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Abstract

In CCG and other highly lexicalized gram-
mars, supertagging a sentence’s words with
their lexical categories is a critical step for
efficient parsing. Because of the high degree
of lexicalization in these grammars, the lexi-
cal categories can be very complex. Existing
approaches to supervised CCG supertagging
treat the categories as atomic units, even when
the categories are not simple; when they en-
counter words with categories unseen during
training, their guesses are accordingly unso-
phisticated.

In this paper, we make use of the primi-
tives and operators that constitute the lexi-
cal categories of categorial grammars. Instead
of opaque labels, we treat lexical categories
themselves as linear sequences. We present
an LSTM-based model that replaces standard
word-level classification with prediction of a
sequence of primitives, similarly to LSTM
decoders. Our model obtains state-of-the-art
word accuracy for single-task English CCG su-
pertagging, increases parser coverage and F1,
and is able to produce novel categories. Anal-
ysis shows a synergistic effect between this
decomposed view and incorporation of predic-
tion history.

1 Introduction

Highly lexicalized grammars, such as lexicalized
tree-adjoining grammar (LTAG) and combinatory
categorial grammar (CCG), have very large sets
of possible lexical categories. Where most phrase-
structure and dependency grammars have lexical
category sets numbering in the tens for English
(Taylor et al., 2003), LTAG and CCG have sets
numbering in the hundreds or thousands (Joshi
and Srinivas, 1994; Clark, 2002). The large num-
ber of possible labels for each word can make the
search space for the syntactic tree of the sentence

Category Count

N 206,312
N/N 152,508
NPnb/N 83,377
(NP\NP)/NP 43,700
((S\NP)\(S\NP))/NP 22,189
conj 20,170
NP 19,749
PP/NP 17,199
(S\NP)\(S\NP) 16,146
((S\NP)\(S\NP))/((S\NP)\(S\NP)) 3,820
(((S\NP)\(S\NP))\((S\NP)\(S\NP)))/NP 325

Figure 1: Some sample CCG lexical categories from
the CCGbank training set. The first nine are the most
frequent non-punctuation categories. The final two are
in the top 100 (out of 1285) and illustrate the capacity
for syntactic richness and variety in complexity.

intractably large; narrowing the set of viable lexi-
cal categories per word is therefore an important
step in efficient parsing for such grammars (Clark
and Curran, 2007; Lewis et al., 2016). As the tags
are much more complex and informative than part-
of-speech (POS) tags, tagging the words with these
more complex categories is called supertagging.

The large number of lexical categories comes
from the high degree of complexity that the cate-
gories can have. When grammars have small tag
sets, the bulk of the work in developing or learning
a grammar comes from deciding how to combine
the tags and their words. Categorial grammars in-
stead have fewer combination rules, requiring the
lexical categories to support much greater syntactic
richness; see Figure 1 for some sample categories.

Existing approaches to supervised supertagging
operate in the same manner as POS taggers: as a
word classifiers, predicting the correct tag from a
fixed set. This is relatively straightforward for POS
tags: there are relatively few possibilities as the
tags are simple–e.g., it is not immediately apparent
if or how VBD is more complex than NNP. By con-
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trast, CCG categories have varying complexities
and are clearly not atomic units; they are composed
from a much smaller vocabulary of primitives.

In this paper, we challenge the usual treatment
of CCG supertagging as large-tagset POS tagging,
instead treating lexical categories as the complex
units that they are. We present a model for CCG su-
pertagging that replaces traditional whole-category
prediction with the prediction of their composing
primitives. In addition to addressing the incon-
gruity between POS tags and CCG categories, this
allows for the generation of new categories that do
not occur in the training set, a necessary property
for handling the long tail of syntactic phenomena.

We treat supertags as linear sequences, enabling
us to employ LSTM decoders to autoregressively
predict CCG primitives in sequence. On CCGbank,
our model outperforms a bidirectional LSTM clas-
sification baseline on word accuracy, parser F1, and
parser coverage, establishing a new state-of-the-art
for single-task English CCG supertagging.

