
Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 131–142
July 9, 2020. c©2020 Association for Computational Linguistics

131

Staying True to Your Word: (How) Can Attention Become Explanation?

Martin Tutek and Jan Šnajder
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Abstract

The attention mechanism has quickly become
ubiquitous in NLP. In addition to improving
performance of models, attention has been
widely used as a glimpse into the inner work-
ings of NLP models. The latter aspect
has in the recent years become a common
topic of discussion, most notably in work of
Jain and Wallace, 2019; Wiegreffe and Pin-
ter, 2019. With the shortcomings of using
attention weights as a tool of transparency
revealed, the attention mechanism has been
stuck in a limbo without concrete proof when
and whether it can be used as an explanation.
In this paper, we provide an explanation as to
why attention has seen rightful critique when
used with recurrent networks in sequence clas-
sification tasks. We propose a remedy to these
issues in the form of a word level objective
and our findings give credibility for attention
to provide faithful interpretations of recurrent
models.

1 Introduction

Not long since its introduction, the attention mech-
anism (Bahdanau et al., 2014) has become a sta-
ple of many NLP models. Apart from enhancing
prediction performance of models and starting the
trend of fully attentional networks (Vaswani et al.,
2017), attention weights have been widely used
as a method for interpreting decisions of neural
models.

Recently, the validity of interpreting the deci-
sion making process of a model through its atten-
tion weights came under question. Jain and Wal-
lace (2019) introduced a set of experiments on En-
glish language sequence classification tasks which
demonstrated that attention weights do not corre-
late with feature importance measures, and that
attention weights generated by a trained model can
be substituted and modified without detriment to

model performance. While it is natural to assume
that multiple plausible explanations for a model’s
decision can coexist, the authors show the exis-
tence of attention distributions that assign most of
their mass to words seemingly irrelevant to the task,
while still not affecting neither the decision nor the
confidence of the model. In the follow-up work,
Wiegreffe and Pinter (2019) find that, while such
adversarial attention distributions do exist, they are
seldom converged to in the training process, even
when one introduces a training signal with the sole
purpose of guiding the model to such distributions.

In this paper, we aim to tackle the difficult ques-
tion of the relationship between attention and ex-
planation from a different angle – is there any mod-
ification we can make to the existing models so
that attention could be reliably used as a tool of
model transparency? For the sake of consistency,
we follow previous work (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019) and limit our scope to
single-sequence binary classification tasks, where
we consider models from the RNN + self-attention
family. Concretely, we analyse single-layer bidi-
rectional LSTM-s (Hochreiter and Schmidhuber,
1997) equipped with the additive (Bahdanau et al.,
2014) and dot-product (Vaswani et al., 2017) self-
attention mechanisms.

Inspired by the recent results (Voita et al., 2019),
which show that optimizing the masked language
modelling (MLM) (Devlin et al., 2019) objective
results in high mutual information between the in-
put and output layers of models, we ask ourselves
whether such a trait is beneficial for interpretabil-
ity. The task of sequence classification in no way
incentivizes a model to retain information from the
input, and the model is likely to filter out informa-
tion irrelevant to the task.1 We believe this lack

1The LSTM cell even has an inductive bias towards forget-
ting information, as we cannot expect the cell gates to always
be saturated on the positive side.
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of enforced information retention causes a discrep-
ancy between the input and hidden vectors, which
results in reduced model interpretability. To en-
force information retention, we propose a number
of techniques to keep the hidden representations
closer to their input representations, improving the
faithfulness of interpreting models through inspect-
ing their attention weights.

The contributions of this paper are as follows:
we (1) investigate whether the lack of a word-level
objective causes attention not to be a faithful inter-
pretation, (2) propose various regularization meth-
ods in order to improve interpretability through
inspecting attention weights, and (3) quantitatively
and qualitatively evaluate whether and how these
methods help model interpretability.

