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Abstract

Despite the advancements in search engine fea-
tures, ranking methods, technologies, and the
availability of programmable APIs, current-
day open-access digital libraries still rely on
crawl-based approaches for acquiring their un-
derlying document collections. In this pa-
per, we propose a novel search-driven frame-
work for acquiring documents for such scien-
tific portals. Within our framework, publicly-
available research paper titles and author
names are used as queries to a Web search
engine. We were able to obtain ≈ 267, 000
unique research papers through our fully-
automated framework using ≈ 76, 000 queries,
resulting in almost 200, 000 more papers than
the number of queries. Moreover, through a
combination of title and author name search,
we were able to recover 78% of the original
searched titles.

1 Introduction

Scientific portals such as Google Scholar, Seman-
tic Scholar, ACL Anthology, CiteSeerx, and Arnet-
Miner, provide access to scholarly publications and
comprise indispensable resources for researchers
who search for literature on specific subject topics.
Moreover, many applications such as document
and citation recommendation (Bhagavatula et al.,
2018; Zhou et al., 2008), expert search (Balog et al.,
2007; Gollapalli et al., 2012), topic classification
(Caragea et al., 2015; Getoor, 2005), and keyphrase
extraction and generation (Meng et al., 2017; Chen
et al., 2020) involve Web-scale analysis of up-to-
date research collections.

Open-access, autonomous systems such as
CiteSeerx and ArnetMiner acquire and index freely-
available research articles from the Web (Li et al.,
2006; Tang et al., 2008). Researchers’ homepages
and paper repository URLs are crawled for main-
taining the research collections in these portals,

using focused crawling. Needless to say, the crawl
seed lists cannot be comprehensive in the face of
the ever changing Scholarly Web. Not only do
new authors and publication venues emerge, but
also existing researchers may stop publishing or
they may change affiliations, resulting in outdated
seed URLs. Given this challenge, how can we au-
tomatically augment the document collections in
open-access scientific portals?

To address this question, in this paper, we pro-
pose a novel framework (based on Web search)
for both automatically acquiring and processing
research documents. To motivate our framework,
we recall how a Web user typically searches for
research papers or authors. As with regular doc-
ument search, a user typically issues Web search
queries comprising of representative keywords or
paper titles for finding publications on a topic.
Similarly, if the author is known, a “navigational
query” (Broder, 2002) may be employed to locate
the homepage where the paper is likely to be hosted.
To illustrate this process, Figure 1 shows an anec-
dotal example of a search using Google for the title
and authors of a research article. As can be seen
from the figure, the intended research paper and
the researchers’ homepages (highlighted in sets 2
and 3) are accurately retrieved. Moreover, among
the top-5 results shown for the title query (set 1),
four of the five results are research papers on the
same topic (i.e., the first four results). The docu-
ment at the Springer link is not available for free,
whereas the last document corresponds to course
slides. The additional three papers are potentially
retrieved because scientific paper titles comprise a
large fraction of keywords (Chen et al., 2019), and
hence, the words in these titles serve as excellent
keywords that can retrieve not only the intended
paper, but also other relevant documents.

Our framework mimics precisely the above
search and scrutinize the approach adopted by
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Figure 1: An anecdotal search example for illustration.

Scholarly Web users. Freely-available information
from the Web for specific subject disciplines1 is
used to frame title and author name queries in our
framework. Our contributions are as follows:

• We propose a novel integrated framework
based on search-driven methods to automati-
cally acquire research documents for scientific
collections. To our knowledge, we are the first
to use “Web Search” based on author names
to obtain seed URLs for initiating crawls in
an open-access digital library.

• We design a novel homepage identification
module and adapt existing research on aca-
demic document classification, which are cru-
cial components of our framework. We show
experimentally that our homepage identifica-
tion module and the research paper classifier
substantially outperform strong baselines.