Analysis of our model and results shows that
our non-atomic view of CCG lexical categories en-
ables more effective incorporation of model predic-
tion history than is the case with atomic category
classification. Our model can also generate new
categories that it has not seen during training, and
even manages to correctly label some words with
such out-of-vocabulary (OOV) categories. To the
best of our knowledge, our model is the first fully-
supervised CCG supertagger that constructs lexi-
cal categories from primitive types, and the first
to be able to produce OOV categories. Our work
presents both a more appropriate view of the prob-
lem and establishes a strong baseline for CCG su-
pertagging according to this view.

2 Background and motivation

Supertagging is quite different from POS tagging.
CCG lexical categories are composed from a fixed
set of more primitive units; as a result, CCG
supertagging has a much larger set of possible
tags than does POS tagging—an open set, in fact.
Where the Penn Treebank (PTB) has 481 POS tags
(Taylor et al., 2003), CCGbank has 1322 lexical
categories (Hockenmaier and Steedman, 2007). Se-
lecting from a much larger set is more difficult,
of course, and therefore, POS tagging accuracy
is substantially higher than for CCG supertagging.
Recent POS tagging work has reached up to 98%

1Twelve of which are for punctuation.

accuracy and above, depending on the language
and corpus, without the use of pre-trained embed-
dings or other incorporation of external corpora
(Plank et al., 2016). English CCG supertagging,
meanwhile, has only recently broken past 96%, ac-
curacy and that too with a heavy dependence on
pre-trained embeddings, external corpora, and/or
multi-task training (Clark et al., 2018).

Given these substantial differences, the complex,
structured nature of CCG lexical categories war-
rants further investigation for supertagging. We see
two primary advantages in doing so. First, as noted
by Baldridge (2008) and Garrette et al. (2014), a
compositional view of lexical categories can pro-
vide strong information about surrounding cate-
gories. For example, if a word has category S/NP,
then it is likely that there is a primitive NP type
somewhere else in the sentence, whether as a sim-
ple category or as part of a complex one.

Second, treating CCG categories as atomic
makes it impossible to fully tag all new data, since
new, rare categories may be encountered during
inference. Such rare categories are not necessarily
spurious; over the whole CCGbank, Hockenmaier
and Steedman (2007) note that while some of the
once-occurring categories “are due to noise or an-
notation errors, most are in fact required for cer-
tain constructions.”2 Admittedly, novel categories
(i.e., those not occurring in the training set) are
rare in CCGbank: in the standard splits, 0.06% of
word tokens in the development set and 0.04% in
the test set are tagged with a category that does
not occur in the training set. But since an incor-
rect lexical category can impair the parsability of
a full sentence, it is more appropriate to consider
the number of affected sentences, which is 0.9%
for both the development and test sets.3 Work on
CCG parsers has noted their high sensitivity to su-
pertagging accuracy (e.g., Clark and Curran, 2004;
Lewis et al., 2016), so such cases should not be ig-
nored. And unlike typical classification scenarios,
out-of-vocabulary lexical categories are not differ-
ent in kind from in-vocabulary ones; they are com-
posed from the same units using the same rules,
suggesting that OOV categories can, in principle,
be treated in a concordant manner.

2They provide relative pronouns in pied-piping construc-
tions and verbs which take expletive subjects as examples; we
found lengthy adjunction chains to contribute as well.

3These proportions are even higher for out-of-domain data
(Rimell and Clark, 2008).
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3 Related work

While our focus in this paper is on CCG supertag-
ging, it is worth noting that the supertagging task
originates in the context of LTAG (Joshi and Srini-
vas, 1994; Bangalore and Joshi, 1999), which also
has highly complex lexical categories. Supertag-
ging is important for efficient parsing in such gram-
mars as it helps narrow the search space for the
parse (Clark and Curran, 2004).

Despite the complexity captured in supertags,
the vast majority of existing approaches treat CCG
lexical categories as atomic units for prediction, ig-
noring their varying complexities and structured
nature. Effectively, at each time step of the in-
put sentence, the model must decide which of a
fixed set of CCG categories is the best choice. This
category-classification approach is the same as for
POS tagging, and indeed, existing supertagging
models are very similar to (if not the same as) POS
tagging models in structure.

