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Abstract

Systematic reviews, which entail the extrac-
tion of data from large numbers of scientific
documents, are an ideal avenue for the appli-
cation of machine learning. They are vital to
many fields of science and philanthropy, but
are very time-consuming and require experts.
Yet the three main stages of a systematic re-
view are easily done automatically: search-
ing for documents can be done via APIs and
scrapers, selection of relevant documents can
be done via binary classification, and extrac-
tion of data can be done via sequence-labelling
classification. Despite the promise of automa-
tion for this field, little research exists that
examines the various ways to automate each
of these tasks. We construct a pipeline that
automates each of these aspects, and experi-
ment with many human-time vs. system qual-
ity trade-offs. We test the ability of classifiers
to work well on small amounts of data and
to generalise to data from countries not repre-
sented in the training data. We test different
types of data extraction with varying difficulty
in annotation, and five different neural archi-
tectures to do the extraction. We find that we
can get surprising accuracy and generalisabil-
ity of the whole pipeline system with only 2
weeks of human-expert annotation, which is
only 15% of the time it takes to do the whole
review manually and can be repeated and ex-
tended to new data with no additional effort.1

1 Introduction

Systematic reviews are part of the field of evidence-
based analysis, and are a methodology for con-
ducting literature surveys, where the focus is on

∗ Equal contribution, order determined by coin flip.
1 Code and links to models available at

https://github.com/seraphinatarrant/
systematic_reviews

comprehensively summarising and synthesising ex-
isting research for the purpose of answering re-
search questions (Higgins et al., 2019). The aim of
this process is to be very broad coverage to avoid
unknown bias creeping into results via the alterna-
tive of cherry-picking scientific results (Chalmers
et al., 1995). Conducting systematic reviews re-
quires trained researchers with domain knowledge.
The stages of the process are time-consuming, but
vary in how much physical and mental labour they
require (Borah et al., 2017). As a result, system-
atic reviews suffer from three primary challenges
(Allen and Olkin, 1999; Shojania et al., 2007):

1. they are very expensive, as they require many
months of expert human labour;

2. they easily become out of date, for the same
reason;

3. there is no amortised cost to human time at
expanding them; human effort is linear in
amount of research reviewed.

So though systematic reviews have been shown
to be very effective and less prone to human bi-
ases (Mulrow, 1994), these issues often prove pro-
hibitive.
However, these challenges are well suited to Ma-
chine Learning solutions, and there has recently
been an increase in interest in applying NLP to
this process (Marshall and Wallace, 2019). In this
paper, we investigate the feasibility of implement-
ing the multi-stage human process of a systematic
review as a Machine Learning pipeline. We con-
struct a systematic review pipeline which aims to
assist researchers and organisations focusing on
livestock health in various African countries who
previously performed reviews manually (via a pro-
cess visualised in Figure 1). The pipeline begins

https://github.com/seraphinatarrant/systematic_reviews
https://github.com/seraphinatarrant/systematic_reviews


185

with scraping for articles, then classifies them into
whether or not to include in the review, then identi-
fies data to extract and outputs a spreadsheet. We
discuss the technical options we evaluated at each
steps. Pipeline components are evaluated with in-
trinsic metrics as well as more pragmatic, extrinsic,
considerations such as time and effort saved.

While previous work exists surveying the appli-
cability of various Machine Learning methods and
toolkits to the systematic review process (Section
6) and a few apply them, there are no extant stud-
ies that implement a full system and analyse the
trade-offs between different methods of training
data creation, different annotation schemas, human
expert hours needed to build a system, and final ac-
curacy. We experiment with all of these factors, as
well as with a few different architectures, with the
aim of informing the planning and implementation
of systematic review automation more broadly.

To further this goal, we particularly experiment
with low resource scenarios and with generalisabil-
ity. We investigate different thresholds for training
data for the document classifier and different anno-
tation schemas for the data extraction. We addition-
ally test the ability of the system to generalise to
documents from new countries.

Key research questions are as follows:

Extraction Which techniques are best for identi-
fying and extracting the desired information?

Data Requirements How much labelled training
data is needed? Can existing resources be lever-
aged?