The rest of the paper is organized as follows.
Firstly (§2), we position ourselves within current
work and discuss the use of attention as interpreta-
tion in NLP,. We then (§3) present our experimen-
tal setup, introduce various regularization methods,
and briefly describe the experiments we use to eval-
uate our regularized models. In §4, we offer a quan-
titative evaluation of the effect of regularizes on
the trained models across a number of datasets. We
then (§5) qualitatively and quantitatively inspect
the effect of regularization on a trained model, iden-
tifying what we believe to be the cause of negative
results reported in previous work. Finally (§6), we
summarize our findings and propose possible lines
of future work.

2 Attention and Interpretability in NLP

Preliminaries: Let the input sequence of word em-
beddings be denoted as {wt}Tt=1, where T is the
length of the sequence. The sequence of hidden
states produced by the encoder is then {ht}Tt=1,
where each ht = rnn(xt, h(t−1)). The RNN used
is a bidirectional LSTM. When discussing a hid-
den state ht, we refer only to xt as its input for
convenience. The attention mechanism produces a
probability distribution over the hidden states, the
elements of which we denote {αt}Tt=1, and refer to
as attention weights.

2.1 Attention as Interpretation

When interpreting models through the attention
mechanism, we assume that the attention weight
on the t-th word, αt, is a faithful measure of impor-
tance of the input word xt for the classifier decision.
This assumption allows us to interpret the decision

of the classifier by retrieving the highest attention
weights assigned by the model, and then identify-
ing the input words in these timesteps. Thus, in the
terminology of Doshi-Velez and Kim (2017), our
cognitive chunk (a basic unit of explanation) is a
single word. However, we are using a BiLSTM as
an encoder, and every hidden state is contextualized
by virtue of observing the entire input sequence, so
the attention weights actually pertain to the input
word in context. A faithful measure of importance
should by definition accurately represent the true
reasoning behind the final decision of the model.2

So, if attention weights are a faithful measure of
importance of word inputs, they will assign large
weights to words relevant for the classifier decision.

To define faithfulness more clearly, we can as-
sume the existence of an oracle method which
can partition each input sequence of words3 into
decision-relevant and decision-irrelevant words,
where relevance is defined by the judgment of a hu-
man reading the text with respect to a task. By this
definition, a faithful attention distribution would
consistently attribute all or at least most of its prob-
ability mass to the decision-relevant words, mak-
ing it a plausible explanation for humans. In con-
trast, a counterfactual attention distribution (Jain
and Wallace, 2019) attributes most (or a significant
amount) of its probability mass to task-irrelevant
words. Obviously, infinitely many plausible and
counterfactual explanations exist for a given input
instance – merely by redistributing the original at-
tention mass within the same set of words we can
obtain infinitely many alternative interpretations
that are still either plausible or counterfactual.

Jain and Wallace (2019) and Vashishth et al.
(2019) demonstrate that, if we permute or substi-
tute the weights of a learned attention distribution,
our model can still retain high (and in some cases,
unchanged) classification performance and predic-
tion confidence. Even more worryingly, some of
the modified attention distributions assign high at-
tention weights to task-irrelevant words while not
affecting the instance classification. The existence
of such counterfactual attention distributions raises
doubts whether inspecting attention weights can
be used as a faithful interpretation of the model’s
decision making process at all.

2For an excellent discussion on interpretation faithful-
ness, see Alon Jacovi’s post on https://tinyurl.com/
y92rskfr

3The instance-level definition is important here, as the
same word can bear different meanings in different contexts.

https://tinyurl.com/y92rskfr
https://tinyurl.com/y92rskfr
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Wiegreffe and Pinter (2019) provide two counter-
arguments – (1) Existence does not entail exclusiv-
ity, suggesting that, just because our model has
converged to an attention distribution (a base atten-
tion distribution), that distribution is not necessar-
ily unique, and alternative attention distributions
can still be faithful; (2) while models which pro-
duce counterfactual distributions do exist and can
be found by post-hoc modifications, these distribu-
tions are difficult to converge to naturally through
the optimization process of a neural network. This
is demonstrated by the authors in experiments
where they specifically optimize for a distribution
significantly different from the base one.