Early work for CCG supertagging relied on
maximum-entropy models with hand-specified fea-
tures, a limited set of possible categories, and tag
dictionaries that tracked allowed categories for fre-
quent words based on the training data (Clark,
2002; Clark and Curran, 2004, 2007). Recent work
relies heavily on word embeddings: they allow
better handling of out-of-vocabulary words and
decrease reliance on part-of-speech tags, where
imperfect accuracy can be a detriment for the
supertagger. Lewis and Steedman (2014) used
externally-trained embeddings (Turian et al., 2010)
combined with suffix and capitalization features in
a simple feed-forward neural network as well as a
CRF; they also allowed words to be tagged with
categories with which they did not co-occur in the
training data. Xu et al. (2015) applied the same em-
beddings and features in a standard Elman RNN
(Elman, 1990); they later improved their model by
making it bidirectional (Xu et al., 2016). Lewis
et al. (2016) replaced the Elman RNNs with two-
layer bidirectional LSTMs, taking advantage of the
LSTM units’ ability to retain information over time
(Hochreiter and Schmidhuber, 1997), and incorpo-
rated a data-augmentation technique as well.

Vaswani et al. (2016) used a single-layer bidi-
rectional LSTM but dropped all hand-specified
features, removed the limit on the categories that
the model could produce, used custom in-domain
word embeddings, and included a language model–
style LSTM over the output lexical categories that

allowed the model to condition its predicted tag
at time t on the previously-predicted lexical cate-
gory at time t− 1. In addition to improving word
accuracy, this latter addition drastically increased
the number of tagged sentences that were parsable,
even in variations that hurt word accuracy.

The current state-of-the-art result in CCG su-
pertagging was achieved by Clark et al. (2018).
Their model consisted of a two-layer bidirectional
LSTM with GloVe word embeddings (Penning-
ton et al., 2014) supplemented by the output of
a character-level convolutional neural network.
Their approach involved training additional “auxil-
iary” prediction modules on top of the same LSTM
on an additional, unlabelled corpus (Chelba et al.,
2014). These auxiliary modules were given an in-
complete view of the input (e.g., only words to the
left) and trained to predict the same label that the
primary prediction module predicted.

If we consider other grammars, (Kogkalidis
et al., 2019) presented a type-logical grammar for
Dutch and a supertagging approach that relied on
primitive units. While their approach yielded im-
provement in word accuracy, the overall accuracy
was substantially lower than with CCG supertag-
ging; furthermore, the grammar’s type system was
so different that it is difficult to draw conclusions
about applicability to other grammars.4 In order
to see some consideration of the composed struc-
ture of CCG lexical categories, we must alter our
task scope somewhat. Garrette et al. (2014), fol-
lowing earlier work (Baldridge, 2008), applied a
Bayesian model with grammar-informed priors for
supertagging where only a tag dictionary and raw,
unlabelled text was made available. Their model
included a generative model for categories as well
as the notion of combinability, preferring tag se-
quences where adjacent words could be combined
via CCG rules. Similarly, work in CCG grammar
induction has involved some basic consideration of
how CCG categories are constructed so that that a
grammar could be built using EM (Bisk and Hock-
enmaier, 2012) or hierarchical Dirichlet processes
(Bisk and Hockenmaier, 2013). Despite these ap-
plications, consideration of CCG primitives has
yet to make its way to supervised supertagging ap-
proaches; we aim to fill that gap.

4Their grammar had 5700 unique types for a corpus of 65k
sentences; categories were constructed from 30 atomic types,
corresponding to POS tags or phrasal categories, and 22 non-
directional binary connectives, corresponding to dependency
labels.
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4 Method and model

Despite the potential advantages discussed above
in Section 2, it is unclear a priori whether su-
pertagging with primitive units is more or less dif-
ficult than standard, whole-category classification.
While the output vocabulary becomes drastically
smaller, the output sequences are longer and must
be arranged correctly. One of our aims in this pa-
per is to establish a baseline for this approach to
supertagging and evaluate its difficulty as a task in
comparison to the usual methods.

4.1 Linearization

Lexical categories in categorial grammars are com-
posed of a relatively small, fixed set of primitive
types (S, NP, etc.) with indications for precedence/
grouping (parentheses) and ordering (forward and
backward slashes). In this paper, we approach the
generation of CCG lexical categories as the pre-
diction of a linear sequence of decomposed sym-
bols. We use a simple linearization scheme: we
split each lexical category label into tokens, using
parentheses and slashes as delimiters. We keep the
delimiters as units in the output sequence as well,
as they crucially define the structure of the cate-
gory. This linearization method yields an output
vocabulary of size 38 (including parentheses and
slashes); many of these are feature-typed versions
of plain primitive types; e.g., Sto and Nnum. We re-
fer to all units resulting from this decomposition,
whether they are primitive types, slashes, or paren-
theses, as primitives for brevity.

