
Proceedings of the First Workshop on Scholarly Document Processing, pages 81–90
Online, November 19, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

81

Reconstructing Manual Information Extraction with
DB-to-Document Backprojection:

Experiments in the Life Science Domain
Mark-Christoph Müller, Sucheta Ghosh, Maja Rey, Ulrike Wittig,

Wolfgang Müller and Michael Strube
Heidelberg Institute for Theoretical Studies gGmbH, Heidelberg, Germany
{mark-christoph.mueller,sucheta.ghosh,maja.rey,

ulrike.wittig,wolfgang.mueller,michael.strube}@h-its.org

Abstract

We introduce a novel scientific document pro-
cessing task for making previously inaccessi-
ble information in printed paper documents
available to automatic processing. We de-
scribe our data set of scanned documents
and data records from the biological database
SABIO-RK, provide a definition of the task,
and report findings from preliminary experi-
ments. Rigorous evaluation proved challeng-
ing due to lack of gold-standard data and a dif-
ficult notion of correctness. Qualitative inspec-
tion of results, however, showed the feasibility
and usefulness of the task.

1 Introduction

Research results from the life sciences are mainly
published in the form of written journal or confer-
ence papers, even though these results often take
the form of measurements of experimental parame-
ters, which would more appropriately be stored in
a structured, machine-readable form. While there
is some tendency towards directly publishing ex-
perimental data, e.g. on SourceData (Liechti et al.,
2016) or (for environmental data) PANGAEA1, this
is not the norm yet, and does not help with the
huge body of data already published in the con-
ventional literature. It is common practice in the
life sciences, therefore, to manually extract infor-
mation (including measurements and the experi-
mental conditions underlying them) from natural
language documents, and to use it to populate bio-
logical databases. This process is called biocura-
tion (International Society for Biocuration, 2018)
and comprises, for every document, 1) identifica-
tion and mark-up of curatable information, 2) data
extraction, normalization, and consolidation, and
3) database insertion. Despite constant improve-
ments in NLP technology, biocuration involves sig-
nificant human labor (mostly reading) (Oughtred

1www.pangaea.de

et al., 2019; Huang et al., 2020; Wu et al., 2020;
Abdelhakim et al., 2020), because data quality (i.e.
correctness and integrity) has priority over quan-
tity (i.e. more quickly available, but potentially less
reliable, data), and the error rates of current NLP
systems are still considered too high (Karp, 2016).
For reasons of ergonomics and ease of handling
(Buchanan and Loizides, 2007; Köpper et al., 2016;
Clinton, 2019), the identification and mark-up
step often involves paper printouts and highlighter
pens,2 like in the example page in Figure 1.

Figure 1: Page with mark-up (best viewed in color).

As mere intermediate products of the curation pro-
cess, the manually highlighted printouts are only
required until all data from the respective docu-
ment has been curated, and they will normally be
archived afterwards. We argue, however, that the
printouts contain even more information which cu-
ration simply does not make full use of: First, some
document sections, although containing highlight-
ing, will not lead to the creation of a record in the
biological database (see our results in Section 5.3).
Yet, this highlighting can still be regarded as a kind
of relevance annotation, produced by life science

2This is true for our own group, and has been corroborated
in 2016 by an informal, unpublished survey among 21 curators
from 15+ biological databases. The survey showed that a
considerable number of curators rely on paper printouts for
close reading and / or highlighting of important information.

www.pangaea.de
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domain experts through attentive, task-oriented
reading. Obviously, this information should be
useful, e.g. for the analysis of how important in-
formation is dispersed over a scientific document.
Second, for those database records that are created
from highlighted document sections, the reference
to that section is normally not preserved. Again,
an obvious way to use this information is to allow
users of the biological database to visually trace
the record to its source in the document, including
the original context.
In this paper, we describe our approach towards
re-purposing scientific document printouts which
were manually highlighted during biocuration.
More precisely, our research question is: Given
records of curated information from the database
and the original, scanned source document, (to
what degree) can we recover the document sec-
tion that a particular record was extracted from?
We consider this to be a novel scientific document
processing task, and propose to refer to it as DB-
to-document backprojection. The remainder of
the paper is structured as follows. In Section 2 we
describe the data basis of our work. Section 3 intro-
duces the highlighted text extraction task, which we
consider as self-contained and only loosely linked
to the main task. Section 4 deals with the actual
DB-to-document backprojection task, provides a
precise definition, and describes our processing
steps. Section 5 presents some preliminary experi-
ments, results, and error analysis.Initially, this sec-
tion will also discuss our approach to evaluation.
In Section 6 we discuss some related work, and
Section 7 contains our conclusions and directions
for the future. Note that, although our data is from
the life sciences, the task is relevant for all domains
where manual information extraction is performed
on natural language documents (like e.g. in Lipani
et al. (2014), where information is extracted from
IR research papers in the form of machine-readable
’nanopublications’).