In contrast, Rudin (2019) states that even if a
small fraction of explanations produced by the
model is counterfactual, one cannot trust other ex-
planations produced by the same model. Lipton
(2016) is more forgiving, and allows that models
can still be trusted if they make mistakes, provided
humans would also make mistakes on the same
instances. The work of Pruthi et al. (2019) empha-
sizes the threat of interpreting models through atten-
tion weights, as they show a regularization term can
be introduced to guide the attention weights away
from focusing on subsets of words while retaining
model accuracy, implying that models which ex-
ploit bias in data can be trained to hide the true
reasoning behind their decisions.

Among other work, Serrano and Smith (2019)
apply an array of tests to analyse whether atten-
tion weights correlate with impact on model pre-
diction, concluding again that attention is not a
fail-safe (faithful) indicator of importance. The
experiments of Vashishth et al. (2019) show that
for single-sequence classification, learned attention
distributions can be replaced without affecting per-
formance – indicating that attention might not be
all we need, after all.

3 Experimental Setup

The base model used in (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019) is a single-layer bidi-
rectional LSTM augmented with either a dot-
product or an additive attention mechanism, the
output of which is then fed into a linear classifier
(decoder). We use the same base model as a base-
line throughout our experiments.

3.1 Regularizing Models

As mentioned before, we suspect that the lack of
a word-level objective weakens the relationship
between ht and xt, and, consequently, the faith-
fulness of interpreting attention weights αt as an
explanation of the decision making process of the
model diminishes. We will now present a number
of methods constructed with the goal of improv-
ing information retention between the inputs and
hidden states.

Our self-attention augmented LSTM encoder
with inputs xt is defined as:

et = emb(xt)

ht = rnn(et)

αt = attn(ht)

s =
∑

αihi
(1)

where attn is either the dot-product or additive
attention mechanism. The sequence representation
s is then fed into a linear decoder.

The simplest way to retain information from in-
put is to include it explicitly in the hidden repre-
sentations. This can be done by concatenating the
embeddings to the hidden representation:

hcatt = [rnn(et); et] (2)

where [·; ·] is the concatenation operator. Another
method is to incorporate a residual connection:

hrest = et + rnn(et) (3)

We use these two methods as our regularized
baselines (concat, residual), along with the unre-
guralized base model.

Our next proposed method is to add a regulariza-
tion term constraining the L2 norm of the difference
between a word embedding and its corresponding
hidden representation. As we suspect that the base
model discards a lot of word information it deems
task-irrelevant, we wish to penalize it for doing so
where this information filtering is not crucial.

Ltying =
δ

T

T∑
i

‖ht − et‖22 (4)

where δ is the regularization scale hyperparameter,
and we minimize the average across all tokens in
the batch. We consider values [1, 10, 20, 30] for δ
and perform ablation for these values. Further on,
we only report results of the model with the best-
performing results due to space limitations. We
further refer to this method as tying.
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The last model we propose is inspired by re-
sults in (Voita et al., 2019), where we introduce
the masked language modelling objective (Devlin
et al., 2019), in which input tokens from a sequence
are masked at random.4 The task of the model is
then to correctly predict the masked tokens based
on contextual cues from the unmasked tokens in
the sequence.

In addition to the standard model in (1), the
MLM model also performs the following:

x̂t = mask(xt)

êt = emb(x̂t) (5)

ĥt = rnn(êt)

The hidden states ĥt for the corresponding masked
tokens are then fed into a linear decoder which
predicts the masked word. The encoder and em-
bedding matrix are shared between the MLM and
classification tasks.

The MLM linear decoder also introduces no new
parameters as we tie the weights (Inan et al., 2016)
of the MLM decoder and the input embedding ma-
trix and keep them frozen during training. Both
of these choices are motivated by the fact that the
model might converge to a solution which does not
require retention of information from inputs. In
order to apply weight tying, we have to ensure that
the dimension of the BiLSTM hidden state equal to
the input embedding, and therefore we increase the
LSTM hidden state size to 150, compared to 128
in (Jain and Wallace, 2019; Wiegreffe and Pinter,
2019). We also use the new hidden state size for
all experiments with the base model.