Re-usability How generalisable is a pipeline to
new diseases and countries?

Performance What is the trade-off between
pipeline accuracy and human time savings?

Architecture & Pre-training How important is
model architecture as applied to extraction tasks?
How important is embedding pre-training, and how
important is pre-training on scientific literature vs.
general content (domain match)?

We find that surprisingly little training data (and
few human hours) are necessary to get an accurate
document classifier, and that it generalises well to
unseen African countries (Section 5), which en-
ables systematic reviews to be expanded to new
areas with essentially constant time. In our text
extraction experiments, we find that both sentence

and phrase level extraction models can each play
a role in such a pipeline, but that phrase extrac-
tion, which has not previously been done for this
task, performed better than expected both with
baseline CNN models (Yang et al., 2016) and with
BERT-based Transformers (Devlin et al., 2019),
with Transformers based on scientific pre-training
(Beltagy et al., 2019) performing best. We demon-
strate how the creation of labelled training data can
be sped up through annotation tools, and that con-
sideration should be given to the balance of training
examples present within this data, since doing so
may require less data overall while still maintaining
good performance. Furthermore, besides automatic
information extraction, much labour in construct-
ing systematic reviews can be saved through simply
automating the process of searching and download-
ing documents.

We empirically demonstrate that most of the
three month pipeline of a systematic review can
be automated to require very little human inter-
vention, with acceptable accuracy of results. We
release our code, annotation schema, and labelled
data to assist in the expansion of systematic reviews
via automation.

While we demonstrate this system on one do-
main, the framework is domain independent and
could be applied to other kinds of systematic re-
views. New training data and annotation schemes
would be necessary to switch to medical or other
domains, but our findings on time saving processes
for annotation would apply, and confidence thresh-
olds that we implement are adjustable to customise
to different levels of accuracy to human time trade-
offs that are appropriate to different fields. Our
exploration into necessary amounts of training data
for accuracy and generalisability are broadly appli-
cable.

2 Background and Motivation

As a case study, we work with the Supporting Evi-
dence Based Interventions team at the Royal (Dick)
School of Veterinary Studies at the University of
Edinburgh, focusing on putting data and evidence
at the centre of livestock decision-making in low
and middle-income countries, predominantly in
Africa. In these countries, livestock offer a path out
of poverty for millions of smallholders, as well as
providing vital nutrition for families and commu-
nities. While the veterinary technology and tech-
niques required to improve livestock outcomes al-
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ready exist (and are readily available to large scale
commercial concerns worldwide), there is a lack
of reliable information on animal health and pro-
ductivity in these countries, at this scale. This data
is needed not only in order to best target interven-
tions, but to select the most efficient intervention
in any particular context.

There is very little data in this area for these
countries, and it is often out of date. One proxy for
direct measurement of livestock health in all herds
in a country is the evidence found in veterinary sci-
ence research publications, which have conducted
prevalence studies. Individually, these studies give
an indication of the prevalence of a specific disease
in a specific region of a country at a specific time,
affecting a specific breed of animal. But collec-
tively, they give a much broader understanding of
livestock health.

Four strands of data are of key importance: gen-
eral livestock statistics (herd size and character-
istics), health (mortality and disease), production
(yields and growth rates) and economics (breeding
costs, feeding costs, produce sale values). Here,
we focus on health, specifically the prevalence of
a wide range of diseases (e.g. brucellosis, foot
and mouth disease) that effect ruminants (sheep,
goats and cattle), with a focus on countries such as
Nigeria, Ethiopia and Tanzania.

Figure 1: Human-based information extraction system-
atic review pipeline.

However, collecting and summarising the find-
ings of these studies is time-consuming manual
work. For example, searching databases such as
Google Scholar, Pubmed and Web of Science for
prevalence studies, conducted between 2010 and
2018 on 28 diseases in small ruminants in Ethiopia,
returned many thousands of results. Of these,

403 papers were considered relevant and informa-
tion was extracted by experienced veterinarian re-
searchers. The completely manual process, out-
lined in Figure 1, produced high quality data but
took approximately three months.

