
The Role of Linguistic Features in Domain Adaptation:

TAG Parsing of Questions

Aarohi Srivastava
1

Robert Frank
2

Sarah Widder
3

David Chartash
4

Departments of 1Computer Science and 2Linguistics,
3Program in Cognitive Science, and 4Center for Medical Informatics

Yale University
aarohi.srivastava|bob.frank|sarah.widder|david.chartash@yale.edu

Abstract

The analysis of sentences outside the domain
of the training data poses a challenge for
contemporary syntactic parsing. The Penn
Treebank corpus, commonly used for train-
ing constituency parsers, systematically under-
samples certain syntactic structures. We ex-
amine parsing performance in Tree Adjoining
Grammar (TAG) on one such structure: ques-
tions. To avoid hand-annotating a new train-
ing set including out-of-domain sentences, an
expensive process, an alternate method requir-
ing considerably less annotation effort is ex-
plored. Our method is based on three key
ideas: First, pursuing the intuition that “su-
pertagging is almost parsing” (Bangalore and
Joshi, 1999), the parsing process is decom-
posed into two distinct stages, supertagging
and stapling. Second, following Rimell and
Clark (2008), the supertagger is trained with
an extended dataset including questions, and
the resultant supertags are used with an un-
modified parser. Third, to maximize im-
provements gained from additional training of
the supertagger, the parser is provided with
linguistically-significant features that reflect
commonalities across supertags. This novel
combination of ideas leads to an improvement
in question parsing accuracy of 13% LAS.
This points to the conclusion that adaptation of
a parser to a new domain can be achieved with
limited data through the careful integration of
linguistic knowledge.

1 Introduction

The performance of contemporary syntactic
parsers for natural language depends crucially on
the availability of training data that matches the
sentences on which the parser will be tested. In
the realm of constituency parsing, by far the most
common corpus used for training is the Penn Tree-
bank (PTB) (Marcus et al., 1993), specifically the
subset drawn from the Wall Street Journal (WSJ).
It is a truism that the sentences in the WSJ are

not an accurate representation of the entirety of
English, and indeed the distribution of sentence
types in the WSJ differs dramatically from lan-
guage found in other domains. In particular, inter-
rogative sentences (questions) are quite rare in the
WSJ. It is unsurprising, then, that parsers trained
on the PTB WSJ corpus perform poorly on ques-
tions, sometimes suffering reductions in accuracy
of up to 20% (Petrov et al., 2010). However,
questions are common elsewhere and indeed are
a highly relevant sentence type for a range of NLP
applications, such as question answering.

One way to resolve this difficulty involves the
dedication of considerable resources to augment-
ing the training data set with additional hand-
annotated parses of the questions. The work re-
ported in this paper explores an alternative method
that requires less annotation effort and makes use
of three key ideas. First, we follow Bangalore and
Joshi (1999) in decomposing the parsing process
into two stages: supertagging, where lexically-
associated pieces of structure are assigned to each
word, and stapling, where these supertags are
composed to form a parse tree. Second, we build
on the work of Rimell and Clark (2008), where
improvements to a supertagger trained with an ex-
tended dataset that is less costly to produce lead
to improvements in parsing performance using an
unmodified parser. However, we find that the pars-
ing benefit that results from improved supertag-
ging can only be maximized when the parser is
structured so as to be sensitive to linguistically rel-
evant properties of the supertags. As a result, a
necessary third key idea is to use a parser whose
input is characterized in linguistic terms that cross-
cut the supertag set. This fosters the ability of the
parser to generalize across linguistically related,
but superficially distinct, sentence types. With
the goal of increasing efficiency, following these
ideas, a significant increase in parsing accuracy
can be seen with a relatively small set of questions

for training.
Because we are interested in extracting details

of the sentence’s interpretation, such as those
conveyed through long-distance dependencies, we
make use of the Tree Adjoining Grammar (TAG)
formalism. TAG is a mildly context-sensitive lex-
icalized grammar formalism, where the units as-
sociated with each word, called elementary trees,
are pieces of phrase structure that encode detailed
information about the word’s combinatory poten-
tial. Past work (Kasai et al., 2018) has shown
that the rich structural representations underly-
ing TAG parsing allow better recovery of long-
distance dependencies than is possible with other
approaches. Our domain adaptation depends on
the rich structure of TAG elementary trees, as we
use linguistically-defined features to encode com-
monalities across trees that the parser can exploit.1

TAG elementary trees are composed using two op-
erations, substitution and adjoining. The resulting
derivations have a structure similar to those famil-
iar from dependency parsing, and indeed compu-
tational methods from dependency parsing can be
used to accomplish broad coverage TAG parsing
(Kasai et al., 2017). As a result, the proposal made
in this paper should be more broadly applicable,
outside the problem of TAG parsing.

In the first portion of this paper, we introduce
the foundations of TAG and the shift-reduce TAG
parser employed (Kasai et al., 2017). We then
present our methodology of improving the process
of assigning elementary trees (supertags) to the
words in a sentence to be parsed, and show how
and under what conditions improved supertagging
can yield substantial benefits for parsing accuracy.

2 Tree Adjoining Grammar

Tree Adjoining Grammar (TAG) (Joshi et al.,
1975), is a lexicalized grammar formalism that
generates hierarchical structure through a system
of tree rewriting. In a TAG derivation, each word
in a sentence is associated with an elementary

tree, a piece of syntactic structure that encodes the
structural constraints that the word imposes on the
sentence in which it appears. A TAG elementary
tree thereby encodes information about the depen-
dencies headed by a word, as well as the structural
positions of the word’s dependents. For example,

1In this respect, TAG is similar to Combinatory Catego-
rial Grammar (CCG) (Steedman, 2000), though the lexical
units of CCG carry somewhat less information about struc-
tural context, as we will discuss below.