The MLM setup introduces two hyperparame-
ters: pmlm , denoting the probability of masking a
token in a sequence, and η, denoting the weight
of the MLM loss. We keep pmlm fixed at 0.15
throughout the experiments, as in (Devlin et al.,
2019), and adjust η with respect to the average se-
quence length in various datasets so that the MLM
loss would not dominate the optimization process.5

3.2 Post-hoc Modification of Attention
Distributions

As suggested by Jain and Wallace (2019), robust-
ness of classifier confidence with respect to atten-

4To be precise, either masked, replaced by a random word,
or left unchanged. We direct the reader to (Devlin et al., 2019)
for a detailed explanation of the MLM task.

5As due to keeping pmlm fixed, the longer the sequence is,
the more masked predictions we are expected to make.

tion weight modifications is not a desirable prop-
erty of interpretable models. Ideally, if a model
produces the same decision for an alternative set
of attention weights, we would like to be sure that
the alternative explanation is faithful. This is not
the case in practice as Jain and Wallace (2019) and
Vashishth et al. (2019) show that a trained network
is surprisingly robust to changes to the attention
weights and produces nearly unchanged classifica-
tion scores even for adversarial distributions. So,
while attention is an integral part of training the net-
work, the weights it produces do not greatly affect
the classifier decision once trained.

While we agree with the observation of Wiegr-
effe and Pinter (2019) that robustness of model
decisions with respect to attention weights is not
necessarily bad as the model is unlikely to natu-
rally converge to such a solution, we believe that
fragility of model decisions is an argument in favor
of interpretability as it indicates that the number
of explanations plausible to the model has been
reduced, and we perform experiments with that in
mind.

3.3 Training an Adversary

In the experiment introduced by Jain and Wallace
(2019), for a trained model we attempt to find
an adversarial attention distribution which max-
imizes the Jensen-Shannon divergence (JSD) from
the base distribution produced by the trained model,
while at the same time minimizing the total vari-
ation distance (TVD) from the confidence of the
predictions of the base model. The authors demon-
strate that it is possible to find an attention distribu-
tion that obtains a high JSD while still producing
the same prediction confidence consistently across
multiple tasks.

As these adversarial distributions were found in
an artificial setting, Wiegreffe and Pinter (2019)
explore a more realistic scenario and construct an
optimization task where, given a fixed (original)
model, they train an adversary to minimize TVD
from per-instance prediction confidences, while
maximizing JSD between per-instance attention
distributions of the original model and the adver-
sary. The optimization objective for our adversarial
model a given a base model b is defined as follows:

L = TVD(ŷa, ŷb)− λJSD(αa, αb) (6)

This training setup introduces another hyperparam-
eter λ, which weighs the JSD component of the
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optimization objective. TVD and JSD are defined
as follows:

TVD(ŷa, ŷb) =
1

2

|Y|∑
i=1

|yai − ybi| (7)

JSD(αa, αb) =
1

2
(KL[αa||ᾱ] + KL[αb||ᾱ]) (8)

where ᾱ = αa+αb
2 .

Initially, we were enthusiastic about this setup
and conducted the same experiments with our
model variants, but drawing any conclusions from
the analysis proved to be hard. Firstly, by optimiz-
ing for TVD from a trained model instead of on
the raw labels, we bias our new model to make
the exact same mistakes as the trained model. We
believe this severely limits the search space of the
adversarial model, as repeating the same mistakes
will also bias the model towards exploiting sim-
ilar patterns in data and, consequently, a similar
attention distribution. Secondly, without knowing
what the plausible explanations are for the dataset,
it is impossible to determine whether a high JSD is
a symptom of the model finding an alternative or
adversarial explanation. Thus, we do not attempt
to draw many conclusions from this experiment,
but we reproduce it for completeness with previous
work.

3.4 Mutual Information
To quantitatively evaluate whether the regulariza-
tion has strengthened the relationship between
the hidden states and input representations of our
model, we look into a recent method of Voita et al.
(2019) inspired by the “Information Bottleneck”
(IB) theory (Tishby, 1999), where the authors mea-
sure an estimate of mutual information (MI). Origi-
nally applied to transformers (Devlin et al., 2018),
this method is straightforward to adapt to the bidi-
rectional LSTM.