It may seem difficult to try to learn to predict a
sequence such as {(, Sdcl, \, NP, ), /, NP} con-
sistently and correctly, or to produce sequences
in general that are well-formed. Any model at-
tempting this will have to implicitly learn the rules
for constructing lexical categories from primitives,
such as the balancing of parentheses, or that prim-
itive types cannot occur directly adjacent to one
another and must be joined with a slash. But re-
cent work suggests that this is not an unreasonable
ask: Vinyals et al. (2015) used a similarly simple
linearization scheme to convert a constituent parse
tree into a sequence predictable by a linear decoder.
The model did produce malformed parses on occa-
sion, such as by forgetting to close open parenthe-
ses, but in general, it was able to perform near or
above the state-of-the-art at the time, depending on
how much data were used for training.

4.2 Decoding sequences of primitives

The most recent, highest-performing supertaggers
are all based on bidirectional LSTM architectures.
At each time step, the forward and backward
LSTM outputs are combined and fed through a
softmax layer to produce a distribution over cat-
egories. In order to construct a supertagger that
works at the level of primitives, we propose a
model that replaces the softmax prediction layer
with a separate LSTM that predicts primitives in
a manner similar to the decoder in RNN encoder-
decoder architectures (Cho et al., 2014; Sutskever
et al., 2014), or to how text is generated from neu-
ral language models.

In encoder-decoder LSTM models, an encoder
LSTM is run over the input sequence. The final
LSTM cell is used to initialize the decoder’s LSTM
cell, after which the decoder is trained to predict
the output sequence. During training, the decoder
receives as input the correct output for time t− 1,
and asked to predict the output for time t. During
inference, the model makes its predictions autore-
gressively, since the correct previous output is un-
known at test time. Output sequences are padded
with [START] and [STOP] symbols: the former
allows the model to learn a distribution over ini-
tial output symbols, as well as providing a means
to trigger the output sequence prediction process
(e.g., after an input sentence has been read by the
encoder); the latter is how the decoder indicates its
completion of the current sequence.

Standard use cases for encoder-decoder models,
such as machine translation, have the property that
the output sequence lengths are not easily deter-
minable from the input sequence lengths; nor is
there an easy, strictly monotonic correspondence
between input and output tokens. The usual appli-
cation of encoder-decoder models handles this dis-
crepancy by mostly separating the encoding and
decoding parts of the model, leaving them con-
nected only at their ends (i.e., via the copying of
the encoder’s hidden state to the decoder’s).

A naive application of encoder-decoder models
to supertagging would simply output the sequence
of categories (or primitives, in our case) for a sen-
tence, after having encoded the entire input. For
supertagging, this would be less than ideal. If one
were to treat the sequence of categories as the tar-
get output sequence, there would be a long path
through the network from the input word to the
output supertag. One could remedy this with atten-
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[SEP]
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[SEP]
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[SEP]
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Figure 2: Our supertagging model. Where traditional models would classify an entire category for each word wi at
a time, we decode a sequence of primitives yi,1, . . . , yi,Ni

. The BiLSTM forward/backward combination layer is
omitted for brevity.

tion mechanisms, but since there is a known and di-
rect correspondence between a given encoder step
and the output time steps, it is simpler to link the
encoder output to the decoder directly.5

Our model, illustrated in Figure 2, consists of a
bidirectional LSTM over the input sentence words,
a feed-forward layer to combine and project the
two LSTM directions, and finally by a unidirec-
tional LSTM to produce sequences of primitives.6