2 Data

The work in this paper is based on two related data
sets, which have been collected in the SABIO-RK
Biochemical Reaction Kinetics Database project3.
SABIO-RK is a curated database containing struc-
tured information about biochemical reactions and
their corresponding kinetics (Wittig et al., 2017,
2018). The document data set is an electronic

3http://sabio.h-its.org/

version of our archive of 6, 000+ manually high-
lighted printouts of documents from the life science
domain, which have been curated in the 10+ years
of our database’s existence. Over the years, numer-
ous different curators were involved in the manual
mark-up. Different highlighter colors were used,
sometimes even within the same document (see
Figure 1). In case of equivalent information ap-
pearing repeatedly in the same document, curators
generally attempted to be economical and to avoid
redundancy by highlighting only the most appro-
priate appearance, which is often, but not always,
the first appearance. While the mark-up was per-
formed in a completely unrestricted manner (cf.
below), in the vast majority of cases, highlighting
was applied directly to words or lines (cf. Figure 1),
which greatly helped in extracting the highlighted
text (cf. Section 3). In some rare cases, curators se-
lected whole sections by drawing a vertical line at
the section’s margin. Also, data in tables was some-
times highlighted on the cell level, while in other
cases, only the column header, the table header, or
even the table caption was highlighted. We cre-
ated an electronic version of the document collec-
tion by scanning and OCR-processing all papers4,
which resulted in a sandwich PDF for each docu-
ment with the (partially highlighted) background
superimposed with the extracted text. OCR was
performed with commercial software (Alaris Cap-
ture Pro), which was used out-of-the-box. The total
number of tokens in the 98 documents is 630, 153,
with 6, 430 tokens/document on average.
The second data set is the record data set which
contains measurements of kinetic parameters that
were extracted from individual documents from
the document collection in the course of manual
curation. Each of the 2, 916 records in this data
set is linked to exactly one source document (via
its PubMed ID), but no lower-level links (to pages
or lines) exist. Each document, in turn, can be
linked to an arbitrary number of records (29.76
records/document on average). It has to be noted
that the above count of 2, 916 records contains a
considerable number of multiple counts. This is
true in particular for records of type experimental
condition (cf. below), and is due to the fact that
often, several measurements are performed under
identical experimental conditions. For scoring and
evaluation, however, this does not make a differ-

4For the experiments reported in this paper, we only use a
subset of 98 documents.

http://sabio.h-its.org/
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ence, because we conflate semantically identical
records before analysis. There are two main types
of records, experimental condition and parameter.
Each record consists of three to six attribute-value
(a-v) pairs. Figures 2 and 3 show one example of
each type of record.

conditionName: ’pH’,
startValue : 7.7,
buffer : ’0.10 M Tris-HCl,

100 mM KCl, 1 mM DTT,
4.0 mM MgCl2,
10% Glycerol’

Figure 2: Record of type experimental condition with
three a-v pairs featuring one numeric, one atomic string,
and one complex string value.

parameterName : ’Km’,
unitName : ’µM’,
startValue : 123,
standardDeviation: 12,
associatedSpecies: ’Acetyl-CoA’

Figure 3: Record of type parameter with five a-v pairs,
featuring two numeric and three atomic string values.

Note that we only consider a subset of all a-v pairs
available for each record: Some attributes have un-
specific values (e.g. role:’Variable’) which
are not useful for searching. Also, most attributes
have a variant with a normalized value, which does
not appear in the text. With the exception of the
experimental conditions’ buffer attribute, all val-
ues are atomic. Therefore, the buffer attribute
will be handled differently in the second phase of
backprojection (see Section 4.2).