• We perform a large-scale, first-of-its-kind ex-
periment using 43, 496 research paper titles
and 32, 816 author names from Computer and
Information Sciences. We compare our frame-
work with two baselines, a breadth-first search
crawler and, to the extent possible, the Mi-
crosoft Academic. We discuss that our frame-
work does not substitute these systems, but
rather they very well complement each other.
As part of our contributions, we will make all
the constructed datasets available.

2 Our Framework

Figure 2 shows the control flow paths of our pro-
posed framework to obtain research papers and
thus augment existing collections. In Path 1, paper
titles are used as queries and the PDF documents

1For example, from bibliographic listings such as DBLP or paper metadata
available in ACM DL.

Figure 2: Schematic Diagram of our Framework.

resulting from each title search are classified with
a paper classifier based on Random Forest. Author
names comprise the queries for Web search in Path
2, the results of which are filtered by a homepage
identification module trained using RankSVM. The
predicted author homepages from Path 2 serve as
seed URLs for the crawler module that obtains all
documents up to a depth 2 starting from each seed
URL. The paper classification module is once again
employed to retain only research papers. Note that
we crawl only publicly available and downloadable
documents those appear in the search responses of
the Web search or from the researcher homepages.

The accuracy and efficiency of our Search/Crawl
framework is contingent on the accuracy of two
components: (1) the homepage identifier, and (2)
the paper/non-paper classifier.

2.1 Homepage Identification

Among the works focusing on researcher home-
pages, both Tang et al. (2007) and Gollapalli et
al. (2015) treated homepage finding as a binary
classification and used URL string features and
content features (extracted from the entire .html
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page) for classification. However, given our Web
search setting, the non-homepages retrieved in re-
sponse to an author name query can be expected to
be diverse with webpages ranging from commercial
websites such as LinkedIn, social media websites
such as Twitter and Facebook, and several more.
To handle this aspect, we frame homepage iden-
tification as a supervised ranking problem. Thus,
given a set of webpages in response to a query,
our objective is to rank homepages higher relative
to other types of webpages, capturing our prefer-
ence among the retrieved webpages. Preference
information needed for the ranking can be easily
modeled through appropriate objective functions
in learning to rank approaches (Liu, 2011). For
example, RankSVM (Joachims, 2002) minimizes
the Kendalls τ measure based on the preferential
ordering information in the training examples.

Note that, unlike classification approaches that
independently model both positive (homepage) and
negative (non-homepage) classes, we are modeling
instances in relation with each other with preferen-
tial ordering (Wan et al., 2015). In Section 4, we
show that our ranking approach outperforms clas-
sification approaches for homepage identification.
We design the following feature types for our rank-
ing model, which capture aspects (e.g., snippets)
useful for a Web user to find homepages:

1. URL Features: Intuitively, the URL strings
of academic homepages can be expected to
contain (or not) certain tokens. For example,
a homepage URL is less likely to be hosted on
domains such as “linkedin” and “facebook.”
On the other hand, terms such as “people”
or “home” can be expected to occur in the
URL strings of homepages (see examples of
homepage URLs in Figure 1). We tokenize the
URL strings based on the “slash (/)” separator
and the domain-name part of the URL based
on the “dot (.)” separator to extract our URL
and DOMAIN feature dictionaries.

2. Term Features: The current-day search en-
gines display the Web search results as a
ranked list, where each webpage is indicated
by its HTML title, the URL string as well as a
brief summary of the content of the webpage
(also known as the “snippet”). We posit that
Scholarly Web users are able to identify home-
pages among the search results based on the
term hints in titles and snippets (for example,
“professor”, “scientist”, “student”), and use

words from titles and snippets to extract our
TITLE and SNIPPET dictionaries.

