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Abstract

Automatic prediction of the peer-review as-
pect scores of academic papers can be a use-
ful assistant tool for both reviewers and au-
thors. To handle the small size of published
datasets on the target aspect of scores, we pro-
pose a multi-task approach to leverage addi-
tional information from other aspects of scores
for improving the performance of the target as-
pect. Because one of the problems of build-
ing multi-task models is how to select the
proper resources of auxiliary tasks and how
to select the proper shared structures, we thus
propose a multi-task shared structure encod-
ing approach that automatically selects good
shared network structures as well as good aux-
iliary resources. The experiments based on
peer-review datasets show that our approach
is effective and has better performance on the
target scores than the single-task method and
naı̈ve multi-task methods.

1 Introduction

Automatic prediction of the peer-review aspect
scores (e.g. “clarity” and “originality”) of aca-
demic papers can be a useful assistant tool for both
reviewers and authors. On the one hand, because
the number of submissions to AI-related interna-
tional conferences has significantly increased in re-
cent years, it is challenging for the review process.
Rejecting some papers with evidently low quality
can reduce the workload. On the other hand, sug-
gesting the weak aspects to the authors can also
help them improve their papers.

There are several existing works related to the
paper review which concentrate on the quality of
the review (De Silva and Vance, 2017; Langford
and Guzdial, 2015). Huang (2018) et al. predicted
the acceptance of a paper only based on a paper’s
visual appearance (Huang, 2018). Automatic essay
scoring (Dong and Zhang, 2016; Dong et al., 2017;

Amorim et al., 2018) can be regarded as a related
sub-topic that mainly focus on the grammatical
and syntactic features in short essays. PeerRead is
the first public dataset of scientific peer reviews for
research purposes (Kang et al., 2018), which can be
used for paper acceptance classification and review
aspect score prediction. It provides detailed peer-
reviews including the final decisions, the aspect
scores such as clarity and originality, and the review
contents. It raises two NLP tasks, paper acceptance
classification and review aspect score prediction.
We focus on the later one in this paper. However,
the dataset is relatively small; the set of papers for
each review aspect can be different. To improve the
performance of aspect score prediction, we propose
a solution based on the multi-task learning that
can leverage additional rich information from the
resources obtained by other aspect scores. We treat
the prediction of each aspect as a separate task.
The multi-task model for each aspect score has a
main-auxiliary manner.

Multi-task methods have been widely utilized
in many NLP tasks, such as summarization (Ison-
uma et al., 2017; Guo et al., 2018), classification
(Liu et al., 2017b; Shimura et al., 2019), parsing
(Hershcovich et al., 2018), sequence labeling (Lin
et al., 2018), and Entity and Relation (Luan et al.,
2018). When building a multi-task model, there are
two critical issues, i.e., which auxiliary resources
(tasks) can be used for sharing useful information
and how to share the information among the tasks.
In these previous studies, researchers always se-
lect specific auxiliary resources, and design hand-
crafted shared structure in the model for a particular
NLP topic.

However, for different datasets and tasks, there
may exist other better auxiliary resources and
shared structures. We thus propose an approach se-
lecting the shared structures automatically as well
as the auxiliary resources that are more beneficial
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Figure 1: Basic model CNN Figure 2: Example of Multi-task CNN with Shared Structure Encoding (SSE)

for the main task. There are diverse parameter shar-
ing manners in the multi-task methods for deep
neural networks (Ruder, 2017). How to define the
exploration space for automatic selection is a prob-
lem. Our approach encodes the multi-task shared
structures in the manner of hard parameter sharing
and defines the exploration space. We also propose
a strategy to search the optimal structures and auxil-
iaries from the candidate models. It is also flexible
to add more auxiliary tasks.

Our approach can be integrated with hyperpa-
rameter optimization methods (Snoek et al., 2012)
or network architecture search methods (Zoph and
Le, 2016) for searching. Furthermore, our method
is capable for not only review score prediction but
also some other NLP tasks such as text classifica-
tion. Our main contributions can be summarized
as follows. (1). We address an application that
predicting the peer-review aspect scores of papers
which can be a useful assistant tool for both re-
viewers and authors. (2). We propose a multi-task
shared structure encoding method which automati-
cally selects good shared network structures as well
as good auxiliary resources. (3). The experiments
based on real paper peer-review datasets show that
our approach can build a multi-task model with
effective structures and auxiliaries which has better
performance than the single-task model and naı̈ve
multi-task models.