S

VP

NP1#V}

NP0#

t27

NP

N}

t3

NP

NP*D}

t1

VP

Adv}VP⇤

t69

Figure 1: Elementary trees for Alice read the book quickly.

a transitive verb like read might be associated with
the elementary tree t27 on the left of Figure 1,
while a name like Alice or a noun like book would
be associated with the elementary tree t3. In these
elementary trees, the nodes labeled with the dia-
mond indicate the structural position of the head
of the tree. For the verbally-headed tree, the NP
nodes that appear along the tree’s frontier are the
positions for the verb’s arguments, i.e., its syntac-
tic dependents. The subscripts on these arguments
encode their syntactic relations with the elemen-
tary tree’s head (0 is subject, 1 is direct object, 2 is
indirect object).2

Elementary trees are combined using one of two
derivational operations: substitution and adjoin-

ing. In substitution, an elementary tree rooted in
some category C is inserted into a frontier node in
another elementary tree that is also of category C
and notated with a down arrow. Thus, to combine
the subject NP with the verb in the sentence Al-

ice read a book, the NP-rooted elementary tree t3
from Figure 1, headed by Alice, is substituted into
the NP0 substitution node in the S-rooted tree t27,
headed by read.

The second operation, adjoining, introduces re-
cursive structure via a special kind of elementary
tree, called an auxiliary tree. Auxiliary trees have
a distinguished frontier node, the foot node, that is
of the same category as the root of the tree. The
third tree t1 in Figure 1 is an NP-recursive auxil-
iary tree that would be associated with the deter-
miner the. The asterisk on the NP frontier node
indicates that it is the tree’s foot node. Adjoining
works by targeting a node N of category C in some
elementary tree using a C-recursive auxiliary tree

2These numeric superscripts correspond to “deep" syntac-
tic relations: the subject of a passivized transitive verb will
be annotated 1, and operations like dative shift preserve syn-
tactic relations. Though this does not uniquely identify the-
matic roles of arguments (e.g., unaccusative and unergative
subjects are not distinguished), it does provide a richer en-
coding of predicate-argument dependencies than is provided
by usual surface-oriented parses. Recent work has shown that
the identity of supertags provides particularly useful informa-
tion for the task of semantic role labeling (Kasai et al., 2019).

S

VP

Adv

quickly

VP

NP1

NP

N

book

D

the

V

read

NP0

N

Alice

read (t27)

quickly (t69)book (t3)

the (t1)

NP

Alice (t3)

0
1

VP

Figure 2: Derived and derivation trees for Alice read the

book quickly.

T. When adjoining applies, the node N is rewritten
as the tree T, and N’s children are attached (or low-
ered) as the children of the foot node of T. The de-
terminer tree on the right of Figure 1 can thus ad-
join to the NP root of the N-headed tree in the mid-
dle of the same figure. In this way, the grammar
can generate a structure corresponding to the NP
the book, which can then be substituted into the
NP object substitution node (NP1) in the transitive
verb-headed tree (t27) to derive the entire sentence
Alice read the book. Similarly, the rightmost ele-
mentary tree in the figure, t69, can be adjoined to
the VP node in t27 to yield a structure involving
adverbial modification. The resulting derived tree
structure is given on the left of Figure 2. This de-
rived tree does not, however, represent the deriva-
tional steps that were involved in the creation of
the structure, which are instead represented in a
derivation tree. The nodes of the derivation tree
correspond to elementary trees, and its edges (de-
pendencies) correspond to substitution and adjoin-
ing operations that have applied, i.e., a daughter
node is an elementary tree that has been substi-
tuted or adjoined into the parent node. Substitu-
tion is indicated by solid edges annotated with the
index of the substitution site, while adjoining is in-
dicated with dotted edges annotated with the locus
of adjoining. The derivation tree for the simple
sentence under consideration is given on the right
in Figure 2.

TAG shares with the Combinatory Categorial
Grammar (CCG) formalism the property of lexi-
calization: in both formalisms, words are associ-
ated with units of structure, elementary trees for
TAG and lexical categories for CCG. The pres-
ence of rich structure associated with the lexical

S

S

VP

NP

-NONE-

V}

NP0#

NP1#

t214

NP

S

S

VP

NP

-NONE-

V}

NP0#

NP1#

NP⇤

t170

Figure 3: Elementary trees for object questions and object
relative clauses.

items is a source of information relevant for a vari-
ety of NLP tasks, including semantic analysis and
translation, and the use of these formalisms have
contributed to performance benefits (Cowan et al.,
2006; Xu et al., 2017; Artzi et al., 2015; Nade-
jde et al., 2017). TAG and CCG differ, however,
in the kind of information that the lexical struc-
tures encode. In TAG, a verb’s elementary tree en-
codes not only its selected arguments, but also the
positions in which they are syntactically realized.
Sentences involving long-distance dependencies,
such as relative clauses or questions, will therefore
involve distinct verbally-headed elementary trees
from those used for simple declarative sentences,
in which the wh-movement dependency is realized
(Frank, 2004). For example, in the question What

did Alice read?, the displacement of the NP object
to the front of the question and its original posi-
tion filled with a trace node indicated by NONE,
as in the Penn Treebank, is represented in the ele-
mentary tree t214 on the left in Figure 3. Since the
auxiliary verb did must appear directly after the
fronted NP (NP1, or what, in this case), it adjoins
to the S child of NP1, as shown in Figure 2. In
contrast, the verb read in the relative clause of the
noun phrase the book that Alice read would head a
different, but related elementary tree, shown on the
right in Figure 3, which also includes the fronting
of the object, but is itself an auxiliary tree that can
adjoin to the NP it modifies.

