT allows
users to select vectors from specific levels of the transformers and combine them in various ways. An-
other feature, and one that is relevant here, is that the user can choose to not pool the vectors at all, and
this results in word vectors.

3 System Overview

As shown in Figure 1, this system is a stacked Bidirectional GRU ensemble. The first level uses cross
validation on 11 different embeddings. Predictions of the first level are passed to an XGBoost regressor to
get the final output. The results for sub-task 1 were directly used to decide which of the two headlines was
funnier for sub-task 2, so the following system is designed simply to predict how funny the annotators
thought the edited headlines were.

3.1 Data and Encoding

We regret that we were unable to improve performance using the Funlines data. In retrospect, the humor
ratings have different distributions in the two datasets and it is possible that some kind of calibration was
in order (Hossain et al., 2020a). We also left out the replaced word from the original title, and instead
just encoded the edited titles with four off-the-shelf pretrained models.

Embedding-as-Service1 was used to get FastText and Word2Vec vectors for the titles. FastText vectors
came from models trained on Wiki News and Common Crawl, both with dimension 300. Word2Vec was
trained on Google news, again with 300-dimensional vectors. These were very straightforward and
performed consistently on our task.

1https://github.com/amansrivastava17/embedding-as-service/tree/master



873

For BERT, Huggingface and HanXiao’s Bert-as-Service were very helpful for quick encoding.23 Ad-
ditionally, we experimented with a Kaggle dataset called “All the News” whose articles were published
shortly before the articles corresponding to the news headlines in Humicroedit.4 We expected that starting
from a BERT checkpoint and continuing pretraining on this news data would improve the performance
but initial tests were not promising, so we dropped the idea. The best performance was achieved using no
pooling, which gives something like word vectors. The new models with Whole-Word-Masking didn’t
do as well as the base and the large models, so we left them out. On our holdout set, it was unclear
whether cased was better than uncased, so we used both. Finally, we also tried fine-tuning various BERT
models on Humicroedit, but the results weren’t as good as the BiGRU from Keras.

The last language model we used was ELMo, for which we took advantage of the relevant Tensorflow
Hub module. The LSTM1 output was consistently better than the rest, so that was used exclusively.

Power Transformation and the Standard Scaler from Scikit-Learn were used to normalize the data.
While the latter was a bit better for individual models, they performed equally in the ensemble. For
submission we used the Box Cox method of the Power Transformation.

Parameter Name Value
patience 2
max epochs 60
cross val. folds 15
hidden dimensions 120
recurrent dropout 0.25

Table 1: BiGRU

Parameter Name Value
objective squarederror
gamma 0
min child weight 5
colsample bytree 0.2
learning rate 0.0055
max depth 4
reg alpa 0.2
subsample 0.1
n estimators 300

Table 2: XGBoost

3.2 Bidirectional GRU

Broadly, the first level consists of a Bidirectional GRU, some form of attention, a dense layer with RELU
actiavtion and 50-dimensional output, and another dense layer with 1-dimensional output and hyperbolic
tangent activation. Table 1 shows some of the relevant parameters.

Two different forms of attention were used. For BERT and Elmo, attention vectors were calculated
from the matrix output of the BiGRU. For FastText and Word2Vec, it worked better to use Global Average
Pooling on the output of the BiGRU and use that as a context vector for attention on the matrix output of
the BiGRU.

Other than this, the loss functions were also different: logcosh for FastText and Word2Vec versus
mean squared error for BERT and Elmo. Both setups used the stock adam optimizer provided by Keras.

We used Keras to try an LSTM, a CNN, CNN-LSTM, multi-channel CNN, GRU, and a Capsule Net.
We found that BiGRU’s had the highest individual model performance and adding any other model
reduced ensemble performance.

The hyperbolic tangent activation used on the output layer returns values between -1 and 1, so when we
applied the reverse power transform, we were not using the full range (which was about -2.5 to 2.5 after
scaling with the power transformation), but we found that re-scaling the output reduced the performance.

3.3 Ensemble Learning

We ran cross-validation on each embedding six times and saved the results from the model that performed
the best. Training models on all eleven embeddings using 15-fold cross validation, and doing each six

2https://huggingface.co/
3https://github.com/hanxiao/bert-as-service
4https://www.kaggle.com/snapcrack/all-the-news



874

Embedding Preproc B1 B2 B3 B4 RMSE Accuracy
FastText (Wiki News) heavy 0.8512 0.7280 0.6435 0.5838 0.5378 0.6275
FastText (Com. Crawl) heavy 0.8768 0.7506 0.6593 0.5945 0.5442 0.6153
FastText (Wiki News) light 0.8750 0.7443 0.6529 05896 0.5391 0.6214
FastText (Com. Crawl) light 0.8612 0.7345 0.6477 0.5861 0.5388 0.6396
W2V (Google News) heavy 0.8754 0.7424 0.6528 0.5884 0.5395 0.6271
W2V (Google News) light 0.8772 0.7481 0.6603 0.5968 0.5466 0.6233
BERT (base uncased) heavy 0.8820 0.7527 0.663 0.5951 0.5429 0.6164
BERT (large cased) heavy 0.9011 0.7678 0.6764 0.6082 0.5569 0.6088
BERT (base uncased) light 0.8741 0.7472 0.6571 0.5905 0.5395 0.6313
BERT (large uncased) light 0.8871 7555 0.6623 0.5935 0.5410 0.6107
ELMO (lstm1) light 0.8772 0.7500 0.6605 0.5933 0.5418 0.6260
Simple Average - 0.8644 0.7332 0.6417 0.5746 0.5224 0.6377
XGBoost Ensemble - 0.8118 0.7017 0.6206 0.5626 0.5181 0.6469
Baseline - 0.9860 0.8309 0.7225 0.6402 0.5747 0.4905