3 Highlighted Text Extraction

Highlighted text extraction comprises 1) extracting
from each sandwich PDF both the searchable plain
text and a background image for every page, 2) de-
tecting highlighted areas in the background images,
and 3) mapping the detected image areas to the
extracted text. The workflow is shown in Figure
4. We use both pdftohtml and pdftotext
from the Poppler5 library to extract data from the
scanned and OCR-processed sandwich PDF doc-
uments from our collection. The only task of
pdftohtml is to extract, from each page, a PNG
image with the non-textual background, which also
includes the color-marked areas. These images
were already generated during OCR processing and

5https://poppler.freedesktop.org

consist of document pages from which pixels that
were detected as belonging to text were removed
by inpainting (see ’Page background image’ in the
lower left part of Figure 4). pdftotext, on the
other hand, is used to extract the text that was pre-
viously recognized by OCR. It produces one XML
file for the document, incl. bounding boxes on the
token-level. These tokens reflect the original doc-
ument layout, but come in correct reading order
even for multi-column documents. The second step
makes use of some simple image processing. As
described above (Section 2), document highlight-
ing can come in any color, so searching for areas of
any particular color (like e.g. yellow) is not an op-
tion. Instead, our algorithm combines the facts that
1) highlighting is always non-grey and 2) shades
of grey in the RGB color model are characterized
by identical, or at least highly similar, values in
the R, G, and B components.6 We create a bina-
rized version of each page by going over all pixels
in a copy of the original image and setting each
pixel to ’black’ if the difference between the R, G,
and B components is above a threshold of 50 (i.e.
if the pixel is non-grey), and setting it to ’white’
otherwise. The resulting image, then, contains re-
gions with higher and lower density of black pixels
(see ’Binarized page background image’ in Figure
4). In the last step, text tokens are labelled as high-
lighted if their bounding boxes (from the XML file),
when projected to the binarized image, cover an
area that is at least 50% black. While this process
is very simple, we found it to work surprisingly
well, at least for the very frequent cases where the
highlighting was applied directly to words or lines,
yielding almost perfect extraction accuracy on most
of the images we inspected. Of the 630, 153 tokens
in our data set, only 39, 071 (6.2%) were detected
as containing highlighting.

4 DB-to-Document Backprojection

4.1 Task Definition
DB-to-document backprojection attempts to re-
construct the manual information extraction per-
formed during database curation, by recovering
those document sections that the curated database
records were extracted from. It works by match-
ing database record values (as strings) to plain text
from document sections. More precisely, we de-
fine the task as follows: Let D be the document
data set, R the record data set, R(d) the set of

6https://en.wikipedia.org/wiki/Grey

https://poppler.freedesktop.org
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Figure 4: Highlighted text extraction workflow (best viewed in color).

records that were extracted from document d ∈
D, and V(r) the set of values belonging to record
r ∈ R(d). Also, let SEC(d, sec size) be the set of
document sections of sec size tokens into which
document d ∈ D can be segmented. Then, for ev-
ery document d ∈ D, for every section s ∈ SEC(d,
sec size), and for every record r ∈ R(d), a back-
projection score between 0.0 and 1.0 is computed
by counting how many of the values in V(r) can
be matched to the tokens in s, and normalizing by
the total number of values in V(r). The result is a
list of< record, section, score > tuples for every
document, from which the most plausible backpro-
jections still needs to be selected (cf. Section 5.1).

The following is worth noting. First and foremost,
the above definition reflects the fact that there is
no simple notion of a correct backprojection of a
database record to a document section, neither in
our data sets nor, arguably, in reality. In part, this
is because the same (or highly similar) information
can appear in more than one section of a document.
Second, the value of sec size is important because,
by specifying the number of tokens that are con-
sidered at the same time, it might penalize records
with a comparably large number of values. At the
same time, however, an excessively large sec size
will undermine the whole endeavour because it
will be difficult to locate the actual matched values
within the section. Also, with increasing sec size,
there is a growing risk of clustering values which
are actually completely unrelated, creating spurious
backprojection results. Finally, the role of automat-
ically detected highlighting for DB-to-document
backprojection is still unclear. Since obtaining this

highlighting information was the prime reason for
scanning the paper printouts in the first place, a
rather strong contribution of this feature is desir-
able. One obvious role of highlighting is that of a
filter for preventing non-highlighted tokens from
being potential backprojection targets.