The target information consists of dates (the
start/end of the study), numerical data (sample
size, direct/percentage prevalence numbers, ani-
mal age) and small lexical terms. These terms can
be veterinary (diagnostic tests used, production sys-
tems, study design, statistical analysis performed,
species) or geographic (region, ecosystem).2

Since this summarisation process isn’t abstrac-
tive, readers find it easy, if time-consuming, to
identify the relevant information in research papers.
The current project aimed to automate as much
of the process as possible, to allow it to scale to
a wider range of diseases (approximately 50) and
countries. All but the initial component of Fig-
ure 1 can be entirely automated – humans are still
required to define search terms.

3 Pipeline Details & Experimental Setup

In the following we detail each stage of the con-
structed pipeline, how it compares to the human
version and the human time saved. In the succeed-
ing Section 4 we detail metrics and evaluation for
our targeted experiments with the classification and
extraction pipeline components.

3.1 Document Search

The highest return on investment in terms of
engineering effort vs. human time-savings was
our automation of literature searches. Previously,
researchers would construct a list of searches to
perform, input these into various databases, then
manually download the results they considered
relevant. An example search is (Livestock
OR ruminants OR sheep OR goats
OR cattle OR cow OR ram OR ewe OR
bull) AND (Ethiopia) AND (Anthrax
OR "Bacillus anthracis") AND
(prevalence OR incidence)

APIs are available for Scopus, Pubmed and Web
of Science, for which we obtained institutional
access. Google Scholar has no available API,
so we used the SerpApi service3 which provides
paid programmatic access. The pipeline therefore
maintains full coverage of paper sources. As the

2Appendix A contains example target extracted data
3https://serpapi.com/

https://serpapi.com/
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APIs return only links to papers, PDFs still need
to be retrieved. Issues to navigate here included
links to websites rather than files, which requires
additional negotiation through user-agent strings,
parsing HTML for links to the PDF or parsing
page headers to extract metadata redirecting to a
PDF such as citation pdf url. A generic
approach was successful in most cases but site-
specific downloaders had to be constructed for 38
domains, based on trial and error.

Time spent on retrieval of potentially relevant
documents to include in the systematic reviews
were reduced dramatically, with the main limiting
factor being rate throttles on APIs. Conducting
searches on all four databases for 50 diseases in
3 countries takes approximately one hour on one
machine and requires no human input. Parallel
downloading of PDFs is even faster. This can be
repeated at any interval to keep results up to date.
By contrast, this step of the process used to take
human experts 83 hours (2 weeks full-time) each
time it was done, while covering fewer diseases
and only one country.

3.2 Document Classification

Once search results have been collected, retrieved
PDFs must be classified for inclusion vs. exclusion
in the systematic review. Human reviewers use var-
ious criteria to assess inclusion (peer-review, type
of study/experiment, subject matter) which, as we
observed in user studies, they determine entirely
from the title and abstract. We use the PDF DOI or
ISSN to retrieve the title and abstract 4 using the
Wikimedia Citoid API 5. We then train an SVM
Classifier implemented in Sci-kit Learn (Pedregosa
et al., 2011) with concatenated TF-IDF Vectors,
which can train in under an hour on a standard
Linux machine. The classification process, which
previously took a human expert 20 hours for 1000
documents, now generates results in minutes. We
additionally implemented human review of docu-
ments with low classifier confidence (further details
in Section 5) upon consultation with our system-
atic review experts, as this both increases classifier
accuracy and human trust in results.

4PDFs are converted to text in the following step and we
could use the title and abstract from extraction, but PDF ex-
traction is noisy and so we chose to rely on reference database
lookups where available.

5https://en.wikipedia.org/api/rest_v1

3.3 PDF to Text Conversion

Relevant PDFs are converted to plain text with the
pdfminer.six package6. The text data extracted
from PDFs can be noisy – tables are especially
problematic, headers/footers may end up inside
main text, word and line spacing may be incon-
sistent, fonts may be improperly converted to text.
The bulk of this can be overcome through basic
pre-processing.