Table 3: Top section has the individual model results including both bucket and overall performance.
Heavy preprocessing removes punctuation; light does not. The bottom section has ensemble methods
and the baseline. This is a different run than was submitted, so the scores are slightly different, but the
models presented here are the same as used in the submission that placed third. The simple average just
averages the predictions of the models. The baseline predicts the mean of the train set everytime.

times, resulted in a total runtime of about four hours on a Nvidia 2060 SUPER.
For each model, we concatenated the predictions on the folds left out of training. Then we concate-

nated these predictions from each model, and fed this to a few XGBoost regressors. We tried using
AdaBoost, Random Forest, and SVR but XGBoost was consistently the best. Still, sometimes different
hyperparameters performed better so we kept four of the best performing hyperparameter settings and
selected the one with the highest score on the dev set at run time to make a prediction on the test set.
Table 2 shows the parameters for the model that made the best predictions on the ensemble used in the
competition.

3.4 Experimental Setup
For preprossessing, we remove things like “ – The New York Times” or “ – live updates” that somtimes
appeared in the titles. This was all the preprocessing we did for about half of the models and it resulted
in a title length of 30 tokens. For the other half, we removed all puncuation, resulting in 21-token titles.
We experimented with this only a little, and perhaps left something on the table here.

We sorted the data in the train set so that each fold in cross validation had a distribution of y values that
was representative of the whole train set. This seemed to make the scores more consistent over different
runs, but did not noticeably improve them.

It may be worth noting that due to the competition rule that only the last submission would be counted,
we never actually use all the available data for training. We didn’t want to rely on a model whose
performance was not verified on a holdout of the train set.

The organizers graded the first sub-task using root mean squared error and that was what we used
throughout testing. A bucket performance metric was somewhat useful during development, it indepen-
dently scores then bottom 10% (least funny) and top 10% (most funny) as the first bucket, the bottom
20% and the top 20% as the second bucket, etc.

4 Results and Discussion

Our model placed third in both sub-tasks with an RMSE of 0.51737 for the first and an accuracy of
0.65906 for the second. Over the course of this competition, much of our improvement was due to time
consuming trial-and-error in composing the ensemble.



875

It is surprising to us that FastText and Word2Vec have individual model scores on par with the model
using BERT encodings. In fact, as Table 1 shows, the best performing individual model comes from
using FastText and the best model using Word2Vec performed better than the best of BERT, although it
was only by as small margin.

The simple average of the results produced by each model was much better than any individual model,
but not as good as XGBoost. The baseline of predicting the mean is actually in the ballpark of some
individual models we tried.

To evaluate the utility of this project, it might help to compare any model with human performance,
perhaps using the Funlines data, but we reserve this idea for later. Another idea to pursue is to make this
into a classification task: humans, especially those who read news, would presumably be pretty good at
deciding whether a title has been edited for the purpose of making it funny.

5 Conclusion

This project used a BiGRU ensemble with XGBoost to predict how funny Amazon Mechanical Turk
annotators found edited news headlines. A third place finish on both subtasks of the related SemEval
Task 7 was achieved largely by using a large number of models for encoding the titles, and by tuning an
ensemble for this task.

Acknowledgments
This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos.
61702443, 61966038 and 61762091. We would like to thank PengBo of the HPCC research laboratory
at Yunnan University, who provided useful guidance in the early stages of this project. In fact, many lab
members provided ideas that we tested out, and the ensemble structure was due to this collaboration. We
are grateful to Peter Tomasulo and Yunnan University for providing hardware.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with

subword information. Transactions of the Association for Computational Linguistics, 5:135–146.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In NAACL-HLT.

Nabil Hossain, John Krumm, and Michael Gamon. 2019. “president vows to cut <taxes> hair”: Dataset and
analysis of creative text editing for humorous headlines. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 133–142, Minneapolis, Minnesota, June. Association for Computational
Linguistics.

Nabil Hossain, John Krumm, Michael Gamon, and Henry Kautz. 2020a. Semeval-2020 Task 7: Assessing humor
in edited news headlines. In Proceedings of International Workshop on Semantic Evaluation (SemEval-2020),
Barcelona, Spain.

Nabil Hossain, John Krumm, Tanvir Sajed, and Henry Kautz. 2020b. Stimulating creativity with FunLines: A case
study of humor generation in headlines. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics: System Demonstrations, pages 256–262, Online, July. Association for Computational
Linguistics.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b. Distributed representations of
words and phrases and their compositionality. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 3111–3119.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep contextualized word representations. cite arxiv:1802.05365Comment: NAACL 2018.
Originally posted to openreview 27 Oct 2017. v2 updated for NAACL camera ready.