3. Name-match Features: These features cap-
ture the common observation that researchers
tend to use parts of their names in the URL
strings of their homepages (Tang et al., 2007;
Gollapalli et al., 2015). We specify two types
of match features: (1) a boolean feature that
indicates whether any part of the author name
matches a token in the URL string, and (2)
a numeric feature that indicates the extent
to which name tokens overlap with the (non-
domain part of) URL string given by the frac-
tion: #matches

#nametokens
. For the example author

name “Soumen Chakrabarti” and the URL
string: www.cse.iitb.ac.in/∼soumen, the
two features have values “true” and 0.5, re-
spectively.

The dictionary sizes for the above feature types
based on our training datasets (see Section 3) are
listed below:

Feature Type Size
URL+DOMAIN term features 2025
TITLE term features 19190
SNIPPET term features 25280
NAME match features 2

2.2 Paper/Non-Paper Classification
In order to obtain accurate paper collections, it is
important to employ a high-accuracy paper/non-
paper classifier. Caragea et al. (2016) studied
the classification of academic documents into six
classes: Books, Slides, Theses, Papers, CVs, and
Others. The authors showed that a small set of 43
structural, text density, and layout features (Str) that
are designed to incorporate aspects specific to re-
search documents, are highly indicative of the class
of an academic document. Because we are mainly
interested in research papers to augment research
collections and because binary tasks are consid-
ered easier to learn than multi-class tasks (Bishop,
2006), we adapted this prior work on multi-class
document type classification (Caragea et al., 2016)
and re-trained the classifiers for the two-class set-
ting: paper/non-paper.

3 Datasets

The datasets used in the evaluation of our frame-
work and its components are summarized in Table 1
and are described below:

DBLP Homepages. For evaluating homepage
finding using author names, we use the researcher
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Dataset
DBLP Homepages 42,548(T) 4,255(+)
Research Papers (Train) 960(T) 472(+)

(Test) 959(T) 461(+)
CiteSeerx 43,496 (Titles), 32,816 (Authors)

Table 1: Summary of datasets. Total and positive instances
are shown using (T) and (+), respectively.

homepages from DBLP. In contrast to previous
works that use this dataset to train homepage classi-
fiers on academic websites (Gollapalli et al., 2015),
in our Web search scenario, the non-homepages
from the search results of an author name query
need not be restricted to academic websites. Except
the true homepage, all other webpages therefore
correspond to negatives. We constructed the DBLP
homepages dataset as follows: DBLP provided a
set of author homepages along with the authors’
names. Using these authors’ names as queries, we
perform Web search using Bing API and scan the
top-10 results (Spink and Jansen, 2004) in response
to each query. If the true homepage provided by
DBLP is listed among the top-10 search results,
this URL and the others in the set of Web results
are used as training instances. We were able to
locate homepages for 4, 255 authors in the top-10
results for the author homepages listed in DBLP.

Research Papers. To evaluate the paper/non-
paper classifier, we used two independent sets of
≈ 1000 documents each, randomly sampled from
the crawl data of CiteSeerx, obtained from Caragea
et al. (2016). These sets, called Train and Test, re-
spectively, were manually labeled with six classes:
Paper, Book, Thesis, Slides, Resume/CV, and Oth-
ers. We transform the documents’ labels as the
binary labels, Paper/Non-paper.

CiteSeerx. Our third dataset is compiled from
the CiteSeerx digital library. Specifically, we ex-
tracted research papers that were published in
venues related to machine learning, data mining,
information retrieval and computational linguis-
tics. These venues along with the number of papers
in each venue are listed in Table 2. Overall, we
obtained a set of 43, 496 paper titles and 32, 816
authors (unique names) for the evaluation of our
framework at a large scale.

Total # of papers: 43,496, #authors (unique): 32,816
NIPS (5211), IJCAI (4721), ICRA (3883), ICML (2979),
ACL (2970), VLDB (2594), CVPR (2373), AAAI (2201),
CHI (2030), COLING (1933), KDD (1595), SIGIR (1454),
WWW (1451), CIKM (1408), SAC (1191), LREC (1128),
SDM (1111), EMNLP (920), ICDM (891), EACL (760),
HLT-NAACL (692)

Table 2: Conference venue (#papers) in the CiteSeerx dataset.