In contrast, CCG lexical categories do not en-
code the different realizations of a verb’s argu-
ments found in declaratives, questions or relatives.
In all such cases, a transitive verb would be as-
signed the lexical category (s\np)/np. What dif-
fers are the categories assigned to the object (np in
simple sentences, s/(s/np) for the question word,

Figure 4: The TAG Parser pipeline.

and (np\np)/(s/np)) for the relative pronoun), as
well as the way in which these elements combine
with the verb.

3 Supertagging and Parsing

This study uses the TAG supertagger and parser
developed by Kasai et al. (2017). The supertagger-
parser pipeline is shown in Figure 4. Raw sen-
tences and part of speech tags are given as input
to the TAG supertagger, which outputs predicted
supertags (i.e., elementary trees) for each word.
These predicted elementary trees are given as in-
put to the (unlexicalized) TAG parser, which out-
puts predicted parses with labeled dependencies
among the elementary trees. We briefly review the
architecture developed by Kasai et al. (2017). For
more details, the reader should consult the original
paper.

3.1 Supertagger Architecture

As discussed above, a simple transitive verbal
predicate such as read might have a different el-
ementary tree depending on the context: t27 as
the main predicate of a declarative sentence, or
t214 in an interrogative sentence. The same word
might have other elementary trees in other con-
structions, such as subject and object relatives,
meaning that the determination of the correct tree
requires sensitivity to information that is not lo-
cal in the string (Kasai et al., 2017). To ad-
dress the need for long-distance dependency in-
formation, the supertagging model makes use of
Long Short-Term Memory (LSTM) units (Hochre-
iter and Schmidhuber, 1997), a recurrent network
architecture which is constructed to avoid the van-
ishing/exploding gradient problem. Specifically,
the supertagger developed by Kasai et al. (2017)
employs a one-layer bidirectional LSTM network.
This architecture processes the input sentence both
from beginning to end and from end to beginning.
The output of these LSTM units at each time step

are concatenated, fed into an affine transforma-
tion, and then fed into a softmax unit, yielding a
probability distribution over the 4,727 elementary
trees that exist in the TAG-parsed corpus we em-
ploy, which was extracted from the PTB corpus
(Chen et al., 2005). Each word is given to the net-
work as in Kasai et al. (2018): the concatenation
of a 100-dimensional GloVe embedding (Penning-
ton et al., 2014), a 5-dimensional embedding of a
predicted part of speech tag, and a 30-dimensional
character-level representation of the word. The
network is trained by optimizing the negative log-
likelihood of the observed sequences of supertags.

3.2 Shift-Reduce Parsing Algorithm

Parsing is done using the arc-eager system of shift
reduce parsing introduced in the MALT parser
(Nivre et al., 2006). This system maintains a stack,
buffer, and the set of dependency relations de-
rived so far as the current state. These dependency
relations consist of the substitutions and adjoin-
ings that have already occurred between elemen-
tary trees. Initially, the buffer holds the sequence
of tokens in the sentence, and the transitions ter-
minate when the buffer is empty. At each state,
the arc-eager system may choose one of four op-
erations: LEFT-ARC, RIGHT-ARC, SHIFT, and
REDUCE, defining ways in which the top ele-
ments of the stack and buffer may be manipu-
lated. The TAG parser further divides LEFT-ARC
and RIGHT-ARC into seven types according to the
derivational operation involved, whether substitu-
tion or adjoining, and the location at which the op-
eration takes place (Kasai et al., 2017).

The parser implemented by Kasai et al. (2017)
uses a two-level feed-forward network that is
trained to predict the operation that should be
taken, given the top five elements of the stack and
buffer. A noteworthy aspect of the parser is that
these data structures contain only supertag infor-
mation, not the identities of the words in the sen-
tence being parsed. Each supertag is given to the
network as a one-hot vector, which is then embed-
ded into a more compact representation, together
with vectors that indicate any substitution opera-
tions that have already been performed on the su-
pertag. These vector representations of the top ele-
ments of the stack and buffer are concatenated and
fed to the network, which yields a probability dis-
tribution over the possible transition actions. The
parser is decoded using a beam search.

3.3 Feature Embeddings

Friedman et al. (2017) explore the benefits of a dif-
ferent input representation for the same parser, in-
volving feature-based embeddings of the elemen-
tary trees. These feature-based embeddings are
vectors that encode linguistically-defined dimen-
sions of information about the elementary trees
specified by Chung et al. (2016). These dimen-
sions include structural properties of the elemen-
tary tree (category of the root and head and the
category and direction of substitution nodes), sub-
categorization frame, and grammatical properties
(passive, particle shift, wh-movement). The ra-
tionale for training a parser with feature embed-
dings is to allow the network to exploit relation-
ships between trees, and to be able to general-
ize parsing actions across related contexts. This
is particularly useful for cases like passivization
and wh-movement, in which the argument struc-
ture of the root remains the same, but there are
changes in syntax which are reflected in the el-
ementary trees. Friedman et al. (2017) compare
the parsing models using both one-hot and featural
representations of supertags with respect to pars-
ing performance on PTB sentences, but only saw
a “slight improvement” (approximately 0.2% im-
provement in LAS). However, in the case of adapt-
ing to new domains, learning this kind of linguis-
tic information may bridge the gap between the
original data domain and the new domain, as it
will allow sharing of information about parsing ac-
tions for related structures. We explore the impor-
tance of providing linguistically-rich feature em-
beddings to the parser to aid in improving parsing
accuracy in the new domain of interrogatives de-
spite never training the parser on sentences from
the new domain, especially when limited data is
used.