4.2 Processing Steps

The following two steps are performed for every
document d ∈ D and for every record r ∈ R(d). In
the first step, search term creation, the non-empty
values in V(r) are converted into search terms. Ini-
tially, one search term list is created for each non-
empty v ∈ V(r). Thus, a record with three values
will yield as many search term lists with one term
each (an example is given below). These three lists
are complementary, i.e. we try to match elements
of as many of them as possible in a given docu-
ment section. In order to improve matching and to
capture variations introduced by spelling alterna-
tives and / or OCR errors, we apply the following
heuristics, which add alternative search terms to
individual search term lists: For numerical values
with a decimal point (e.g. ’9.5’), we add a term
where that character is replaced by a comma. If
OCR OPTIMIZE=TRUE: For string values con-
taining the µ character (e.g. ’µg/ml’ or ’µM’), we
add a term where that character is replaced by a
’p’, which is a common OCR error / substitution.
Likewise, for string values containing a lowercase
’m’ character at the end (e.g. Km), we add several
terms where that character is replaced by ’tn’, ’ni’,
and a combination of commas, which are common
OCR errors if the ’m’ appears as a subscript. If
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USE SYNONYMS=TRUE: For string values rep-
resenting chemical compound names, we consult a
look-up table and add synonyms, spelling variants,
or abbreviations as alternative terms.
For illustration, with OCR OPTIMIZE=TRUE, the
record of type parameter from Figure 3 above
yields the following list of search term lists, with a
range of possible matches from zero to five, corre-
sponding to its number of values. Note the spelling
variants for the first and second value. During term
matching (cf. below), only one item per search term
list needs to match in order for the value (first item
in each list) to match.

[[’Km’, ’Ktn’, ’Kni’, ’K,,,’],
[’µM’, ’pM’],
[’123’],
[’12’],
[’Acetyl-CoA’]]

As mentioned in Section 2, the buffer attribute
of records of type experimental condition is special
because its value is a manually edited, comma-
separated string containing several chemical sub-
stance names (see Figure 2). We split each value
string into a list of individual substance names, and
add each of these names as an additional search
term list for that record.
Then, in the second step, the actual term match-
ing is performed in the following way: For each
document d ∈ D, we iterate over all tokens in d (ex-
tracted from the XML output of pdftotext, cf.
Section 3), all records r ∈ R(d), and all search term
lists created for the respective r in the previous step.
Then, we iterate over the terms in each search term
list, trying to match each one in turn. Matching is
done simply by using regular expressions. If a term
can be matched to a token, we collect the matching
record’s ID and the matched value in the token’s
matchlist, and move on to the next search term list.
This matching process is performed only once, and
it is the same regardless of the value of sec size.
Next, sections of different sizes are created by mov-
ing a window of size sec size over all tokens in d,
one token at a time. These sections are the poten-
tial targets for backprojection. In our experiments,
sec size ranges from 3 to 39, in steps of 3, and the
following steps are performed for each value of
sec size. If the first token in a potential section has
a non-empty match list, a matching result for the en-
tire section is computed in the following way: First,
all record IDs with a match anywhere in the section
are collected. Then, for each of these records, a

section score is computed by counting the distinct
matches in the section and normalizing that with
the maximum number of possible matches. The
restriction to distinct values means that if a term
matches more than one token in a section, it is
only counted once for each record. Without this
restriction, values appearing repeatedly in the same
section (like e.g. unit names) would incorrectly
boost the scores for the respective records. In most
cases, a record will match several sections with
different scores, but we only select the top scoring
sections for each record. In the end, this results in
a mapping of record IDs to the top score for these
records and a list of sections with this score.
In addition, we introduce the following experi-
mental parameters into the backprojection step:
HL ROLE: If HL ROLE=IGNORE, highlighting
information is not used, if HL ROLE=ONLY, only
highlighted tokens (as determined by highlighted
text extraction (Section 3) will be considered for
matching. MIN MATCHES: The minimum num-
ber of values for a record that need to match in
a section in order for that section to be consid-
ered. MIN MATCHES < 2 will yield a lot of
spurious matches. REQUIRE NUM MATCH: If
REQUIRE NUM MATCH=TRUE, at least one of
the matched record values in a section must be nu-
meric. This is based on the rationale that numeric
values are more distinctive than e.g. matches for
parameter or unit names.