4 Experiments and Results

In this section, we describe our experiments on
homepage identification and paper classification
along with their performance within the search then
crawl then process paper acquisition framework.

Performance measures. We use the standard
measures Precision, Recall, and F1 for summariz-
ing the results of author homepage identification
and paper classification (Manning et al., 2008). Un-
like classification where we consider the true and
predicted labels for each instance (webpage), in
RankSVM the prediction is per query (Joachims,
2002). That is, the results with respect to a
query are assigned ranks based on scores from the
RankSVM and the result at rank-1 is chosen as the
predicted homepage.

4.1 Author Homepage Identification
We aim to determine how accurate is RankSVM
in identifying a homepage for each author name
query. Table 3 shows the five-fold cross-validation
performance of the homepage identification on the
positive class trained using RankSVM compared
with various classification algorithms, Naı̈ve Bayes,
Maximum Entropy and Support Vector Machines.
The results in the table are averaged across all five
test sets of cross-validation. Hyperparameter tun-
ing (e.g., C for SVM) was performed on a develop-
ment set extracted from training.

Method Precision Recall F1
RankSVM 0.8933 0.8933 0.8933
Naı̈ve Bayes 0.4830 0.9239 0.63432
MaxEnt 0.8207 0.8002 0.8102
Binary SVM 0.8353 0.8149 0.8249

Table 3: RankSVM vs. supervised classifiers on DBLP.

As can be seen from the table, RankSVM per-
forms much better compared with the classifica-
tion approaches, in terms of Precision and F1, al-
though Recall is higher for Naı̈ve Bayes. Hence,
RankSVM is able to capture the relative preferen-
tial ordering among the search results and performs
the best in identifying the correct author homepage
in response to a query. A possible reason for the
lower performance of the classification approaches
such as Binary SVMs, Naı̈ve Bayes, and Maximum
Entropy is that they model the positive and negative
instances independently and not in relation to one
another for a given query. Moreover, the diversity
in webpages among the negative class is ignored
and they are modeled uniformly as a single class in
the classification approaches.
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4.2 Research Paper Classification

We compare the performance of classifiers trained
using the 43 structural features (Str) with that of
classifiers trained using the “bag of words” (BoW),
URL-based features (URL), and a Convolutional
Neural Network (CNN) model. For BoW and
URL, we used the same text processing operations
as in Caragea et al. (2016). We experimented
with several classifiers: Random Forest (RF), Deci-
sion Trees (DT), Naı̈ve Bayes Multinomial (NBM),
and Support Vector Machines with a linear kernel
(SVM). For CNN, we use the words as a sequence
as an input; we first get the word embeddings as
a part of the network followed by the CNN fil-
ter, max-pooling, concatenation, and the fully con-
nected layer for the classification task, similar to
Kim (2014). All models are trained on the “Train”
dataset and are evaluated on the “Test” dataset. We
tuned model hyper-parameters in 10-fold cross-
validation experiments on “Train” (e.g., C for SVM
and the number of trees for RF).

Feature/Cls. (Setting) Precision Recall F1
BoW / DT (P-B) 0.860 0.920 0.889
URL / SVM (P-B) 0.729 0.729 0.729
Str / RF (P-B) 0.933 0.967 0.950
CNN (P-B) 0.816 0.890 0.851
Str / RF (A-B) 0.952 0.951 0.951
Str / RF (P-M) 0.918 0.965 0.941
Str / RF (A-M) 0.893 0.902 0.892

Table 4: Performance of paper classifier on “Test”. “P” stands
for the paper class, while “A” for the average of classes. “B”
and “M” stand for binary and multi-class, respectively.