4 Methods

4.1 Background

The most direct approach to adapting a parser
for new domains would be to generate a new,
hand-annotated dataset that included instances of
the new sentence type, which could be used to
train a supertagger and parser. Such a process
would, however, involve a substantial annotation
effort for each new domain. We instead build
on the approach of domain adaptation taken by
Rimell and Clark (2008). The viability of Rimell
and Clark’s approach rests on the assumption that

“supertagging is almost parsing” (Bangalore and
Joshi, 1999). If a parser is provided with a correct
set of supertags, it should perform better even on
sentence types outside the domain on which it was
trained. We therefore focus on retraining the TAG
supertagger with a hand-annotated set of questions
to which TAG elementary trees have been assigned
to each word, but for which parses have not been
generated. This hand-annotation process is less
expensive than the creation of full parses. As we
shall see, this procedure results in improvements
in both supertagging and parsing accuracy without
ever training the parser on an augmented dataset of
questions.

4.2 Data

The question set used in this study contains 350
of the questions used by Rimell and Clark (2008).
Their dataset was drawn from the training data
provided for the TREC 9-12 Competitions.

4.3 Supertagger Training and Evaluation

To train the TAG BiLSTM supertagger, gold stan-
dard part of speech (POS) and supertag sequences
were first created for the 350 question set. POS
tags were assigned to the 350 questions using the
Stanford CoreNLP (Manning et al., 2014) web-
based POS tagging tool. These tags were then
checked and corrected by hand to create gold stan-
dard POS tags.

Next, elementary trees were assigned to the sen-
tences by hand. To make sure these hand annota-
tions were compatible with and followed the same
conventions as the method of supertag assignment
for the PTB data used to train the parser, the PTB
annotation guidelines (Bies et al., 1995) and the
gold standard supertag data (Chen et al., 2005)
were frequently reviewed. Stanford Tregex (Levy
and Andrew, 2006) was used to find relevant trees
(e.g., declarative forms of the questions, relative
clauses with a similar structure) in the WSJ cor-
pus. Through these methods, ambiguities regard-
ing assignment of elementary trees were resolved.
Hand annotation was primarily done by one au-
thor, and another author verified or corrected the
hand annotations.

In essence, the hand annotation process was
conducted as follows. Given the question "What
did Alexander Graham Bell (AGB) invent?" the
supertag sequence for the corresponding declara-
tive was first determined (Figure 5). From this, the
supertag sequence for the question would be cre-

ated. The biggest change is that the tree for the
predicate, invent, must reflect the wh-movement
(Figure 6).

NP

N

AGB

t3

S

VP

NP1#V

invented

NP0#

t27

NP

NP*D

the

t1

NP

N

telephone

t3

Figure 5: AGB invented the telephone.

NP

WP

What

t98

S

S*V

did

t259

NP

N

AGB

t3

S

S

VP

NP

-NONE-

V

invent

NP0#

NP1#

t214 (interrogative)

Figure 6: What did AGB invent?

As can be seen, the interrogative elementary tree
t214 can be derived from the declarative elemen-
tary tree t27. NP1 has been fronted, and the added
auxiliary did will adjoin directly after NP0 at the
second S node. Appendix A contains more infor-
mation about the conventions that were followed
in assigning supertags in several common types of
questions.

The BiLSTM supertagger was trained with two
regimens. In one, only the original PTB train-
ing set (WSJ sections 01-22) was provided. In
the other, the supertag sequences associated with
the hand-tagged questions were added to the PTB
data. Rimell and Clark (2008) added ten copies
of their 1,328 training questions, adding 13,280
questions to the 39,832 PTB training sentences.
Due to the smaller number of hand-tagged ques-
tions used for training in this study, 35 exact copies
of the training questions were added to the PTB
training sentences. This yielded a total of 49,632
sentences in the training set. Through a devel-
opmental stage of training and testing, it was de-
termined that 35 copies was optimal to have the
highest possible accuracy of supertagging ques-
tions without overfitting or reducing accuracy of
supertagging PTB sentences. Supertagger train-
ing and testing was done using five-fold cross-

validation. For each of the five folds, a unique sub-
set of 70 questions was saved for testing, and the
remaining 280 questions were used for training.
We report mean accuracy over these five folds.

4.4 Parsing Evaluation

In order to analyze parsing performance of ques-
tions, gold parses were created for a small test set
of 48 questions, each associated with a unique su-
pertag sequence. These questions were not among
those used for the training of the supertagger. As
before, the assignment of gold parses was done
through careful consultation of the PTB annota-
tion guidelines (Bies et al., 1995), as well as the
existing TAG-parsed version of the PTB.

For the TAG parser, creation of gold parses
requires not only the gold supertag sequences,
but also the dependency relations (for UAS and
LAS) and the arc labels (for LAS). Two additional
columns of information must be added when cre-
ating a gold parse as opposed to a gold supertag
sequence for a sentence, as shown below. As a re-
sult, creating gold supertag sequences is less time-
intensive than creating gold parses.