Once converted, the text is split into paper sec-
tions (e.g. abstract, introduction, methods) using
regular expressions derived from manual inspection
of 100 papers. This involves matching spans of text
which appear between common section titles. For
example, the abstract generally appears between
‘abstract’ and ‘introduction’, ‘abstract’ and ‘key-
words’, ‘summary’ and ‘introduction’.7

3.4 Data Extraction

The goal of a systematic review is to output a tab-
ular file where each column stores target informa-
tion for each paper; this will then later be used to
generate visualisations. Manually extracting this
information is easy for knowledgeable humans: it
isn’t abstractive and does not require close reading
of the full text. However, it is time-consuming at
scale and does require experts, so both performing
the process manually and creating training data in-
curs a significant cost. In addition, the different
kinds of target information pose different techni-
cal challenges. Consider the sentence Rose Bengal
Plate Test found 1.72% (5/291) of the samples to be
sero-positive, which contains information about the
diagnostic test used, the prevalence rate and sample
size, all of which we want to capture. The phrase
associated with the diagnostic test can be under-
stood out of context but numbers generally cannot.
Simply extracting all percentages from a text will
be uninformative, rendering rule-based extraction
approaches unsuitable. We therefore explored two
machine learning approaches to automatic extrac-
tion to balance the difficulty in creation of anno-
tated training data with suitability of the extraction
approach.

A sentence-based classifier can be used to la-
bel sentences as containing target information, and
has been the method of extraction used in previ-
ous work (Marshall et al., 2017; Kiritchenko et al.,

6https://github.com/pdfminer/pdfminer.
six

7PDF processing is documented fully in released code.

https://en.wikipedia.org/api/rest_v1
https://github.com/pdfminer/pdfminer.six
https://github.com/pdfminer/pdfminer.six
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2010; Schmidt et al., 2020). But this does not
fit in well with the desired tabular output for all
target fields: the same information can appear in
multiple sentences and the same sentence can con-
tain multiple targets. However, this approach is
much easier for a human annotator. It should also
work well for numerical targets: the context is pre-
served in the output and non-relevant numerical
targets will be ignored or scored low. Alternatively,
a phrase-based classifier can apply labels to indi-
vidual words and phrases within sentences. The
extracted information will be more focused and
should work well for phrase-based targets. The
results will not require rule-based and human post-
processing, as with the results of sentence-based
extraction, but training data creation is more oner-
ous. So given a fixed amount of human expert
hours available, this approach may be less desir-
able, since it will generate much less training data.

We test the difference between both approaches
using CNN-based text classification and named en-
tity recognition models implemented in Prodigy8.
This tool combines data annotation and model train-
ing. We created an annotation schema with 16 la-
bels taken from manually created gold standard
systematic review output.9

Creating training data for a sentence-based clas-
sifier is mechanically simple: the Prodigy annota-
tion tool allows non-technical users to quickly as-
sign labels using an interface with keyboard short-
cuts, and we can display one sentence at a time.
Prodigy also allows phrase-level labelling, but this
is a more involved process as the user must mark
the start/end boundaries of a span and then apply
the appropriate label. A single veterinarian labelled
4600 items at the sentence level in 56 hours, report-
ing the process to be easy and straightforward. The
same veterinarian labelled 4200 items at the phrase
level in 70 hours, reporting it to require much more
physical and mental effort.

4 Methodology

We performed detailed evaluation of the different
classification and extraction components.

Document Classification We investigate the
trade-off between training data volume and perfor-
mance, and how generalisable a model is. For train-
ing volume, we fix a test set and reduce training

8https://prodi.gy/
9Annotation schema included in code repository.

data in chunks of 20% of total. We test generalis-
ability by training models on country-specific data
and evaluating on unseen data from other countries.
We report Accuracy overall, as well as Precision,
Recall, and F1 on the include label in this binary
classification task. Finally, we investigate the effect
of thresholding classifier confidence, and sending
low confidence documents for manual human re-
view, on both the accuracy of the system and on
human time cost.

Data Extraction We evaluate the sentence clas-
sifier and sequence-labelling approach with our
CNN models. We also consider the impact of using
document representations constructed with embed-
dings trained entirely on the source data, versus
general purpose GloVe embeddings (Pennington
et al., 2014) trained on web data, versus general pur-
pose GloVe embeddings fine-tuned on the source
data10. As the sentence-level classifier is multi-
label and multi-class, we report AUC (Area Under
Curve).11 For the phrase-level sequence labelling
approach, we report F1 score.