We refer to the bidirectional (base) LSTM as the
encoder and the unidirectional primitive LSTM
as the decoder to help differentiate the two, even
though our use isn’t exactly the same as in standard
encoder-decoder models. Instead of initializing the
decoder’s cell with an encoder’s final cell state, we
directly use the encoder’s output as inputs to the
decoder, concatenated with the primitive from the
previous time step.7 During training, it is known
which primitives correspond to which words, so
aligning the encoder outputs to the decoder inputs
is straightforward. During inference, we maintain
a pointer i to select the relevant encoder output,
initialized to i = 1. Then, whenever the decoder
predicts the end of the current word’s category, i is
incremented so that the next decoder step gets the
correct encoder output; decoding is stopped when
the decoder predicts the end of the last word’s cat-
egory. Since one word’s [STOP] symbol indicates
the next word’s [START] symbol, we combine the
two symbols into a single [SEP] symbol, which

5Our initial (non-exhaustive) tests found no benefit to
adding attention to our model, instead serving only to increase
memory usage and slow training down.

6We stick with LSTMs, as with previous work, in order to
conduct a well-controlled comparison.

7We did experiment with priming the decoder’s initial cell
state; our tests found this to yield a lower word accuracy com-
pared to including the encoder output in the decoder input,
and there was no benefit to doing both.

can be interpreted as a word boundary marker.
Importantly, we do not reset the model state be-

tween words. This enables the decoder to maintain
a memory of the primitives (and, by extension, cat-
egories) previously predicted in the sentence.

5 Experimental setup

5.1 Data
As is standard, we train our model on sections 2–22
of CCGbank (Hockenmaier and Steedman, 2005),
keep section 0 for development and tuning, and
evaluate on section 23. As required for decoding,
we decompose the categories for each word, insert-
ing the [SEP] token at word boundaries.

To represent the input words at the lowest level
of our model, we use the (frozen) 5.5B ELMo em-
beddings (Peters et al., 2018). Because ELMo em-
beddings are cased and character-based, we need
very little preprocessing of the input data: we con-
vert all “n’t” tokens to “’t” and append “n” to the
preceding token, unless it is “can” or “won”; we
convert the bracket tokens to their original char-
acters (e.g., “-LRB-” to “(”, etc.); and we replace
“\/” and “\*” with “/” and “*” respectively. These
steps are solely to more closely match what the
ELMo model saw during its training. The inputs
are otherwise untouched. There is also no need for
a separate token for unknown words. Comparing
previous work indicates that ELMo (Clark et al.,
2018) drastically outperforms GloVe (Wu et al.,
2017) and even custom WSJ-trained word embed-
dings (Vaswani et al., 2016); we also observed this
difference ourselves during early development.

5.2 Evaluation
In order to control for minor implementation dif-
ferences, we implement a baseline classification-
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based bidirectional LSTM supertagger. This model
is the same as ours shown in Figure 2, but replaces
our decoder LSTM with a softmax layer, produc-
ing one category prediction per word. All recent
supertagging work has been based on this architec-
ture, with minor variations. We refer to the baseline
as BILSTM and our model as PRIMDECODER.

Since our decoder can maintain a history of pre-
vious outputs, it may be better able to produce a se-
quence of supertags that form a parsable sentence,
even if it makes mistakes on individual words.
Therefore, in addition to the usual word accuracy
and parser labelled F1, we also measure parser cov-
erage; we use the Java version of the C&C parser
(Clark et al., 2015) to parse the sentences with our
predicted supertags and gold part-of-speech tags.
Coverage denotes the percentage of sentences for
which the parser yields a complete parse, even if
the derivation is not exactly correct; it therefore
serves as a measure of how well the supertagging
model is learning to be syntagmatically consistent,
according to the rules of the relevant grammar.
Lastly, since our model has the ability to generate
arbitrary tags, we additionally measure word accu-
racy on word tokens tagged with OOV categories.
Since the parser cannot handle OOV categories, we
instead give it the predicted tag from the baseline
in the cases where our model generates novel tags.