Word Supertag Rel Arc Label
1 What t612 2 adjoin
2 continent t3 5 1 (object)
3 is t259 5 adjoin
4 India t3 5 0 (subject)
5 on t2911 0 root

Two parsing models were explored, both trained
only on the PTB TAG parses: (1) the parser model
proposed by Kasai et al. (2017) that was trained
using one-hot vector embeddings of the elemen-
tary trees (henceforth -F), and (2) an identical
parser trained with Friedman et al.’s elementary
tree feature embeddings (henceforth +F). Decod-
ing for both parsers was done using beam search
with a beam size of 16. For each model, three dif-
ferent scenarios were tested, varying in the nature
of the supertag input received for the questions
to be parsed: (1) supertags given by the original
PTB-trained BiLSTM supertagger model (Kasai
et al., 2017) (henceforth PTB), (2) supertags given
by a supertagger model trained with an augmented
dataset of questions and PTB sentences (hence-
forth PTB+Q), and (3) hand-annotated gold su-
pertags (henceforth Gold). The accuracy of parses
in each of the six cases are reported in Section 5.2.

5 Results and Discussion

5.1 Supertagging Results

Supertagging results for the set of 350 questions
and the PTB test set are reported separately in
Table 1. The PTB-trained supertagger gave an
accuracy of 79.61% for the set of 350 questions
(an average over the five folds of cross-validation,
weighted by the number of words in each fold),
and 91.50% for the PTB test set. This PTB-trained
supertagger frequently made three types of errors
when assigning elementary trees to questions:

1. Incorrect wh-phrase construction: The cor-
rect elementary tree for the wh-determiner
(e.g., what in what book) should contain a
right NP* adjunction node to adjoin to the
NP book (as in t1 assigned to the in the book,
Figure 1). Instead, the elementary tree as-
signed to book by the PTB-trained supertag-
ger would incorrectly contain a left NP* ad-
junction node to facilitate adjunction to the
wh-phrase, or the verbal predicate’s elemen-
tary tree would have two NP substitution
nodes into which the wh-determiner and the
noun could be inserted separately.

2. Incorrect tree for auxiliary verb: Auxiliary
verbs (e.g., did) were treated as in a declar-
ative sentence, heading a VP-recursive aux-
iliary tree t23. Because the auxiliary should
appear immediately following the fronted NP
and before the subject, the adjunction of the
verb should instead take place at S (cf. tree
t214 in Figure 3), as in tree t259.

VP

VP*V}

t23

S

S*V}

t259

Figure 7: t23 (declarative) vs. t259 (interrogative)

3. Incorrect tree for verbal predicate: The
main predicate of the sentence was assigned
a declarative elementary tree rather than a

Questions PTB Test
PTB training 79.61 91.50
PTB+Q training 95.17 91.64

Table 1: Supertagging Accuracy. Rows indicate training set,
whether augmented or not.

PTB PTB+Q Gold

UAS -F 90.80 90.53 94.60
+F 91.14 90.51 96.00

LAS -F 89.63 89.39 94.07
+F 90.00 89.39 95.81

Table 2: PTB Test Parsing Accuracy. Columns indicate
training set for supertagger (or gold supertags) that provide
input to the parser. ±F indicates the presence or absence of
feature-based supertag embeddings in the input to the parser.

PTB PTB+Q Gold

UAS -F 81.84 86.70 91.04
+F 86.18 93.86 99.74

LAS -F 79.79 85.67 90.53
+F 83.88 93.09 99.74

Table 3: Question Parsing Accuracy. Columns indicate
training set for supertagger (or gold supertags) that provide
input to the parser. ±F indicates the presence or absence of
feature-based supertag embeddings in the input to the parser.

question version (i.e., neither fronting nor the
NP-NONE trace were expressed in the ele-
mentary tree). For a transitive sentence, this
means t27 (Figure 1) was assigned to the ver-
bal predicate rather than t214 (Figure 3).

For the PTB+Q trained supertagger, supertag-
ging accuracy improved, particularly in regards to
the three common errors outlined above. On aver-
age, supertagging accuracy increased substantially
for the question test sets. At the same time, su-
pertagging accuracy on the PTB test set was main-
tained, indicating that when augmentation is done
appropriately, additional training on types of con-
structions rare in a corpus does not adversely af-
fect supertagging performance on the original cor-
pus.

5.2 Parsing Results

Table 2 reports parsing accuracy on the PTB test
set for each of the six parser input conditions de-
scribed in Section 4 (varying by supertag input
and presence or absence of feature-embeddings).3

We see that the addition of the question data to
the supertag’s training data (PTB+Q) has a mini-
mal effect on parser performance on the PTB test
sentences. Similarly, as found by Friedman et al.
(2017), the addition of feature embeddings results
in a very small improvement in parsing accuracy,
if at all.

3Following the standard in the TAG parsing literature,
these values do not include accuracy for punctuation.

More relevant for the current topic of discussion
is the parsing performance of questions, which is
reported in Table 3 for each of the six parser in-
put conditions. We first note that while labeled
parsing accuracy (LAS) for the -F parser improved
from 79.79% to 85.67% when going from PTB
to PTB+Q supertagger training, we see an even
more dramatic increase when the feature-trained
(+F) parser is used: in this case, parsing accu-
racy increases to 93.09%. As discussed in Sec-
tion 3.3, the feature embeddings provide linguistic
information over which the parser can generalize
from one type of structure to another. Because
of the rarity of questions in the PTB, many of
the correct supertags used when hand-annotating
the question set are also rarely present in the
gold standard supertag data for the PTB WSJ cor-
pus (Chen et al., 2005). As a result, the TAG
parser (trained only on the PTB WSJ corpus) was
not equipped to properly handle these supertags.
Thus, while the parsing accuracy increased when
given PTB+Q-trained supertags, the improvement
is not as large as it might be due to the parser re-
peatedly encountering uncommon supertags that
it was unable to correctly staple together. When
the +F parser was used, the parser had learned
the knowledge required to better deal with these
less common supertags, and parsing accuracy im-
proved from 83.88% to 93.09%. It is notable
that this improvement is super-additive: the im-
provement on LAS (13.3%) is greater than the
sum of the individual improvements obtained by
using the improved supertagger (PTB+Q) alone
(5.88%) or using feature-embeddings (+F) in the
parser (4.09%). Thus, we find that with our ap-
proach to domain adaptation, when coupled with
representations that encode linguistic commonal-
ities across different types of structures, accuracy
can increase to a level comparable to the parsing
accuracy of the original domain. It is also no-
table that, when training the supertagger, so few
questions (350) are needed to see a significant in-
crease in both supertagging and parsing accuracy
(by 15% and 13%, respectively).