4.1 Training Data Creation
Document Classification veterinarian experts
manually labelled papers as include/exclude: 608
papers from searches for 50 diseases for the coun-
tries of Ethiopia, Nigeria and Tanzania. We exper-
imented with labelling 100 test documents: half
via a reference manager/document reader12 and via
a simple spreadsheet interface where one column
contained the paper title, one contained the paper
abstract, and the expert filled in a third column
for the include/exclude label.13 The spreadsheet
method was 3 times faster than using a reference
manager, enabling experts to complete the 608 pa-
pers of training data in 5 hours. Half the data con-
tains country information, so we use only that half
for our generalisability experiments.

Data Extraction 52 documents were randomly
sampled from the set of documents manually classi-
fied for inclusion. The sampled documents covered
13 diseases for studies in Ethiopia, Nigeria and Tan-
zania. Only abstracts, results and methods sections
were annotated.

10Implemented in spacy https://spacy.io/
11AUC t̄rue positive vs false positive rate over a range of

discrimination thresholds
12Zotero (zotero.org) was chosen as it is the only ser-

vice which provides an API
13Recall that criteria for inclusion in the study are fully

determinable via these fields.

https://prodi.gy/
https://spacy.io/
zotero.org
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Data Description Phrases Sentences
disease Animal disease 3307 (31.5%) 778 (31.4%)
species Species studied 2002 (19.1%) 518 (20.9%)
region Area within country 1487 (14.2%) 298 (12.0%)

individual prevalence Number of infected animals 743 (7.1%) 172 (6.9%)
diagnostic test Test used to detect disease 729 (6.9%) 172 (6.9%)

reference Reference to another study 591 (5.6%) 137 (5.5%)
sample type Biological samples used 486 (4.6%) 117 (4.7%)

statistical analysis Analysis performed 261 (2.5%) 63 (2.5%)
age Ages of animals tested 228 (2.2%) 65 (2.6%)

sample size Number of animals tested 161 (1.5%) 24 (1.0%)
production system Type of farm 141 (1.3%) 43 (1.7%)

ecosystem Geography of farm 141 (1.3%) 44 (1.8%)
study design Type of study used 120 (1.1%) 28 (1.1%)

study date Date study was conducted 64 (0.6%) 8 (0.3%)
herd prevalence Number of herds infected 28 (0.3%) 7 (0.3%)

mortality Animals killed by disease 5 (0.0%) 1 (0.0%)

Table 1: Proportion of target items identified during data annotation.

To select a manageable volume of data for an-
notation, and avoid including noisy data from the
PDF extraction process, we applied some restric-
tions. For the sentence-based task, all sentences of
at least 9 words within the abstract were included,
along with a random sample of 150 sentences (be-
tween 9 and 25 words long) from the results and
methods sections. Sentence length was based on
the fact that very short/long sentences were gen-
erally noisy due to the PDF conversion process.
For the phrase-based task, sections were split into
chunks of three sentences to preserve some context.
The entire abstract was used, plus a random sample
of 25 chunks from each of the methods and results
sections.

Table 1 briefly describes each item and the break-
down of label frequency in our annotated data.
There is a clear imbalance in label frequency –
some are not commonly reported in general (e.g.
mortality, herd prevalence) while others are re-
ported very few times per paper (e.g. study date).

4.2 Experimental Conditions

Data Volume We trained document classifica-
tion models using proportions from 20% to 100%
of all data.

Generalisability Three document classification
models were each trained on two of the three coun-
tries, with the final country held out. We included
data volume ablations in these experiments as well.

Sentence vs. Phrase Models We trained the
CNN-model on sentence labelled vs. phrase la-

belled data to assess the feasibility of using each
annotation approach.