5.3 Model and training details

All layers in our models other than the softmax
layer use size 512. Our LSTMs use standard LSTM
activations (sigmoid for the gates, tanh for the
state) and we use ReLU activations (Nair and Hin-
ton, 2010) for the layer that combines the for-
ward and backward encoder LSTMs. ReLU layer
weights are initialized according to He et al. (2015),
LSTM recurrent weights according to Saxe et al.
(2013), and all other weights according to Glorot
and Bengio (2010). We apply variational recurrent
dropout (Gal and Ghahramani, 2016) throughout
our model8, including on the embeddings, except
on the encoder output that is fed to the decoder,
as we found it detrimental in initial tests. For the
same reason, we do not use layer normalization
on the ELMo embeddings, pre-trained primitive
embeddings in the decoder (standard decoders typ-
ically take pre-trained word embeddings as inputs),

8For dropout directly between adjacent LSTM states, we
use the same dropout mask not just at each time step, but
for all sentences in a batch. This allows us to use recurrent
dropout with the fast cuDNN LSTM implementation.

attention, or scheduled sampling.
We train our models with the Adam optimizer

(Kingma and Ba, 2014) for 25 epochs, halving the
learning rate whenever there is no improvement
in the development set loss, and keep the model
weights from the epoch with the best develop-
ment set accuracy. Training examples are sorted by
output sequence length to yield efficient batches;
the batches are subsequently processed in a semi-
shuffled order, with batches being read through
a shuffling buffer. We clip gradients, scaling ac-
cordingly, if the sum of gradient norms exceeds 1.
During inference, we impose a maximum length
on each word’s predicted category; the maximum
length is set to that of the longest category in the
training set. Post-processing of the decoder outputs
is limited to the removal of redundant parentheses.

Our models have four hyperparameters: the ini-
tial learning rate, the dropout rate on the input (i.e.,
on the ELMo embeddings), the dropout rate on
the output immediately prior to the softmax layer,
and dropout rate elsewhere in the model. We tune
the hyperparameters over 50 value sets sampled
according to the tree-structured Parzen estimator
method (Bergstra et al., 2011) as implemented in
the Optuna9 package.10 The initial learning rate is
sampled from a log-uniform distribution on [10−4,
10−2) while the dropout rates are independently
sampled from a uniform distribution on [0, 0.8).
For each hyperparameter value set, we train the
model five times with different random seeds and
select the values yielding the best accuracy on the
development set. We use the best values to run each
model with 15 additional seeds so that we have
a better estimate of the variance in model perfor-
mance over random initializations. For PRIMDE-
CODER, we decode the output sequences greedily
for the hyperparameter search but evaluate with
beam search, with a beam width of 5.

6 Results

Table 1 summarizes our main results. Our model
outperforms the baseline on all measures

The Cochran-Mantel-Haenszel (CMH) test indi-
cates that the difference in test set word accuracy
between our model and the baseline is statistically
significant (p ≈ 1.6× 10−7); likewise for the dif-
ference in coverage (p ≈ 0).11 Averaging sentence

9https://optuna.org/
10We were able to execute many runs in parallel, resulting

in sampling more akin to standard random sampling.
11For a single run, McNemar’s is the usual test. Since we

https://optuna.org/
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Development set Test set

Model Acc OOV F1 Cov Acc OOV F1 Cov

Clark et al. (2018)
CVT — 0 — — 95.7 0 — —
ELMo-based — 0 — — 95.8 0 — —

BILSTM 96.15 0 90.6 87.0 95.89 0 90.2 84.6
PRIMDECODER 96.27 11 91.3 96.0 96.00 5 90.9 96.2

Table 1: Our model’s word accuracy, OOV category word accuracy, parser F1, and parser coverage on CCGbank,
compared to the bidirectional LSTM classifier baseline and comparable results from the most recent previous
work. All accuracies are averaged over 20 runs with different random seeds. Standard deviations range around
0.05% for word accuracy, 0.1% for F1, 0.4% for BILSTM coverage, and 0.2% for PRIMDECODER coverage. All
improvements are statistically significant with p� 0.001.

F1 scores over the 20 runs, the Wilcoxon signed-
rank test indicates statistical significance for the
difference in F1 scores (p ≈ 6.7× 10−15).

It is extremely rare for our model to produce
malformed categories. Over all 20 runs, our model
produces only two instances of redundant parenthe-
ses, which are automatically repaired, and seven in-
stances of malformed categories12, which are left
as-is and therefore counted as incorrect predictions.
The malformations consist entirely of missing clos-
ing parentheses or extraneous opening parentheses.