Table 4 shows the performance (Precision, Re-
call, and F1) for the binary setting on “Test” for
each feature type, BoW, URL, and Str, and the
CNN, with the classifiers that give the best results
for the corresponding feature type or model (first
four lines). The results are shown for the “paper”
class (P). In the table, we also show the perfor-
mance on the “paper” class with the multi-class (M)
setting and the weighted averages (A) of all mea-
sures over all classes for both the settings. As can
be seen from the table, the best classification per-
formance is obtained using Random Forest trained
on the 43 structural features with the overall per-
formance above 95% being substantially higher in
the binary setting compared with the multi-class
setting. The reason behind lower performance of
the CNN classifier can be the wide variety of docu-
ments present in the dataset and the small number
of the training examples.

Title Queries
Knowledge-based Knowledge Elicitation. filetype:pdf
Solving Time-Dependent Planning Problems. filetype:pdf
Author Name Queries
Eric T. Baumgartner filetype:html
Nelson Alves filetype:html

Table 5: Example of title and author name queries.

4.3 Large-Scale Experiments

Finally, we evaluate our “search then crawl then
process” framework and its components in prac-
tice in large scale experiments, using our CiteSeerx

subset. To this end, we evaluate the capability
of our framework to obtain large document col-
lections, quantified by the number of research pa-
pers it acquires (through both paths). For Path 1,
we use the 43, 496 paper titles directly as search
queries. Structural features extracted from the re-
sulting PDF documents of each search are used to
identify research papers with our paper classifier.
For Path 2, the 32, 816 unique author names are
used as queries. The RankSVM-predicted home-
pages from the results of each author name query
are crawled for PDF documents up to a depth of 2,
using the wget utility.2 Again, the paper classifier
is employed to identify the papers from the crawled
documents. In all experiments, we used the Bing
API to perform Web searches. Examples of title
and author name queries are provided in Table 5.

4.3.1 Overall Yield
The total numbers of PDFs and research pa-
pers found through the two paths in our
Search/Crawl/Process framework are shown in Ta-
ble 6 (the columns labeled as #CrawledPDFs and
#PredictedPapers, respectively). Intuitively, the
overall yield can be expected to be higher through
Path 2. This is because once an author homepage is
reached, other research papers that are linked from
this homepage can be directly obtained. Indeed, as
shown in the table, the numbers of PDFs as well
as predicted papers are significantly higher along
Path 2. Crawling the RankSVM-predicted home-
pages of the 32, 816 authors, we obtain on average
≈ 14 research papers per query (45227332816 = 13.78).
In contrast, examining only the top-10 search re-
sults along Path 1, we obtain ≈ 5 papers per query
on average (21368343496 = 4.91). The high percentage
of papers found along Path 2 is consistent with pre-
vious findings that researchers tend to link to their
papers via their homepages (Lawrence, 2001; Gol-

2https://www.gnu.org/software/wget/
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#Queries #CrawledPDFs #PredictedPapers #UniquePapers #MatchesWithOriginalTitles
43,496 titles (Path 1) 322,029 213,683 91,237 32,565
32,816 names (Path 2) 665,661 452,273 204,014 17,627
Overlap: Path 1 & Path 2 - - 28,374 16,188
Total # of papers: Path 1
+ Path 2

- - 266,877 34,004

Table 6: Number of papers obtained through Path 1 and Path 2 in our Search/Crawl/Process framework.

lapalli et al., 2015). Note that in all experiments,
since the original 43, 496 titles are extracted from
CiteSeerx, for a fair evaluation, we removed all title
search results that point to the CiteSeerx domain,
i.e., http://citeseerx.ist.psu.edu/.

Furthermore, the numbers of unique papers
found along each of the two paths are shown in Ta-
ble 6 (the column labeled as #UniquePapers). We
used ParsCit3 to extract the titles of the research
papers obtained from both the paths and then cal-
culated the duplicates from these titles.4 As can be
seen from the table, we are able to obtain 91, 237
and 204, 014 unique papers from Path 1 and Path
2, respectively, which account for ≈ 2 papers per
title query on average (9123743496 = 2.09) and ≈ 6 pa-
pers per author query on average (20401432816 = 6.21).
However, since our objective is not to use one path
or the other, but use a combination of both Path
1 and Path 2, we further expanded our analysis to
show the overlap between Path 1 and Path 2 in
terms of unique titles.