Table 4 breaks errors in parsing questions into
two categories. The error category of “incor-
rect wh-phrase” relates to parses of questions that
failed to adjoin a wh-determiner to its correspond-
ing noun phrase, or that incorrectly substituted a
wh-phrase as an argument of the corresponding
predicate. The “missing root” category relates to

PTB PTB+Q Gold
incorrect
wh-phrase

-F 19 9 7
+F 16 3 3

missing root -F 16 25 23
+F 1 0 0

Table 4: Summary of Parsing Evaluation for Questions. ±F
indicates the presence or absence of feature-based supertag
embeddings in the input to the parser.

parses that omit assigning any term in the sentence
as the root of the dependency parse, most likely
due to complexity or rareness of the correct root
word’s elementary tree. The number and types of
parsing errors deriving from the presence of un-
common supertags in questions (e.g., a parse miss-
ing a root) persist in the -F parser. In contrast,
these errors are minimal for the +F parser. Treat-
ment of the wh-phrase construction was a specific
focus of training the supertagger on questions, and
while errors in this category decreased (cf. Table
4) for both parsers once the improved supertags
were given, the feature-trained (+F) parser was
better able to handle these constructions, and er-
rors decreased much more.

It is important to note that, although the number
of sentences with a missing root increases from the
PTB to PTB+Q trained supertagger, the reason for
having a missing root changes. Given the correct
(often rarer) supertag for the root in the PTB+Q
case, the -F parser is now not equipped to properly
combine other trees with it, so the root is skipped.
This leads to higher numbers of missing root er-
rors for both PTB and PTB+Q. However, such er-
rors do not occur in the +F parser, as sensitivity to
features allows the parser to be better equipped to
compose even rare trees correctly. We find then
that the statement “supertagging is almost pars-
ing” (Bangalore and Joshi, 1999) is true only when
the linguistic content of supertags is known to the
parser. When the parser receives correct supertags
(gold) and is equipped to handle them properly
since it was trained with feature embeddings, it
yields near-perfect parses (99.74%).

6 Future Work

We anticipate that the approach of domain adap-
tation for supertagging and parsing explored here
can be applied to other domains. For example, im-
peratives are another sentence type nearly absent
from newspaper corpora, but which are nonethe-
less a crucial type of input to NLP systems such as

S

S

VP

NP

-NONE-

NP0#

NP

WP

what

Figure 8: Proposed elementary tree for “what” predicate

virtual assistants. Another domain to which this
method might be applied involves biomedical and
clinical text (cf. Rimell and Clark 2009), which
pose a challenge for information retrieval systems
due to the domain-specific vocabulary abbrevia-
tions and distinctive syntactic structures, such as
null subjects, asyndetic coordination, and frag-
ments.

(a) abbreviations: 8 yo M no PMH presents with
n/v/F and fever x4 days

(b) null subjects: presents with shortness of
breath

(c) asyndetic coordination: VS notable for fever
to 103F, tachycardia, tachypnea

(d) fragments: non-toxic though appears ill

In addition, because questions are not well-
represented among the original PTB training cor-
pus for the parser, questions on which the parser
was tested sometimes involved novel supertags
that were absent from the grammar extracted from
the PTB. For example, copular sentences with NP
predicates (like Mardi Gras is a festival) can front
the predicate to form a question (as in What is

Mardi Gras?). The appropriate elementary tree
for such cases should be the one given in Fig-
ure 8, with the clausal predicate what appearing
in fronted position. However, no such elementary
tree exists among those that were extracted from
the PTB by Chen et al. (2005). Consequently, in
order to better parse all types of questions, and
more generally sentences from other domains, it
will be necessary to allow for the creation and fea-
ture decomposition of new elementary trees.

7 Conclusion

In this study, we explored an approach to domain
adaptation for TAG parsing in the context of ques-
tions. We extended Rimell and Clark’s approach

for improving parsing by improving supertagging.
We found first of all that improvements in TAG
supertagging, despite the larger number of su-
pertags involved as compared with CCG, are pos-
sible through a relatively limited hand-annotation
effort. Supertagging accuracy of questions in-
creased by 15%, without sacrificing supertagging
accuracy on the original corpus data. Furthermore,
while this approach is also successful in improv-
ing parsing performance, its effectiveness is maxi-
mized when the parser makes use of linguistically-
informed representations of supertags. Strikingly,
previous work (Friedman et al., 2017) found that
the introduction of hand-coded linguistic features
in the supertag representations given to the parser
does not yield significant benefits in parsing per-
formance. However, our current results suggest
that the addition of linguistic features can con-
stitute a crucial source of information when pro-
cessing structures that are underrepresented in the
training data. A parser trained with linguistically-
defined feature decompositions of the supertags
can better handle those supertags that are uncom-
mon in the data it was trained on. In such cases
(e.g., questions), the parser is able to exploit ab-
stract commonalities with related structures, such
as relative clauses, that do occur frequently in the
training data. Without such linguistically struc-
tured representations, considerably more effort
would need to be expended to annotate parses in
the new domain of questions. We see then that
neural methods are not immune to the need for the
careful incorporation of hand-coded linguistic fea-
tures, particularly in addressing problems of do-
main adaptation.