6.1 Comparison to Clark et al. (2018)

In addition to besting the baseline, our model also
yields a higher word accuracy than the single-task
models reported by Clark et al. (2018). The focus
of their work was their novel cross-view training
(CVT) approach, which allowed for efficient and
effective augmentation of model performance us-
ing unlabelled data. They compared their approach
to the alternative use of ELMo over a variety of
tasks, and CCG supertagging was the only one in
which CVT underperformed the incorporation of
ELMo. Their result with the ELMo-based model
set the state-of-the-art word accuracy for single-
task CCG supertagging.

It is therefore worth briefly discussing the simi-
larities and differences between their ELMo-based
model and our baseline. Their models used two-
layer LSTMs with hidden units of size 1024, pro-
jected to 512 units between/after layers; our base-
line has a single layer of width 512. Where we sim-
ply include ELMo representations as inputs to our

have multiple runs, the CMH test is appropriate. The CMH
test reduces to McNemar’s test in the case of a single run.

12Which is to say, an average of 0.35 instances over a single
run over the test set, which has around 55k words.

models, they followed the recommendation of Pe-
ters et al. (2018) to include GloVe representations
along with ELMo as well as to additionally provide
the ELMo representations to the final output layer
of the model. Since our baseline model is smaller
and simpler than theirs but both are ELMo-based,
it is mildly curious that our baseline outperforms
their model. We expect that this difference is at-
tributable to minor differences in implementation
details.13

For reference, Clark et al. (2018) also reported a
word accuracy of 96.0% if they trained their CVT-
based model, but only if it was trained in a multi-
task setting.14 This constitutes a separate task, so
the results are not directly comparable, but we note
that our model achieves the same accuracy without
the necessity for multi-task training, which could
presumably benefit our model as well.

6.2 Novel categories

Of course, prior work as well as the baseline model
cannot handle OOV categories at all, and accord-
ingly have zero accuracies for such categories. Our
model can generate novel categories, and can even
do so correctly, though the accuracy is admittedly
low, around 5% on the test set. These results in-
dicates that our model is not merely memorizing
the sequences of primitives that constitute the cate-
gories in the training set, but is learning some no-
tion of the structure of CCG lexical categories and
how subcategorical units are related among words.

Although we cannot make general claims about

13For example, our decision to match the tokenization that
ELMo saw during its training may have contributed to this
difference.

14Or 96.1% with a much larger model, with LSTMs of
width 4096.
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when our model generates novel categories, it is
still interesting to look at the cases where it does.
We discuss some examples below where our model
consistently generates novel categories, excerpting
or rephrasing sentences for brevity as needed.

• In the sentence “She was prosecuted un-
der a law that makes it a crime to breach
test security.”, the word “makes” has OOV
category (((Sdcl\NP)/(Sto\NP))/NP)/NPexpl,
which our model gets correct. The baseline
predicts a similar (incorrect) tag where the
final primitive is NP instead of NPexpl. Our
model seems to pick up on contextual cues to
generate the correct category; there are other
such cases where our model selects the cor-
rectly typed primitive over the baseline.

• In the phrase “Edward L. Cole, Jackson, Miss.,
$ 10,000 fine”, the “$” has OOV category
((NP\NP)/(NP\NP)) /Nnum, modifying the
word “fine” with category NP\NP. Our model
correctly generates the new category while
the baseline incorrectly predicts (N/N)/Nnum.

• In “..., as has been the case...”, both the
baseline and our model incorrectly tag “as”
with ((S\NP)\(S\NP))/Sinv while the correct
tag is ((S\NP)\(S\NP))/(Sdcl\NP). Then, for
“has”, our model generates the incorrect but
novel category Sinv/(Spt\NP) in place of the
correct (Sdcl\NP)/(Spt\NP) and in contrast to
the baseline’s (Spss\NP)/(Spt\NP). Our model
adjusted for its error and thus produced a
parsable sequence.

6.3 Improvement effect analysis
Although PRIMDECODER outperforms the base-
line on all fronts, there is a potential confound in
determining which aspect of the model is respon-
sible for this improvement. PRIMDECODER dif-
fers from BILSTM in two respects: the production
of primitives and knowledge of prediction history.
Since previous work has found that incorporating
prediction history can increase both word accuracy
and parser coverage (Vaswani et al., 2016), we can-
not immediately attribute PRIMDECODER’s higher
performance to production of primitives alone.