Similarly to our point of view, the IB theory
states that neural networks, in general, aim to ex-
tract a compressed representation of input in which
information relevant for the output is retained while
irrelevant is discarded. Mutual information is used
as a method of measuring how much information
is lost between the input and hidden representa-
tion of a certain network. Voita et al. (2019) show
transformer networks discard progressively more
information in deeper layers. This phenomenon
is different for the case of MLM in transformers,
where MI is higher in the uppermost layers, likely

due to the task of reconstructing corresponding in-
put tokens.

The strength of the relationship between et and
ht can be quantified by estimating MI. As MI is
intractable to compute in the continuous form, we
first discretize the vector representations and esti-
mate MI in the discrete form. Following Voita et al.
(2019) and Sajjadi et al. (2018), we perform this
discretization by clustering the embedding and hid-
den representations to a large number of clusters
and using the obtained cluster labels in place of the
continuous vectors to estimate MI.

Concretely, we select a subset of 1000 words
from the vocabulary and gather at most 1M rep-
resentations of these tokens at input and hidden
level. We then cluster the obtained representations
into k = 1000 clusters with mini-batch k−means
with batch size of 100. We obtain the vocabulary
sample in two ways: as the top 1k most frequent
words (MF), as in (Voita et al., 2019), but also as
a random sample (RS) of from the scaled unigram
distribution.6

3.5 Datasets

We experiment on the following English language
datasets for binary classification tasks, which were
either originally built for this task or were adapted
for it by Jain and Wallace (2019):

(1) The Stanford Sentiment Treebank (SST)
(Socher et al., 2013), a collection of sentences
tagged with sentiment on a discrete scale from 1
to 5, where 1 is the most negative and 5 the most
positive. We omit the neutral class (3) and conflate
scores 1 and 2 as well as 4 and 5 into negative and
positive class, respectively;

(2) IMDB Large Movie Reviews Corpus (IMDB)
(Maas et al., 2011), a binary sentiment classifica-
tion dataset of movie reviews;

(3) AG News Corpus, a categorized set of news
articles from various sources. We limit ourselves
to binary classification between articles labelled as
world (0) and business (1);

(4) 20 Newsgroups similarly, we consider the
task of discriminating between baseball (0) and
hockey (1) in this dataset of newsgroup correspon-
dences labelled with 20 categories;

(5,6) MIMIC ICD9 (Johnson et al., 2016), a
dataset of patient discharge summaries from a
database of electronic health records. Here, we

6The sample is drawn from the unigram distribution raised
to the power of 3

4
.
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analyse two classification tasks on different subsets
of the data: whether a summary is labelled with the
ICD9 code for diabetes (1) or not (0) (henceforth
Diabetes) and whether a summary corresponds to
a patient with acute (0) or chronic anemie (hence-
forth Anemia);

For consistency, we use the train/test/dev splits
produced by Jain and Wallace (2019).7

4 Results

4.1 Attention is Fragile

We report the average F1-scores of five runs for the
base model and the following regularization vari-
ants: concat, tying, and MLM. We omit results
on residual due to space, but they are consistently
comparable to concat due to their similar nature.
For each model variant we report results of exper-
iments with the dot-product (•) and additive (+)
attention mechanism. Due to space constraints, we
omit the full results and refer the reader to Ap-
pendix for more details.

We report the performance of each model in
scenarios where we use trained attention (Tr.), a
random permutation of the trained attention (Pm.)
or substitute the attention distribution with the uni-
form (Un.). For the uniform and permutation set-
tings, we report the drop in F1-score when com-
pared to trained attention performance.