8 Acknowledgement

The authors are grateful to Jungo Kasai for his cru-
cial advice and technical support throughout this
work. We would also like to thank the members
of the CLAY lab at Yale, who provided valuable
feedback.

References

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.
Broad-coverage CCG semantic parsing with AMR.
In Proceedings of the 2015 Conference on Empiri-

cal Methods in Natural Language Processing, pages
1699–1710.

Srinivas Bangalore and Aravind K Joshi. 1999. Su-
pertagging: An approach to almost parsing. Com-

putational linguistics, 25(2):237–265.

Ann Bies, Mark Ferguson, Karen Katz, Robert Mac-
Intyre, Victoria Tredinnick, Grace Kim, Mary Ann
Marcinkiewicz, and Britta Schasberger. 1995.
Bracketing guidelines for treebank II style Penn
Treebank project. University of Pennsylvania.

John Chen, Srinivas Bangalore, and K. Vijay-Shanker.
2005. Automated extraction of tree-adjoining gram-
mars from treebanks. Natural Language Engineer-

ing, 12(3):251–299.

Wonchang Chung, Siddhesh Suhas Mhatre, Alexis
Nasr, Owen Rambow, and Srinivas Bangalore. 2016.
Revisiting supertagging and parsing: How to use su-
pertags in transition-based parsing. In 12th Interna-

tional Workshop on Tree Adjoining Grammars and

Related Formalisms (TAG+ 12), pages 85–92.

Brooke Cowan, Ivona Kučerová, and Michael Collins.
2006. A discriminative model for tree-to-tree trans-
lation. In Proceedings of the 2006 Conference on

Empirical Methods in Natural Language Process-

ing, pages 232–241.

Robert Frank. 2004. Phrase Structure Composition

and Syntactic Dependencies. MIT Press, Cam-
bridge, MA.

Dan Friedman, Jungo Kasai, Thomas R. McCoy,
Robert Frank, Forrest Davis, and Owen Rambow.
2017. Linguistically rich vector representations
of supertags for TAG parsing. In Proceedings of

the 13th International Workshop on Tree Adjoining

Grammars and Related Formalisms, pages 122–131.
Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Aravind K Joshi, Leon S Levy, and Masako Takahashi.
1975. Tree adjunct grammars. Journal of computer

and system sciences, 10(1):136–163.

Jungo Kasai, Robert Frank, R. Thomas McCoy, Owen
Rambow, and Alexis Nasr. 2017. TAG parsing with
neural networks and vector representations of su-
pertags. In Proceedings of EMNLP. Association for
Computational Linguistics.

Jungo Kasai, Robert Frank, Pauli Xu, William Merrill,
and Owen Rambow. 2018. End-to-end graph-based
tag parsing with neural networks. In Proceedings

of the Conference of the North American Chapter of

the Association for Computational Linguistics: Hu-

man Language Technologies (NAACL-HLT).

Jungo Kasai, Dan Friedman, Robert Frank, Dragomir
Radev, and Owen Rambow. 2019. Syntax-aware
neural semantic role labeling with supertags. In Pro-

ceedings of the Conference of the North American

Chapter of the Association for Computational Lin-

guistics: Human Language Technologies (NAACL-

HLT).

Roger Levy and Galen Andrew. 2006. Tregex and
Tsurgeon: Tools for querying and manipulating tree
data structures. In Proceedings of the Fifth Interna-

tional Conference on Language Resources and Eval-

uation (LREC), pages 2231–2234.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual

Meeting of the Association for Computational Lin-

guistics: System Demonstrations, pages 55–60.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn treebank. Computa-

tional Linguistics, 19(2):313–330.

Maria Nadejde, Siva Reddy, Rico Sennrich, Tomasz
Dwojak, Marcin Junczys-Dowmunt, Philipp Koehn,
and Alexandra Birch. 2017. Predicting target lan-
guage CCG supertags improves neural machine
translation. In Proceedings of the Second Confer-

ence on Machine Translation, pages 68–79, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of the Fifth In-

ternational Conference on Language Resources and

Evaluation (LREC).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 confer-

ence on empirical methods in natural language pro-

cessing (EMNLP), pages 1532–1543.

Slav Petrov, Pi-Chuan Chang, Michael Ringgaard, and
Hiyan Alshawi. 2010. Uptraining for accurate de-
terministic question parsing. In Proceedings of the

2010 Conference on Empirical Methods in Natural

Language Processing, pages 705–713.

Laura Rimell and Stephen Clark. 2008. Adapting a
lexicalized-grammar parser to contrasting domains.
In Proceedings of the Conference on Empirical

Methods in Natural Language Processing, pages
475–484. Association for Computational Linguis-
tics.

Laura Rimell and Stephen Clark. 2009. Port-
ing a lexicalized-grammar parser to the biomedi-
cal domain. Journal of Biomedical Informatics,
42(5):852–865.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA.

https://doi.org/10.1162/neco.1997.9.8.1735
http://dl.acm.org/citation.cfm?id=972470.972475
http://dl.acm.org/citation.cfm?id=972470.972475
https://doi.org/10.18653/v1/W17-4707
https://doi.org/10.18653/v1/W17-4707
https://doi.org/10.18653/v1/W17-4707
https://www.aclweb.org/anthology/D10-1069
https://www.aclweb.org/anthology/D10-1069

Pauli Xu, Robert Frank, Jungo Kasai, and Owen Ram-
bow. 2017. TAG parsing evaluation using textual en-
tailments. In Proceedings of the 13th International

Workshop on Tree Adjoining Grammars and Related

Formalisms, pages 132–141. Association for Com-
putational Linguistics.