In order to isolate these effects, we test two
additional model variants. First, to examine the
effect of history alone, we modify the BILSTM
baseline system to include an LSTM over the lex-
ical categories. This is similar to Vaswani et al.

–History +History
Acc F1 Cov Acc F1 Cov

Cat 95.9 90.2 84.6 95.8 90.3 90.8
Prim 95.9 90.2 84.9 96.0 90.9 96.2

Table 2: Word accuracy, parser F1, and parser coverage
for the four model variants on the CCGbank test set.

(2016), but our model differs in that we feed the
base LSTM outputs directly into the top “language
model” LSTM rather than into a further MLP layer
that combines the two LSTMs. This keeps the
changes from our PRIMDECODER model minimal.

Second, to examine the effect of outputting prim-
itives alone, we alter our model to reset the de-
coder’s LSTM state between words, and so cannot
maintain a history between words. Other than these
noted changes, these two additional variants are
trained in the same way as above, with the same
layer sizes, same hyperparameter optimization and
training procedure, and same beam width.

Combined with PRIMDECODER and BILSTM,
these alterations allow us to examine all four com-
binations of whether the model does or doesn’t
have history and whether it predicts whole cate-
gories or decodes primitive sequences.

Table 2 shows the results of the four options on
the CCGbank test set. On the history axis, we note
a result similar to Vaswani et al. (2016): adding
history to the baseline model provides useful infor-
mation about past prediction history, substantially
boosting parser coverage. Vaswani et al. (2016) ob-
served a slight word accuracy decrease when doing
this without scheduled sampling; since we did not
use scheduled sampling to keep the comparison
well-controlled, we attribute the slight decrease in
word accuracy for our version to this omission.

On the other axis, we find that very little changes
when allowing the model to decode primitives in-
stead of classifying categories if prediction history
is unavailable. Word accuracy and F1 stay about
the same, but there is a slight increase in parser
coverage. This indicates that there is no signifi-
cant detriment to supertag prediction quality when
predicting primitives over categories. Although we
omit the value from Table 2, the memoryless prim-
itive decoding model can also correctly tag some
words with OOV categories, though not as well as
PRIMDECODER: 2% word accuracy on the devel-
opment set and 0.3% on the test set. Even with a
similar word accuracy to the BILSTM baseline,
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this model at least has the ability to produce new
categories, an important property for a supertagger.

These results lead us to conclude that PRIMDE-
CODER’s outperformance of BILSTM is due to the
conjunction of decoding primitives and allowing
the decoder to keep a memory of previous predic-
tions. Moreover, this improvement is synergistic:
the increases in word accuracy, parser F1, and cov-
erage are substantially greater in magnitude than
the sum of the increases from the two control mod-
els. We hypothesize that our model is better able to
learn associations between categories given that it
has direct access to the categories’ primitive units.

7 Conclusion and future work

In this paper, we have presented an alternative view
to classification-based CCG supertagging where
lexical categories are constructed from CCG prim-
itives. Where CCG categories are traditionally pre-
dicted atomically, we instead found that breaking
them down into their primitive types and opera-
tors provides a substantial increase in word accu-
racy, parser F1, and parser coverage for English
CCG supertagging. Even with a simple lineariza-
tion scheme, our LSTM decoder–based model out-
performed the baseline in all respects, and was
also able to generate correct categories during in-
ference that were unseen during training. Our anal-
ysis showed that there is a strong interplay between
knowledge of prediction history and prediction of
primitive units, with both aspects being necessary
to obtain the full increases in performance that our
model exhibits. We conclude that our novel consid-
eration of CCG lexical categories as the complex
units that they are is worthwhile and beneficial.

Our model demonstrates the benefit of a more
careful, informed consideration of the structure of
supertagging and, by extension, CCG parsing. We
expect that further, more sophisticated incorpora-
tion of category structure will yield additional ben-
efit, and are investigating such extensions in place
of the straightforward linearization of the category
strings we applied in this paper; this is somewhat
similar to some work in LTAG supertagging (Ban-
galore and Joshi, 1999; Kasai et al., 2017). At
the same time, other categorial grammars, such
as Lambek categorial grammar, are likely to be
amenable to such improvements as well, but their
theoretical properties may allow for more princi-
pled methods of decomposing lexical categories,
allowing the supertagger’s role to be more tightly

integrated in the parsing process.
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