2 Our Approach

2.1 Preliminary

Peer-review aspect score prediction is a regres-
sion problem with text data. We can utilize ex-
isting text classification methods (Kim, 2014; Liu
et al., 2017a) based on deep neural network for
this problem by changing the loss function from
cross-entropy for classification to mean squared

error for regression. Without loss of generality, we
use the basic CNN-based text classification model
(Kim, 2014) as the example to facilitate the descrip-
tion of our multi-task approach. Figure 1 shows
the architecture of this model for predicting the
aspect score. It includes the embedding layer, con-
volutional and pooling layer, and fully connected
layers. The multi-task approach we propose is not
limited to be adapted with this model. It can be
integrated with similar neural network structures in
this example, e.g., XML-CNN (Liu et al., 2017a)
and DPCNN (Johnson and Zhang, 2017).

We have n single tasks (i.e., aspect scores) and
assume that they have the same network structures
with k layers. For each task, we regard it as the
main task and search the proper shared structures
and auxiliary tasks.

2.2 Multi-task Shared Structures

To automatically search the proper shared struc-
tures and auxiliary tasks, we need to define the
exploration space. Because it is difficult to mix
diverse parameter sharing manners proposed in var-
ious multi-task methods (Ruder, 2017), we utilize
the typical manner of hard parameter sharing as
the starting point to implement our idea. Other
manners of parameter sharing will be addressed in
future work.

Figure 2 shows an example of the shared struc-
ture encoding (SSE) that we propose with three
tasks (one main task and two auxiliary tasks).
Given a main task t0, for each auxiliary task ti,
if the jth layer of ti is shared with t0, then we en-
code this shared structure as lij = 1; if the jth layer
is not shared, then lij = 0. We do not encode the
shared structures among auxiliary tasks to decrease
the complexity of the model. It is flexible to add
more auxiliary tasks to a model. There are two
special cases of this SSE. One is lij = 1 for all aux-
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iliary tasks. The corresponding model is equivalent
to one single model for all tasks. Another is lij = 0
for all auxiliary tasks. It is equivalent to a single-
task model for the main task. In other words, in the
search stage, these models are also included. Lu
et al. (2017) adaptively generate the feature shar-
ing structure by splitting the network into branches
without merging. Its exploration space is a subset
of our approach.

Our multi-task approach utilizes a main-
auxiliary manner, rather than a manner which
equally treats all tasks. The later manner makes a
sum of the weighted losses of all tasks and requires
a trade-off among the tasks (Sener and Koltun,
2018), which may not be able to reach optimal
results for a specific task. In our approach, we thus
use every single task as the main task respectively
and other tasks as the candidates for auxiliary tasks.
It is flexible for us to define all candidate shared
structures in the exploration space and decrease the
size of the exploration space.

2.2.1 Shared Structure and Auxiliary Task
Search

In our search strategy, we denote the number of
auxiliary tasks in a model as m, m ≤ n− 1. There
are

(n−1
m

)
combinations of the auxiliary tasks. For

each combination of auxiliary tasks, we search the
shared structures and select the one with minimized
loss. For the selection criterion, because the dataset
is too small, we use the loss on both the training set
and validation set rather than only using the loss of
validation set.

After selecting the shared structures for all com-
binations of the auxiliary tasks, we select the com-
bination of which the average loss of all candi-
date shared structures is minimum. For a main
task, the number of candidate multi-task models
is Nm =

(n−1
m

)
× 2km. When m = n − 1, i.e.,

using all other tasks as the auxiliary tasks, this
number is Nn−1 = 2k(n−1). If m � n − 1, then
Nm � Nn−1.

If Nm is small, we can explore all candidates.
Otherwise, we need to refer some other methods
to search in the exploration space, for example,
the hyperparameter optimization methods based
on Bayesian optimization (Snoek et al., 2012); the
network architecture search (NAS) methods based
on reinforcement learning (Zoph and Le, 2016;
Zoph et al., 2018; Liu et al., 2018). Random search
is also possible to be used.