Architecture & Pretraining We experiment
with five different architectures for the phrase-
based models. We use the Prodigy CNN with
randomly-initialised embeddings, the Prodigy
CNN with frozen pre-trained embeddings, the
Prodigy CNN with pre-trained embeddings fine-
tuned on our data, distilBERT (Sanh et al., 2019),
and SciBERT (Beltagy et al., 2019). The CNN
is easy to implement out of the box, as it is built
into the annotation tool, can be trained without
access to a GPU, and could potentially be less data-
hungry than a transformer - all important consider-
ations in our resource constrained setting. Adding
pre-trained embeddings allows us to isolate the ef-
fect of pre-training from the effect of architecture.
Since the phrase-labelling task is well suited to
the masked language modelling objective, we ad-
ditionally experiment with fine-tuning distilBERT
(which is reasonably sized for our small amount
of data) and SciBERT, to test whether the domain
match of pre-trained data matters.

5 Results

Results for document classification experiments
are shown in Figure 2. The upper left quadrant of
Figure 2 contains data for 608 documents with an
85-15 train-test split across all 3 countries, showing
an expected increase in classifier performance as
data increases, but levelling off slightly by 80%
of the full training volume. The other quadrants
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Figure 2: Accuracy, Precision, Recall, and F1 for the document classification model showing performance changes
as training data is decreased for the full set of 608 documents (85-15 train-test split), as well as generalisability to
held out countries. Et=Ethiopia, Ta=Tanzania, and Ni=Nigeria. Note that country experiments have only 200 train
and 100 test documents (100 per country, with test held fixed).

show the same data for 100 documents per country
(200 train, 100 test) but with a minimum of 60% of
total data, as with less than 100 training samples
the model does not converge.

For the data volume studies on the full dataset,
a notable trend is that recall is quite high even
with very little training data ( 100 documents), and
that what the classifier learns with additional data
is predominantly a better precision-recall balance.
For the held-out-country generalisability studies,
the amount of training data is more important, and
recall is no longer high immediately.

This suggests that for a fixed country with a
semi-automated system that has resources for a sec-
ondary human-filtering, very little training data is
necessary. However, extensibility to new countries
does require more data. Given that additional more
data, performance on unseen countries is equal to
that of known countries of equivalent training set
volumes. This suggests an important new extensi-

bility opportunity for systematic review systems.
In practice, our experts needed slightly higher ac-

curacy than the best combined accuracy. To address
this we implemented confidence-thresholding, such
that documents below a user-set threshold are up-
loaded to a needs review folder, which generates
a weekly email. 15% of test documents require
review at our final confidence threshold, which re-
duces human time to 20 min per 100 documents
classified, but allows for an increased accuracy to
88%. Human reviews are then fed back into classi-
fier training, which should incrementally improve
confidence and reduce human labour over time. We
leave that longitudinal study for future work.

Results for three CNN-based sentence-level data
extraction models are shown in Figure 3a. We
report mean AUC score on all labels (with standard
deviation shown) with an 80/20 train/test split.

For sentence-level models, fine-tuned web em-
beddings give better performance overall. Mean



191

CNN+L
ea

rne
d

CNN+W
eb

CNN+T
un

ed

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

 s
co

re

(a) Sentence-level classification: Mean AUC
score, over all labels, for three embedding
sources. Error bars denote standard devia-
tion.
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(b) Phrase-level classification: Mean Precision/Recall/F1, over all
labels, for three embedding sources and two Transformer-based models.
Error bars denote standard deviation.

AUC score was 0.96 (stdev 0.05) using fine-tuned
general purpose web embeddings; 0.91 (stdev 0.08)
using learned embeddings; 0.89 (stdev 0.15) using
general purpose web embeddings.

For phrase-level models, this is no longer true:
mean F1 score was 0.67 (stdev 0.22) using pre-
trained general purpose web embeddings; 0.68
(stdev 0.2) using learned embeddings; 0.64 (stdev
0.27) using fine-tuned general purpose web embed-
dings. Transformer-based models performed more
strongly: F1 for DistillBERT was 0.70 (stdev 0.29),
SciBERT 0.75 (stdev 0.23).

Focusing on the items considered most important
by the veterinarian researchers (disease, species,
region, individual prevalence, diagnostic test, sam-
ple type, sample size, study date), results in an in-
crease of 0.03 AUC for each sentence-level model.
Phrase-based models F1 score increases by 0.10.