5 Experiments

5.1 A Note on Evaluation

As described in the task definition in the previ-
ous Section 4, the result of performing a DB-to-
document backprojection run with a given set of
parameters on a single document is a mapping of
each record in the document to those section(s) that
yielded the maximum score for that record (possi-
bly none). While the inspection of this result (in-
cluding visualisation, cf. below) is straightforward,
an actual quantitative evaluation is more difficult.
This evaluation would have to include the identifica-
tion of true and false positives (i.e. records that are
backprojected to correct resp. incorrect document
sections) and false negatives (i.e. records that were
not backprojected even though a document section
with a sufficient fraction of the record’s values ex-
ists). This form of evaluation is out of the scope of
the present paper. The most obvious reason is that,
at least at present, no annotated gold-level data is
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available which specifies, for each record, one or
more document sections as the correct backprojec-
tion target. In addition, it will become clear in what
follows that there not even is a simple notion of a
correct backprojection.

5.2 Preliminary Experiments
We performed a couple of preliminary experiments,
at first setting the parameters to HL ROLE= IG-
NORE, REQUIRE NUM MATCH= TRUE, and
MIN MATCHES= 2. On the level of the individ-
ual document, inspection of experimental results
is straightforward: Figure 5 contains a heatmap
with the result for one document which shows, for
each record7 (rows) and different values of sec size
(columns), the maximum score (top of cell) and the
number of sections with this score (bottom of cell).
Cell values are only displayed if they change from
column to column. The row headers contain the ID
and the total number of values for each record (i.e.
the size of V(r)), which is the maximum number
of possible matches.

Figure 5 allows to make several observations:
First, two records (269787 and 269763) could not
be backprojected at all under the applied settings,
which is visible in their score being 0.000 through-
out the whole range of sec size values. The overall
highest score of 0.833 was reached by six records,
each of which has six potentially matchable values,
in precisely one section. However, for the first,
third, and fifth record, the best match was found
for sec size=9, while for the fourth and sixth one,
sec size had to be as high as 24, and even 30 for the
second one. In other words, while the six values of
some of the records were found in close proximity
to each other, for others, they were scattered over
a range of more than twice resp. three times that
size.
Next, we inspect the effect of one possible way of
using automatically detected highlighting informa-
tion, by re-running the previous experiment with
HL ROLE= ONLY, i.e. we require the presence of
highlighting for a token to be part of a match. Ide-
ally, this should improve backprojection precision,
by eliminating spurious matches. Given the low
incidence of highlighting in our data (only 6.2%
of all tokens, cf. Section 3), this might drastically
reduce the number of records that can be matched
at all. What is more, given the unconstrained way

7For semantically identical records, only one, arbitrarily
selected ID is provided, because all other records have exactly
the same result.

in which the highlighting was applied by the cu-
rators, care has to be taken that the presence (and,
more importantly, the absence) of highlighting is
not over-interpreted.
Figure 6 displays the result for the same document
with HL ROLE= ONLY. Some effects are clearly
visible: Two records are no longer backprojected
at all.8 For two other records (163378193 and
269766), the maximum scores are reduced (from
0.833 to 0.500 and 0.333, respectively).
In summary, the above discussion shows that the
heatmap visualisation provides a reasonable and
reasonably compact representation of a complete
DB-to-document backprojection result. It allows to
identify record-to-section mappings with varying
plausibility, on the basis of how widely scattered
the values are in the target sections. This makes
it useful for the comparison of different results,
like the two results with HL ROLE= IGNORE and
ONLY. The actual verification and qualitative eval-
uation and error analysis, however, requires a more
detailed approach (cf. Section 5.3).