Dataset Aspects Train Valid Test

ICLR

Clarity 65 8 6
Originality 72 11 5
Correctness 64 6 4
Comparison 27 6 2
Substance 38 7 2

Impact 51 9 4
ACL All six 137 7 7

Table 1: Statistics of Datasets

Settings CNN XMN-CNN
Input word vectors fastText fastText

Embedding Dimension 200 200
Stride size 1 2

Filter region size 2 2
Feature maps (m) 64 64

Pooling max pooling dynamic max pooling
Activation function ReLu ReLu

Hidden layers 1024 512
Batch sizes 8 8

Dropout rate 1 0.25 0.25
Dropout rate 2 0.5 0.5

Optimizer Adam Adam
Loss function MSE MSE

Epoch 40 40

Table 2: Settings of basic models CNN and XML-
CNN: Dropout rate 1 is for the embedding layer, and
Dropout rate 2 is for the fully connected layers.

3 Experiments

3.1 Experimental Settings

We use the ICLR and ACL datasets in the Peer-
Read Dataset (Kang et al., 2018) because they pro-
vide the scores of the peer-review aspects. Table
1 shows the statistics of these datasets. We utilize
the papers which have the scores in some of the
six aspects (n = 6), i.e., Clarity (cla), Originality
(ori), Correctness (cor), Comparison (com), Sub-
stance (sub) and Impact (imp). The scale of these
scores is from 1 to 5. We utilize the dataset split-
ting provided by PeerRead. Because not all papers
contain all six aspects in the ICLR dataset, the num-
ber of papers for each aspect are diverse. For the
ground truth, we use the mean score of multiple
reviews which is the general method of multiple
score aggregation without considering the review
bias. Analyzing the review bias among different
reviewers is out of the scope of this paper.

Note that although PeerRead contains both paper
text and review text, we only used the paper text
because the purpose of this work is to predict the
aspect scores before review progress. Moreover,
because in the PeerRead (Kang et al., 2018) article,
the authors utilized the first 1,000 tokens because
the paper text was extremely long; and we used
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full paper text with our own text pre-processing in
the experiments, the results obtained by our exper-
iments and that reported in PeerRead are thus not
exactly comparable.

We remove the stop words and use stemming
to the words in the papers. The initial word em-
beddings in the models are pre-trained by fastText
(Bojanowski et al., 2016; Joulin et al., 2016) from
each dataset. The hyperparameters of the CNN
structures for the approaches refer to the common
ones used in exiting work (Shimura et al., 2018).
Table 2 shows the parameter settings of CNN and
XML-CNN, which are used as basic models of the
proposed multi-task approach in the paper.

The baselines are as follows.
Single task model: It is equivalent to the case

that SSEs of all auxiliary tasks are “000”. It uses
one network for one aspect score like the models
in (Dong and Zhang, 2016; Dong et al., 2017).

All-in-one (Ain1): It builds a single model that
the main task and m auxiliary tasks use same net-
work like the models in the PeerRead (Kang et al.,
2018). It is equivalent to treating the prediction of
all aspects as one task or as a multi-task that SSEs
of all auxiliary tasks are “111”.

Average performance of all explored Multi-
Task models (AMT): It is equivalent to the expec-
tation of the performance if randomly selecting a
multi-task model from all candidates.

We select the aspect of Clarity, which has most
test data as the main task for the evaluation in this
paper. The evaluation metric is the Root Mean
Square Error (RMSE). We first verify our approach
by using CNN (Kim, 2014) as the basic model. We
set m ∈ [1, 2, n − 1]. When m = n − 1, the
Nm = 85 is very huge. We use random search
method by exploring 1000 candidate models and
evaluate the mean performance of five times.

3.2 Experimental Results

We first verify whether our SSE method can select
a good shared structure for a given combination
of auxiliary tasks. Table 3.(a) shows the results in
the case of m = 1. It shows that our method suc-
cessfully builds a better model than the single task
model and the model in which all tasks completely
share with each other. The comparison result with
AMT shows our method can select a better shared
structure from all candidate structures.