4.3.2 Overlap between Path 1 and Path 2
Table 6 shows also the overlap in the two sets of
unique papers (between Path 1 and Path 2), which
is 28, 374. Compared to the overall yields along
Path 1 and Path 2 (213, 683 and 452, 273, respec-
tively) and even with the number of unique papers
along each path, this small overlap indicates that
the two paths are capable of reaching different sec-
tions of the Web and play complementary roles in
our framework. For example, the top-20 domains
of the URLs from which we obtained research pa-
pers along Path 1 are shown in Figure 3. As can be
seen from the figure, via Web search, we are able
to reach a wide range of domains. This is unlikely
in crawl-driven methods without an exhaustive list
of seeds since only links up to a specified depth
from a given seed are explored (Manning et al.,
2008). Interestingly, using a combination of both
Path 1 and Path 2, we were able to obtain 266, 877
(=91, 237+204, 014-28, 374) unique papers.

3http://aye.comp.nus.edu.sg/parsCit/
4To find duplicates, we convert the text to lowercase, and remove punctu-

ation and whitespace.

Figure 3: The top-20 domains from which papers were
obtained along Path 1 of our framework.

Next, we investigate the recovery power of our
framework. Precisely, how many of the original
43, 496 titles were found through each path as well
as their combination?

4.3.3 Overlap with the Original Titles
The numbers of papers that we were able to ob-
tain from the original 43, 496 titles through both
paths are shown in the last column of Table 6,
labeled as #MatchesWithOriginalTitles. To com-
pute these matches, we used the title and author
names available in our CiteSeerx subset to look up
the first page of each PDF document. As can be
seen from the table, we were able to recover 75%
(3256543496 ) of the original titles through Path 1 com-
pared to the 40% (1762743496 ) through Path 2. The total
number of matches with the original titles between
Path 1 and Path 2 was 16, 188. Overall, through a
combination of both Path 1 and Path 2, we were
able to recover 78% (34,00443496 ) of the original titles
(34, 004=32, 565+17, 627-16, 188 papers obtained
through both paths out of the original titles).

To summarize, using about 76, 312 queries
(43, 496 + 32, 816) through Path 1 and Path 2,
we are able to build a collection of 665, 956 papers
(213, 683 + 452, 273) and 266, 877 unique titles
(91, 237 + 204, 014− 28, 374). About 32-33% of
the obtained documents are “non-papers” along
both paths. Scholarly Web is known to contain a
variety of documents including resumes, and pre-
sentation slides (Ortega et al., 2006). Some of these
documents may include the exact paper titles and
may appear in paper search results as well as be



180

linked from author homepages.

4.3.4 Anecdotal Evidence
Given the size of our CiteSeerx dataset and the
large number of documents obtained via our frame-
work (as shown in Table 6), it is extremely labor-
intensive to manually examine all documents re-
sulting from the large scale experiment. How-
ever, since our classifiers and rankers achieve per-
formance above 95% and 89% based on our test
datasets compiled specifically for these tasks, we
expect them to continue to perform well “in the
wild.” We show anecdotal evidence to support this
claim, i.e., an estimate of how many true papers
we are able to obtain via our Search/Crawl/Process
framework starting from a small set of titles.

To obtain such an estimate, we randomly se-
lected 10 titles from the CiteSeerx dataset. From
the corresponding papers of these 10 titles, we ex-
tracted 33 unique authors. We manually inspected
all PDFs that can be obtained via title search (Path
1) as well as the homepages obtained via author
name search (in Path 2) That is, through Path 1,
we searched the Web for the 10 selected titles and
manually examined and annotated the top-10 re-
sulting PDFs for each title query. The title search
resulted in 59 PDFs, of which 33 are true papers
and 26 are non-papers. Our paper classifier pre-
dicted 32 out of 33 papers correctly and 38 papers
overall and achieved a precision and recall of 84%
and 97%, respectively.