5.3 Detailed Analysis
For detailed (error) analysis, records can visually
be ’projected’ to their automatically detected target
sections. Figure 7 shows this for one page each
from two documents. These results were created
with OCR OPTIMIZE and USE SYNONYMS=
TRUE, and HL ROLE= IGNORE. Boxes on the
right-hand side show (at the top) the record ID and
the matching sec size and score, followed by the
section text as recognized by OCR, and all search
terms, one search term list (cf. Section 4.2) per
row. Unmatched values are given in bold red. The
following points are interesting to note. For the
first record on the top page, the system failed to
identify the ’NaCL’ token, which was caused by an
OCR error which misread ’NaCL’ as ’NaCI’. The
bottom three records on the top page exemplify the
positive effect of the OCR OPTIMIZATION, since
’µM’ was only matched because of the replace-
ment ’pM’ (the same is true for several records
in the lower page). It is also instructive to see
that, by setting HL ROLE= IGNORE, two matches
could be found in sections without any highlight-
ing. In the lower page, we see the positive effect of
USE SYNONYMS= TRUE in the third and forth
record, where the replacement ’NAD’ was found

8Both are actually false negatives, which were not high-
lighted but appeared as part of a table, which was highlighted
on the title level.
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Figure 5: Single Document-level result, HL ROLE=IGNORE
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Figure 6: Single Document-level result, HL ROLE=ONLY

instead of the originally required ’NAD+’. Finally,
the lower page also shows that highlighting is not
necessarily associated with extracted information.

6 Related Work

DB-to-document backprojection is related to sev-
eral NLP and document processing tasks, but it is
quite special in that it combines 1) OCR processing
of scanned documents, 2) information extraction,
3) template matching, and 4) strictly string-based
(as opposed to semantic) matching. Scanned pa-
per documents are much less often subject of text
or information extraction than born-digital docu-
ments like PDFs. Robust reading9 is a common

9https://rrc.cvc.uab.es/

term under which several approaches are collected.
A recent approach in this area is DeepReader (Vish-
wanath et al., 2018), which is a document under-
standing approach which seamlessly integrates low-
level OCR with recognition of higher-level docu-
ment structure and, to a certain extent, content.
Document Visual Question Answering (Mathew
et al., 2020), on the other hand, analyses scanned
documents beyond mere OCR of text content, in-
cluding manually applied highlighting, for answer-
ing questions about the documents’ content. On
the other hand, information extraction and seman-
tic representation or modelling, especially from
publications from the bio domain, is a very active
field (Vahdati et al., 2019; Anteghini et al., 2020).

https://rrc.cvc.uab.es/
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Figure 7: Sample results of Aron et al. (2007) (top) and Scott and Viola (1998) (bottom) (best viewed in color).
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The difference, however, is that in these cases, pre-
viously unknown information is extracted, based
on criteria that often take the form of templates in
which potential slot fillers are defined in terms of
semantic types (e.g. ENZYME) and (in the case
of numerical values), ranges. In DB-to-document
backprojection, in contrast, the expected informa-
tion is explicitly known, fully specified, and ’only’
needs to be located on the string level. Therefore,
in contrast to a lot of the related work mentioned
above, methods involving semantic similarity (like
BioBERT (Lee et al., 2020)) are not necessarily
superior to simple string matching when DB-to-
document backprojection is concerned.

7 Conclusions & Future Work

In this paper, we introduced, defined, and per-
formed some preliminary experiments with DB-
to-document backprojection, a novel scientific doc-
ument processing task. Our motivation for attempt-
ing this task comes from the requirements of a
biocuration project, and from our idea to re-purpose
previously unused (or rather under-used) data to
advance biocuration methods. The focus of this ini-
tial paper was mostly on motivation, on a definition
of the task and its functional parameters, and on
the development of a better understanding of the
effects and interactions of these parameters. For
the latter, we performed some simple experiments
and analysed the results. Rigorous evaluation, how-
ever, was not attempted, and, what is more, our
results showed that defining what it means for a
backprojection to be correct is difficult. While a
quantitative evaluation remains difficult, a quali-
tative inspection of backprojection results clearly
showed that the answer to our original research
question is a positive one, which is the main result
of this paper. Our findings regarding the role of
color highlighting for backprojection, on the other
hand, are somewhat mixed: While our system is
able to detect highlighted tokens with high accu-
racy, appropriate ways to integrate this information
into backprojection still need be be explored much
further. The approach of requiring highlighting for
matching, while not disproved yet, might be too
strict, and alternative strategies will be evaluated
in future work, for which our system and data sets
provide a valuable basis. Additional future work
includes the following: The optimization heuristics
against OCR errors, although already shown to be
effective in practice, are far from complete, and