We omit the results on the Diabetes dataset, as ev-
ery modification of attention weights on this dataset
results with an F1-score of 0, due to a very small
number of tokens being a high-precision indicator
of the positive class, as noted by Jain and Wallace
(2019). As shown in Table 1, regularization setups
increase fragility of model performance with re-
spect to modifications of the attention distribution,
while retaining similar classification scores to the
base model. These results indicate that we have
successfully reduced the space of possible alterna-
tive explanations for the model by tying the input
and hidden representations closer together. By do-
ing this, we show that lateral information leakage
(between hidden states) is reduced when proper reg-
ularization is applied, and that, as a consequence,
alternative explanations are also plausible. Having
shown this, we still need to determine whether a
high attention weight on a hidden state is a faithful
measure of importance of a corresponding input.

7https://github.com/successar/
AttentionExplanation

Figure 1: Averaged per-instance test set JSD (x-axis)
and TVD (y-axis)

4.2 Mutual Information is Higher

In Table 3 we report mutual information scores
across datasets for the most frequent words (MF)
and a random sample drawn from the scaled uni-
gram distribution of the vocabulary (RS).

The increase in mutual information scores be-
tween inputs xt and hidden states ht implies that
more information from the inputs is retained during
encoding. While retention of input information is
not a desirable trait of a model performing pure
sequence classification, as the only goal the model
optimizes is producing the correct class label with
high confidence, it is beneficial for interpretability.
If we wish to interpret classifier decisions through
inspecting attention weights on hidden states, we
have to ensure that a hidden state preserves a sig-
nificant degree of information from the input. A
significant increase in mutual information suggests
that the base model was filtering or overwriting a
large amount of information from the input, making
attention inspection less credible. It is not possible
to report mutual information for the concat setup
as the dimensionality of the hidden vector is larger
than the input embedding, so we report the results
for Residual. The results for the Residual setup
can be considered close to the best realistically ob-
tainable MI score as the model explicitly includes
the input embedding in the hidden state.

4.3 Adversarial Attention Distributions are
Harder to Find

In Fig. 1 we report results where for a fixed ora-
cle model we train an adversary with the objective

https://github.com/successar/AttentionExplanation
https://github.com/successar/AttentionExplanation


137

Base Concat Tying MLM
α ↑ Tr. ↓ Un. ↓ Pm. ↑ Tr. ↓ Un. ↓ Pm. ↑ Tr. ↓ Un. ↓ Pm. ↑ Tr. ↓ Un. ↓ Pm.

SST + 84.2 −2.8 −5.0 83.7 −1.9 −4.7 83.5 −7.0 −18.0 82.8 −5.9 −15.6
• 84.3 −2.6 −6.5 84.1 −3.4 −7.4 83.5 −9.9 −20.0 82.7 −3.0 −5.4

AG + 95.9 −2.3 −3.9 95.9 −1.5 −2.6 95.0 −3.3 −14.6 95.2 −1.5 −6.6
• 95.9 −2.3 −3.8 96.1 −1.9 −3.0 95.4 −3.0 −12.2 95.4 −2.0 −5.3

NG + 90.9 −9.8 −14.1 91.3 −25.0 −28.2 91.4 −39.7 −43.2 91.5 −76.3 −66.0
• 91.1 −35.2 −36.8 91.0 −40.4 −37.1 90.9 −37.0 −42.8 89.1 −79.6 −72.8

IM + 88.3 −10.0 −13.4 88.3 −10.2 −14.0 87.1 −56.2 −43.3 87.5 −22.8 −26.5
• 88.2 −18.6 −22.9 87.9 −17.2 −20.8 87.2 −57.7 −45.3 87.8 −15.3 −18.5

ANM + 92.4 −21.6 −22.4 92.8 −19.3 −22.2 91.3 −31.4 −27.6 89.7 −35.0 −37.7
• 92.7 −10.2 −14.4 92.4 −15.2 −17.2 91.0 −91.0 −59.7 90.7 −37.8 −33.9

Table 1: % F1-scores for trained models (higher is better) and drops in performance (∆ F1) when applying regu-
larization (lower is better). Scores reported are averages over five runs.