Similarly, through Path 2, we searched for the
33 author names from the Web and manually ex-
amined and annotated the top-10 resulting web-
pages for each author name query. From the author
search, manually, we were able to locate 19 correct
homepages of the 33 authors. A manual inspec-
tion of the predicted homepages revealed that our
framework was not able to locate 6 out of the 19
correct homepages. Table 7 shows a few exam-
ples where our framework was not able to locate
the correct homepages. For example, occasionally,
RankSVM ranks university faculty profile or fac-
ulty research group at the first rank, which is then
predicted as a homepage by RankSVM (e.g., URLs
4 and 6 in Table 7). URL 5 in Table 7 is wrongly
predicted by RankSVM as the homepage for the
researcher name “David Bell.” This is precisely
because there is a well known novel writer and
also baseball player with the same name, which
get ranked higher in the results of the search en-
gine. Note that, interestingly, the actual homepage

Actual homepage
1. http://destrin.smalldata.io/
2. http://www.cs.qub.ac.uk/∼D.Bell/dbell.html
3. http://www.ai.sri.com/∼yang
Predicted homepage
4. http://research.cens.ucla.edu/people/estrin/
5. http://davidbellnovels.com/
6. http://www.ai.sri.com/people/yang/

Table 7: A few examples where our framework was not
able to locate the correct homepage

of David Bell, corresponding to URL 2 was not
retrieved in the top 10 search responses of Bing.

4.4 Baseline Comparisons

Breadth-first search crawler. We compare our
Search/Crawl/Process framework, through Path 1,
with a breadth-first search crawler as implemented
in CiteSeerx. The CiteSeerx crawler starts with a
list of seed URLs, performs a breadth-first search
crawl and saves open-access PDF documents.

For this experiment, we randomly selected
1, 000 titles from DBLP. We then searched the
Web for these titles and retrieved the top-10 re-
sulting PDFs for each query. Through this search,
we obtained a total of 5, 793 PDFs, from which
we removed 110 documents that were downloaded
from CiteSeerx, since they were obtained as a re-
sult of the CiteSeerx breadth-first search crawler.
Note that there is an overlap of 6 documents, i.e.,
only located on CiteSeerx (and nowhere else on the
Web), between the 110 removed documents and the
1000 DBLP initial titles. From the remaining doc-
uments, our paper classifier predicted 3, 427 docu-
ments as papers, out of which 2, 797 are unique pa-
pers/titles. We searched CiteSeerx for these 2, 797
titles to determine how many of them are found
by the CiteSeerx crawler. We found 1, 037 titles
in CiteSeerx by checking if one title string con-
tains the other. Thus, with our framework, we were
able to obtain 2, 797− 1, 037 = 1, 760 additional
papers. Out of the 994 (1000 − 6) DBLP titles,
only 121 papers were found by both our frame-
work and the CiteSeerx crawler. In addition, our
framework found 165 more papers (with a total of
286 out of 994 DBLP titles), whereas the CiteSeerx

crawler found only 92 more papers (with a total
of 213 out of 994 DBLP titles). Moreover, out of
the additional yield of our framework, i.e., 2511
(= 2797− 286) papers, only 552 are found by the
CiteSeerx crawler (identified by searching for the
2511 titles in the CiteSeerx digital library - by exact
match). These results are summarized in Figure 4.
We note that the two approaches are not substitut-
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Figure 4: Comparison of the Search/Crawl framework with
the CiteSeerx breadth-first search crawler.