Table 3.(b) shows the results in the case of
m = 2. Our method can select a better shared

Auxiliary Our (SSE) AMT Ain1
ori 0.801 (001) 0.931 1.027
cor 0.839 (111) 0.951 0.858
com 0.792 (100) 0.913 0.908
sub 0.782 (100) 0.916 0.981
imp 0.831 (100) 0.924 0.970

(a). m = 1

Auxiliaries Our (SSEs) AMT Ain1
ori,cor 0.881 (001,110) 0.957 1.036
ori,com 0.946 (111,101) 0.976 1.136
ori,sub 0.849 (001,101) 0.971 1.211
ori,imp 0.853 (001,100) 0.977 1.046
cor,com 0.996 (111,101) 0.965 1.226
cor,sub 0.761 (101,001) 0.967 1.143
cor,imp 0.799 (101,001) 0.965 1.189
com,sub 0.892 (001,001) 0.979 1.243
com,imp 0.732 (101,101) 0.981 0.918
sub,imp 0.932 (001,101) 0.969 1.087

(b). m = 2

Table 3: Results (Performance and SSEs) of shared
structure selection for each combination of auxiliary
tasks. Main task: “Clarity”; basic model: CNN;
dataset: ICLR; metric: RMSE; performance of single
task model: 0.849. Bold marks the best performance
(including performance of the single task model). Italic
marks the better one between “Our” and “AMT”.

m
Our AMTN ′

m Selected (SSEs) RMSE
1 40 com (100) 0.792 0.927
2 640 ori, imp (101,101) 0.732 0.971
5 1000 All (5 times) 0.841 1.001

Table 4: Results of selecting both shared structures
and auxiliary tasks. Main task: “Clarity”; basic
model: CNN; dataset: ICLR; performance of single
task model: 0.849. Bold marks the best performance.
Italic marks the better one between “Our” and “AMT”.

structure from all candidate structures. But it can-
not always be better than the single task model this
time. It is because that the corresponding combi-
nations of auxiliaries are not proper. After using
our search strategy to select the combinations of
auxiliaries, in 2nd row of Table 4, our method can
select the auxiliaries and structures with better per-
formance. In addition, in Table 4, the performance
for m = 2 is better than m = 1, it shows that in-
creasing m is possible to improve the performance.
However, a large m results in a large Nm. In the
case of m = 5, although it is possible to obtain
a better model than m = 1 or 2 if exploring all
N5 = 85 candidate models, only exploring a sub-
set (N ′5 = 1000) cannot reach better performance
even though N ′5 has been larger than N2. With-
out a better search method, using a small m (e.g.,
m = 2) rather than a large m (e.g., m = 5, all



125

Changed Settings m
Our AMT SingleNm Selected (SSEs) RMSE

Basic model: XML-CNN
1 40 cor (111) 0.939 1.144 0.9762 640 ori,cor (100,100) 0.842 1.201

Main Task: Originality 1 40 sub (101) 0.725 1.032 1.0042 640 com,imp(111,001) 0.887 1.017

Dataset: ACL
1 40 cor (101) 1.296 1.414 1.3322 640 cor,sub (001,100) 1.237 1.455

Embedding: Wikipedia 1 40 com (101) 1.151 1.272 1.2412 640 com,sub (101,001) 0.992 1.280

Table 5: Results of selecting both shared structures and auxiliary tasks, by changing four settings respectively

other aspects as auxiliaries) is recommended.
Furthermore, we also respectively change the

following four settings while keeping other set-
tings unchanged to verify our approach in different
conditions, (1). basic model: one of the SOTA
text classification methods XML-CNN (Liu et al.,
2017a); (2). main task: Originality, besides the
clarity aspect, we also show the results when an-
other aspect is the main task; (3). dataset: ACL.
(4). embedding: the pre-trained embeddings by
fastText are initialized by the embeddings trained
from Wikipedia data.

Table 5 shows that our approach can robustly
generate better results in different settings. Table
4 and 5 also show that the selected auxiliary tasks
and shared structures are diverse in different set-
tings. It would be better to automatically select
them rather than manually decide them. For the
underlying characteristics of review aspects in this
dataset, there is no apparent observation that one as-
pect is exactly related to the main aspect and must
be the auxiliary. Finally, from the results of “origi-
nality” aspect in Table 5, it shows that “substance”,
“comparison” and “impact” support “originality”,
the selected aspects by SSEs is reasonable and fit
human intuitions.

4 Conclusion

In this paper, we focus on the peer-review score pre-
diction for papers. We propose a multi-task shared
structure encoding approach which automatically
selects good shared network structures as well as
good auxiliary resources. There are some issues in
the future work, e.g., trying search methods such as
network architecture search and finding evidences
of the score predictions.
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