∼ Base Resid Tying MLM

SST
MF 2.324 5.062 4.870 3.662
RS 2.435 4.289 4.216 3.808

AG
MF 1.940 5.467 4.075 3.845
RS 2.078 4.518 4.177 3.980

NG
MF 1.566 4.345 3.985 3.677
RS 1.828 3.843 3.784 3.458

IM
MF 2.455 4.998 5.186 3.728
RS 2.682 4.366 4.434 3.885

ANM
MF 3.711 5.253 4.239 4.016
RS 3.780 4.477 3.950 3.921

Table 2: Mutual information scores between the input
and hidden representations. Higher is better. Due to
space limitations, results are only reported on additive
attention.

of minimizing the TVD between the predictions
of the model and, at the same time, maximizing
JSD between per-instance averaged attention distri-
butions. Due to space limitations, we only report
results for the MLM regularised model, while the
others fare comparably. The red dotted line indi-
cates the imitation setup of the base model, and the
green dotted line indicates imitation setup for the
MLM model. Consistently, except for an outlier
point in the Diabetes dataset, the imitation setup
of the MLM model produces larger drops of TVD
in order to increase the JSD between attention dis-
tributions, corroborating the claim that attention
distribution of the MLM model is more fragile.

5 Understanding the Effect of Model
Regularization

To visually demonstrate the undesired effect of at-
tention mechanisms when trained in the base set-
ting, as well as to illustrate the effect of regulariza-
tions we applied, we first analyse how we obtain

the classifier prediction. The output of the classifier
is an affine transformation of the attention output:

plogit = Wd(

T∑
i=1

αihi) + bd

=

T∑
i=1

αi(Wdhi + bd)

=
T∑
i=1

αip̂t

(9)

We can reformulate this as a convex attention-
weighted sum of logits (p̂t) obtained by running
each individual hidden state through the decoder.
Once we scale the logits for individual timesteps,
we obtain the prediction probability as if the whole
attention mass was on that hidden representation.
For attention weights to be a faithful measure of
interpretability, this probability should be high only
on tokens which are decision-relevant.

In Fig. 2, we plot these token-level probabilities
for a single example to demonstrate that in the base
model, this is not the case. We can see that for the
base model, the probabilities for most tokens have
nearly the same probability as the final prediction,
while the regularization keeps the representations
for neutral words grounded closer to the decision
boundary. As a direct result of this, the model
predictions are much more fragile to change of
attention weights, as only a small number of hidden
states are far enough from the decision boundary
to produce an equally confident classification.

We now quantitatively formulate and measure
this criterion – if the accuracy of a regularized clas-
sifier isn’t hurt by the regularization, when opti-
mizing for interpretability we should prefer models
that have a lower per-token average prediction prob-
ability (given that the prediction for that instance is
correct).
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Figure 2: Per-token prediction probability for an example from the SST dataset for the base model (red) and a
regularized (tying) model (green). The dotted lines indicate the classification probability of the model. More
instances and examples of other regularization techniques can be found in the Appendix.

Base Resid Tying MLM

SST
+ 0.712 0.685 0.586 0.630
• 0.693 0.701 0.600 0.664

AG
+ 0.887 0.822 0.615 0.695
• 0.862 0.876 0.646 0.698

NG
+ 0.811 0.551 0.577 0.514
• 0.687 0.755 0.516 0.482

IM
+ 0.625 0.609 0.533 0.562
• 0.590 0.608 0.539 0.553

AN
+ 0.568 0.547 0.531 0.515
• 0.542 0.534 0.515 0.519

Table 3: Average per-token prediction probability
across models and tasks. From the perspective of in-
terpretability, lower is better, given the classifier perfor-
mance is not significantly affected.

6 Conclusion

We have identified the lack of a word-level ob-
jective as the likely cause of attention weights not
being a faithful tool of interpretability in the case of
sequence classification with attention mechanism
augmented recurrent networks. We experimentally
establish that we can add regularization methods
to sequence classification which strengthen the
relationship between the input and hidden states
while not being a detriment to classification per-
formance. If one wishes to interpret classifier de-
cisions through inspecting attention weights, we
strongly suggest inclusion of a technique such as

weight tying or adding masked language modelling
as an auxiliary. Adding such methods causes the
model to become more susceptible to attacks modi-
fying the attention weights of a trained model, and
increases faithfulness of explanations produced by
attention weights.