ing, but rather complementing each other.
Microsoft Academic. Searching for feeds from

publishers (e.g., ACM and IEEE) and using web-
pages indexed by Bing is also considered by Mi-
crosoft Academic (MA) to collect entities such
as paper, author, and venue, to be added to the
MA graph (Sinha et al., 2015). An edge in the
graph is added between two entities if there is a
relationship between them, e.g., publishedIn. In
contrast, in our framework, we collect not only the
intended paper for a title search, but also all pa-
pers that are found for that search. In addition, we
identify author homepages through author name
search and, unlike MA, we use them to collect
research papers from these homepages. To our
knowledge, we are the first to use “Web Search”
based on author names to obtain seed URLs for
initiating crawls to acquire documents in scientific
portals. Both our framework and MA use Bing for
searches. Thus, using MA strategy to collect paper
entities, 32, 565 papers are recovered out of the
43, 496 original titles. Adding the author search
in our framework, we are able to collect an addi-
tional 1, 439 (=34, 004− 32, 565) papers from the
original titles and 234, 312 (=266, 877 − 32, 565)
overall additional unique papers (see Table 6).

5 Related Work

Web crawling is a well-studied problem in infor-
mation retrieval, focusing on issues of scalability,
effectiveness, efficiency, and freshness (Manning
et al., 2008). Despite its simplicity, research has
shown that breadth-first search crawling produces
high-quality collections in early stages of the crawl
(Najork and Wiener, 2001). Focused crawling was
introduced by Chakrabarti et al. (1999) to deal with
the information overload on the Web in order to
build specialized collections focused on specific
topics. Since the introduction of focused crawl-
ing, many variations have been proposed (Menczer
et al., 2004). In contrast to focused crawling, our
framework is able to acquire research documents
that are not limited to a specific taxonomy.

Prior research has also focused on enhancing
digital libraries content to better satisfy the needs
of digital library users (Pant et al., 2004; Zhuang
et al., 2005; Carmel et al., 2008). Several works
studied the coverage in scientific portals such as
Microsoft Academic, Google Scholar, Scopus and
the Web of Science (Hug and Brändle, 2017; Harz-
ing and Alakangas, 2017). Multiple works focus on
better ranking of retrieved documents for a given
query (Yang et al., 2017; MacAvaney et al., 2019;
Boudin et al., 2020).

Homepage finding and document classification
are well-studied in information retrieval. The home-
page finding track in TREC 2001 resulted in var-
ious machine learning systems for finding home-
pages (Xi et al., 2002; Upstill et al., 2003; Wang
and Oyama, 2006). Tang et al. (2007) and Gol-
lapalli et al. (2015) treated homepage finding as
a binary classification task and used various URL
and webpage content features for classification. In
the context of scientific digital libraries, document
classification into classes related to subject-topics
(for example, “machine learning,” “databases”) was
studied previously (Getoor, 2005; Caragea et al.,
2015). In contrast with existing work, we investi-
gate features from Web search engine results and
formulate researcher homepage identification as a
learning to rank task. In addition, we are the first
to interleave various components of Web search,
crawl, and document processing to build an effi-
cient paper acquisition framework.

6 Conclusion and Future Directions

We proposed a framework for automatically acquir-
ing research papers from the Web. We showed the
experiments illustrating the state-of-the-art perfor-
mance for two major modules of our framework: a
homepage identifier and a paper classifier. Through
an experiment using a large collection of ≈ 76, 000
queries (titles + authors names), our framework
was able to automatically acquire an overall collec-
tion of ≈ 267, 000 unique research papers and was
able to recover 78% of the original searched titles,
i.e., ≈ 34, 000 papers from the 43, 496 original
searched titles. We also showed that our approach
is not meant to replace existing crawling strategies,
but can be used in conjunction, to enhance the con-
tent of digital libraries.

In the future, it would be interesting to apply
our framework to other domains, and study the
integration of topic classification.
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José Luis Ortega, Isidro Aguillo, and José Antonio Pri-
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