These results suggest that pre-training is im-
portant for the sentence-based classifier, and that
the BERT-based Transformer architecture with the
masked language modelling objective can do very
well on phrase-level extraction and bring perfor-
mance high enough to make this approach feasi-
ble. However, they show that domain-specific pre-
training data has a larger effect than architectural
differences. While Transformer-based models for
phrase-level labelling out-performed CNN-based

models, it was the SciBERT model trained on aca-
demic papers, then fine-tuned on our specific task,
which gave the best performance, and a larger per-
formance boost than the initial jump from BERT.
The best type of pre-training does vary based on
type of extraction: general purpose embeddings
perform worst for sentence-level labelling, though
are on par with those learned from the training data
for phrase-level labelling.

We analyse per-label performance for the SciB-
ERT model to verify phrase-level feasibility, and
include this data in Figure 4 in Appendix B. Per-
formance is generally high, even for some low-
frequency items. Some of these were uncommon
in our training data (due to appearing only once
or twice per paper) but naturally appear in many
academic papers in general, which goes towards
accounting for the success of SciBERT on this task.
For example, SciBERT was the only model to cor-
rectly identify any instances of herd prevalence.

6 Related Work

The application of NLP to systematic reviews is rel-
atively new, but has been recently receiving more
attention. There is a growing body of work that
assesses the potential for automation in systematic
reviews, but little that builds systems for the pur-
pose and tests them empirically.
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Marshall and Wallace (2019) review available
tools that can be used to automate each ele-
ment of the systematic review pipeline. Mar-
shall et al. (2020) further review opportunities for
semi-automation and assess opportunities and risks.
Marshall and Brereton (2015); O’Mara-Eves et al.
(2015) conduct systematic reviews of automation
for systematic reviews. Thomas et al. (2017) anal-
yse the systematic review pipeline to find ways that
human-machine collaboration can be applied and
improve the speed.

Marshall et al. (2017) create a PDF viewer that
humans can use to make the systematic review
process easier and faster, by training a CNN to
assess risk of bias in a document (an important
part of evidence-based analysis in the medical do-
main, though not for our particular task) and identi-
fies and displays sentences to the user that contain
a subset of the information necessary for a sys-
tematic review. Kiritchenko et al. (2010) create
an extraction system that identifies sentences and
then post-processes them to extract data, but op-
erate only on structured HTML & XML. Schmidt
et al. (2020) apply fine-tuned BERT-based Trans-
formers to the task of to sentence classification for
semi-automated systematic review. Goswami et al.
(2019) build a PDF retrieval system for systematic
reviews for psychology and use a random forest
classifier to identify sentences for extraction.

As far as we are aware, no other work builds a
phrase-based system, tests data volume and gen-
eralisability, or applies a diverse set of modern
architectures to the task.

7 Conclusion & Future Work

We investigated the application of automation to
all stages of the systematic review pipeline for our
veterinary research case study. We found that with
two weeks ( 80 hours) of human expert annotation
we can automate a systematic review that previ-
ously took 3 months, and still maintain high levels
of accuracy. Our classification system generalises
well, enabling it to be applied to new countries for
additional systematic reviews with no additional
human annotation cost. Sentence-based and phase-
based data extraction both perform well, and the
creation of phrase-based training data can still fit
within a small amount of human annotation hours
and avoids the need for extensive post-processing.
Fine-tuned BERT-based Transformers perform best
at data extraction, with BERT pre-trained on scien-

tific data giving the largest boost in performance,
though a baseline CNN still performs surprisingly
well. In future work, we plan to test generalis-
ability cross-lingually, expand the generalisability
tests to extraction as well as classification, and
study the performance improvements of continu-
ous training of classifiers on human corrections of
low-confidence output.
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A Target Extracted Data

In Table 2 is the first 15 lines of a sample gold stan-
dard target data from a human systematic review
(broken into two tables for display) that we use as
a template for building our system. Note that some
fields are blank because information was not found
in or relevant to a given entry.