should be improved by handling additional cases
of OCR errors, and other spelling variants. Also,
as suggested by one reviewer, XML versions of pa-
pers from e.g. PubMed could be used to inform the
backprojection task, which might also include auto-
matic correction of OCR errors. Future work will
also include the creation of an annotated dataset by
inspecting the automatic results and storing correct
highlighting in the extracted XML. Ideally, this
should be done with the help and feedback of do-
main experts. Finally, the system will be applied to
our full data set of 6, 000+ documents, which will
yield a stronger data basis for analysis.
Apart from the obvious use cases like quality assur-
ance in biocuration (and other fields where infor-
mation is manually extracted from documents), and
support for users of biological databases, both by
means of visualizations, we also envisage several
other potential applications for DB-to-document
backprojection. These include creation of multi-
modal training data for page-topology-based docu-
ment understanding systems like Katti et al. (2018),
creation of input for empirical studies on document
structure (distribution of information in scientific
documents), and others.
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Lange, and Maria-Esther Vidal. 2019. Semantic rep-
resentation of scientific publications. In TPDL, vol-
ume 11799 of Lecture Notes in Computer Science,
pages 375–379. Springer.

D Vishwanath, Rohit Rahul, Gunjan Sehgal, Swati,
Arindam Chowdhury, Monika Sharma, Lovekesh
Vig, Gautam M. Shroff, and Ashwin Srinivasan.
2018. Deep reader: Information extraction from
document images via relation extraction and natural
language. In Computer Vision - ACCV 2018 Work-
shops - 14th Asian Conference on Computer Vision,
Perth, Australia, December 2-6, 2018, Revised Se-
lected Papers, volume 11367 of Lecture Notes in
Computer Science, pages 186–201. Springer.

Ulrike Wittig, Maja Rey, Andreas Weidemann, Re-
nate Kania, and Wolfgang Müller. 2018. SABIO-
RK: an updated resource for manually curated bio-
chemical reaction kinetics. Nucleic Acids Research,
46(D1):D656–D660.

Ulrike Wittig, Maja Rey, Andreas Weidemann, and
Wolfgang Müller. 2017. Data management and data
enrichment for systems biology projects. Journal of
biotechnology., 261:229–237.

Wenyi Wu, Yan Wu, Dahui Hu, Yincong Zhou, Yanshi
Hu, Yujie Chen, and Ming Chen. 2020. PncStress:
a manually curated database of experimentally vali-
dated stress-responsive non-coding RNAs in plants.
Database, 2020. Baaa001.

https://doi.org/10.1111/1467-9817.12269
https://doi.org/10.1111/1467-9817.12269
https://doi.org/10.1371/journal.pone.0237731
https://doi.org/10.1371/journal.pone.0237731
https://doi.org/10.1371/journal.pbio.2002846
https://doi.org/10.1371/journal.pbio.2002846
https://doi.org/10.1093/database/baw150
https://doi.org/10.1093/database/baw150
https://doi.org/10.18653/v1/D18-1476
https://doi.org/10.18653/v1/D18-1476
https://doi.org/10.1080/00140139.2015.1100757
https://doi.org/10.1080/00140139.2015.1100757
https://doi.org/10.1101/058529
https://doi.org/10.1101/058529
http://arxiv.org/abs/2007.00398
http://arxiv.org/abs/2007.00398
https://doi.org/10.1093/nar/gky1079
https://doi.org/10.1093/nar/gky1079
https://doi.org/https://doi.org/10.1016/S0008-6215(98)00266-3
https://doi.org/https://doi.org/10.1016/S0008-6215(98)00266-3
https://doi.org/https://doi.org/10.1016/S0008-6215(98)00266-3
https://doi.org/https://doi.org/10.1016/S0008-6215(98)00266-3
https://doi.org/10.1007/978-3-030-21074-8_15
https://doi.org/10.1007/978-3-030-21074-8_15
https://doi.org/10.1007/978-3-030-21074-8_15
https://doi.org/10.1093/nar/gkx1065
https://doi.org/10.1093/nar/gkx1065
https://doi.org/10.1093/nar/gkx1065
https://doi.org/10.1016/j.jbiotec.2017.06.007
https://doi.org/10.1016/j.jbiotec.2017.06.007
https://doi.org/10.1093/database/baaa001
https://doi.org/10.1093/database/baaa001
https://doi.org/10.1093/database/baaa001