A Appendix: Assigning TAG Supertags

to Questions

This appendix lays out the linguistic assumptions
and analytic decisions that were made for question
supertagging and parsing. Within the 350 ques-
tions, four basic question types, expressed in a
generalized form below, were most common.4

a. How many/much ... ?

b. What (NP) is NP ?

c. What (NP) VP ?

d. What (NP) is NP+IN ?

Below we briefly present our assumptions for each
type.

How many/much ... ?

An example of this type of question is:

(1) How many battles did she win?

It is first useful to examine the declarative version
closest to this sentence:

(2) She did win five battles.

The key difference between the interrogative
version (Sentence 1) and the declarative version
(Sentence 2) is the change in order, akin to that of
wh-movement. Thus, the elementary tree for the
verbal predicate win in this question must include
the noun phrase trace, as in t214:

S

VP

NP1#V

win

NP0#

t27 (declarative)

S

S

VP

NP

-NONE-

V

win

NP0#

NP1#

t214 (interrogative)

As can be seen, the interrogative elementary tree
t214 can be derived from the declarative elemen-
tary tree t27. NP1 corresponds to five battles. NP1

4Part of speech tags are taken from the PTB.

in t27 has been replaced by the NP-NONE trace
in t214, since it has moved to the beginning of the
sentence (fronting). To show this, an additional S
node has been added to the top of the tree. An-
other key difference adopted as a convention is the
treatment of did. In the declarative sentence, did is
assigned t23, a VP-recursive auxiliary tree. How-
ever, in the interrogative version, did is assigned
t259, an S-recursive auxiliary tree. The difference
is shown below:

VP

VP*V}

t23

S

S*V}

t259

This is because of the placement of the additional
S node in t214. The auxiliary verb did must come
between the object (NP1) and subject (NP0) of the
question, as shown in t214.

What (NP) is NP ?

An example of this type of question is:

(3) What is the capital of Kentucky?

with the corresponding declarative sentence:

(4) Frankfort is the capital of Kentucky.

The supertags assigned to Sentence 3 are shown
in Figure 9, and the supertag for the predicate is
t668 in Figure 10.

NP

WP

What
t98

S

S*V

is
t259

NP

NP*D

the
t1

NP

PP

NP1#IN

of

NP*

t4

NP

N

Kentucky

t3

Figure 9: Elementary trees for Sentence 3.

There are two key concepts behind this type of
question. First, as for the auxiliary verb did in the
earlier question type, t23 becomes t259 in the con-
text of questions due to the necessity of adjoining
to the S node in a position above the subject. Sec-
ond, we notice in a copular sentence there is no
verb to head the elementary tree, i.e., to project the
main S node that serves as the root of the deriva-
tion. Instead, the noun capital plays the role of
predicate of the sentence, and is assigned an S-
rooted elementary tree, t668. Figure 10 illustrates
the similarity of the two elementary trees assigned

to the predicate nominal capital in declarative and
interrogative forms, with the interrogative t668 en-
coding the NP-NONE trace.

S

VP

NP

N

capital

NP0#

t167 (declarative)

S

S

VP

NP

N

capital

NP

-NONE

NP0#

t668 (interrogative)

Figure 10: Elementary trees for “capital” in Sentences 4 and
3, respectively.

What (NP) VP ?

Sentence 5 gives an example of this type of ques-
tion.

(5) What car company invented the Edsel?

(6) Ford invented the Edsel.

The sequence of elementary trees assigned to this
sentence is shown in Figure 11. Although there is
no change in word order when converting from the
interrogative to the declarative version of this sen-
tence, the verbally-headed elementary tree follows
the practice of placing a trace in subject position
and displacing the subject to a higher position, as
done in the PTB.

Earlier, t214 was used for the question version
of the transitive verb win’s elementary tree. The

NP

NP*Comp

What

t612

NP

NP*N

car

t2

NP

N

company

t3

S

S

VP

NP1#

V

invented

NP

-NONE-

NP0#

t335
NP

NP*D

the

t1

NP

N

Edsel

t3

Figure 11: Elementary trees assigned to Sentence 5.

difference between t214 and t335 is whether it was
the object or subject that was fronted to form the
question. Distinct elementary trees are necessary
for each possible position of extraction for a given
pattern of transitivity.

What (NP) is NP+IN ?

The final question type we consider here is as fol-
lows:

(7) What city is Logan Airport in?

Unlike copular questions, in which a noun phrase
is the main predicate, in Sentence 7 the main pred-
icate is the preposition in. As a result, this prepo-
sition constitutes the head of the S-rooted elemen-
tary tree, as shown in Figure 12, where what city

substitutes into the NP1 node (object), and Logan

Airport substitutes into the NP0 node (subject).

S

S

VP

PP

-NONE-IN

in

NP0#

NP1#

t2911

Figure 12: Elementary tree used in Sentence 7.

	Proceedings of the Society for Computation in Linguistics
	The Role of Linguistic Features in Domain Adaptation: TAG Parsing of Questions
	Author #1
	Author #2
	Author #3
	Author #4

	The Role of Linguistic Features in Domain Adaptation: TAG Parsing of Questions