B Detailed Analysis of Phrase-level
Classification Performance

Displayed in Figure 4 are the per label performance
breakdowns for SciBERT, the strongest phrase-
level extraction model. Performance remains high
across many individual labels, with changes in per-
formance mostly tracking with commonness of the
information (and thus, how much training data is
available for a fixed set of annotated documents).
The exceptions to this trend are the region and
sample size labels, which have lower performance
compared to equivalently common labels
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ROW NUMBER IDENTIFIER YEAR PUBLICATION REFERENCE START DATE DATA END DATE DATA STATE ECOSYSTEM PRODUCTION SYSTEM SPECIES AGE AGE DETAIL
1 Nigussie et al; 2010 2010 Nigussie et al 2007 2008 Oromia Mixed farming Cattle
2 Regassa et al; 2010 2010 Regassa et al 2007 2008 SNNPR Cattle
2 Regassa et al; 2010 2010 Regassa et al 2007 2008 SNNPR Cattle
3 Regassa et al; 2010 2010 Regassa et al 2007 2008 SNNPR Cattle
4 Bekele et al; 2010 2010 Bekele et al 2008 2003 SNNPR Cattle
5 Shiferaw et al 2013; 2010 2010 Shiferaw et al 2013 2007 2008 Afar Cattle
6 Shiferaw et al 2011; 2010 2010 Shiferaw et al 2011 2007 2008 Afar Cattle
7 Shiferaw et al 2010; 2010 2010 Shiferaw et al 2010 2007 2008 Afar Cattle
8 Shiferaw et al 2014; 2010 2010 Shiferaw et al 2014 2007 2008 Afar Cattle
9 Shiferaw et al 2012; 2010 2010 Shiferaw et al 2012 2007 2008 Afar Cattle
10 Kumsa et al; 2010 2010 Kumsa et al 2006 2006 SNNPR Sheep
11 Kumsa et al; 2010 2010 Kumsa et al 2006 2006 SNNPR Sheep
12 Kumsa et al; 2010 2010 Kumsa et al 2006 2006 SNNPR Sheep
14 Amenu et al; 2010 2010 Amenu et al 2007 2007 Oromia Mixed farming Cattle
14 Amenu et al; 2010 2010 Amenu et al 2007 2007 Oromia Mixed farming Cattle

DISEASE SAMPLE DIAGNOSTIC TEST MEASUREMENT NUMBER POSITIVE NUMBER TESTED PERCENTAGE CALCULATION COMMENTS SOURCE
BVD Serum i-ELISA Individual Prevalance 65 567 11.4638447971781 TOTAL national surveillance/mixed altitudes (midland, highland)/zone&sex splitting/adult>young(<3y) LITERATURE
Tb Intraderm test CIDT Herd Prevalance 19 39 48.7179487179487 TOTAL >6 MONTHS LITERATURE
Tb Intraderm test CIDT Individual Prevalance 48 413 11.6222760290557 TOTAL >6 MONTHS LITERATURE
Tb PM specimen PM Individual Prevalance 11 1023 1.0752688172043 TOTAL LITERATURE
TRYPs Blood BC Individual Prevalance 71 323 22 TOTAL East African zebus, >1y/T. congolense, vivax&brucei splitting LITERATURE
FMD Survey Individual Mortality 0.73 TOTAL LITERATURE
Pasteurelloses Survey Individual Mortality 1.5 TOTAL LITERATURE
CBPP Survey Individual Mortality 2.5 TOTAL LITERATURE
Blackleg Survey Individual Mortality 0.13 LITERATURE
Anthrax Survey Individual Mortality 1.3 LITERATURE
Endoparasites Faeces Floatation, Microscopy Individual Prevalance 6.7 TOTAL Strongyloides papillosus LITERATURE
Endoparasites Faeces Floatation, Microscopy Individual Prevalance 15 TOTAL Trichuris spp LITERATURE
Endoparasites Faeces Floatation, Microscopy Individual Prevalance 100 TOTAL Gi parasites/Strongyle eggs LITERATURE
Tb Intraderm test SCIDT Herd Prevalance 35 TOTAL LITERATURE
Tb Intraderm test SCIDT Individual Prevalance 27 425 6.35 TOTAL LITERATURE

Table 2: Example target extracted data from a gold-standard human systematic review
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Figure 4: Phrase-level classification: Precision/Recall/F1, per label, for SciBERT. From top left to bottom right:
most to fewest examples in training data.