While we believe our work is a step forward
towards using attention weights as a faithful expla-
nation, by no means do we claim that the modifi-
cation is sufficient. As was our primary concern,
the risk with using attention weights as a tool of in-
terpretability is that a single bad explanation could
have consequences in decision-making scenarios,
and while our methods improve the faithfulness of
such interpretability, it is by no means foolproof.
We have only scratched the surface of faithful in-
terpretability, and most of the datasets in our and
previous work do not have human annotated ra-
tionales. In order to fully understand the cases
in which attention provides a reliable explanation,
we believe that datasets with annotated rationales
or decision-relevant tokens should be used. This
analysis should also be extended to more complex
models which better capture the nuances of lan-
guage. We believe that the experiments we pre-
sented demonstrate the shortcomings of interpret-
ing model decisions through inspecting attention
weights, however we acknowledge that this branch
of research sorely lacks evaluation methods that
include humans in the loop.
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General parameters
Embedding dim 300
RNN hidden dim 150
Learning rate 1e−3
Grad. clipping 5
Batch size 32
Weight decay 1e−5

Regularization parameters
Masking prob. 0.15
Masking weight η {0.1, 0.3, 1, 3, 5}
Tying weight δ {10, 20, 30}

Table 4: Model hyperparameters

A Model Hyperparameters

Since we analyse a number of models and regular-
ization techniques, we naturally also have a large
number of hyperparameters. We do not tune any
of them except for regularization-specific ones and
we inherit others them from previous work (Jain
and Wallace, 2019; Wiegreffe and Pinter, 2019).
A notable change is the dimension of the hidden
state, which we increase from 128 to 150 due to the
nature of the MLM regularization. We, however,
repeat the experiments for the base model with this
increased dimensionality.

We report our parameters in Table 4. While we
have considered other values in a brief search for η
and δ, but we have only ablated over the mentioned
ones as they have proven to be (locally) optimal.

Dataset Avg. len. Vocabulary
SST 17 17310
AG News 31 15286
20NG 164 15590
IMDB 234 41919
Diabetes 1700 23778
Anemia 1927 20290

Table 5: Statistics of datasets used in experiments

We also report the statistics of datasets used
in experiments in Table 5. The average instance
length had a significant impact on the experiments
as datasets with longer instances were naturally
more fragile to attention distribution modifications.

B Experiments on Multilayer LSTMs

All of the experiments performed in the paper
used single-layer LSTMs. Even though the consid-
ered binary classification tasks could be considered

some of the simplest NLP problems, one still won-
ders what would the effect be if a more complex
encoder was used. To this end, we perform a pre-
liminary set of experiments where we use the best
hyperparameters used for training of the single-
layer networks and increase the number of layers
of the LSTM network.

The results in Table 6, while far from conclu-
sive, show that (1) among all tasks, the base model
consistently becomes more robust to attention per-
turbation the more layers we add. Inconsistently,
we further observe a (2) diminishing return of
regularization techniques among tasks as the num-
ber of layers increases. In some cases, the 3-layer
results do not follow this trend (but, curiously, the
regularization seems to have a stronger effect). We
believe that these results should be taken with a
grain of salt prior to a careful ablation study, but
still might interest the reader.

C Importance of Initialisation in
Dot-Product Attention

Initially, the experiments we conducted worked
well for additive attention but not for scaled dot-
product attention. While the various regulariza-
tion techniques produced significant changes in
F1-scores when the additive attention distribution
was modified post-hoc, this was not the case for dot-
product attention and the F1-scores remained con-
stant no matter the modification. This was caused
by the fact that the attention distribution of the
model consistently converged to a uniform one.

After exhaustive experimenting, the only change
that fixed this behavior was changing the default
initialization scheme for the query parameter. The
dot-product self-attention mechanism for a single
instance (for illustrative purposes) is generally de-
fined as follows:

Attention(q,K, V ) = softmax(
qKT

√
dk

)V (10)

where q is the query vector, while K and V are
stacked representations for each timestep. In prac-
tice, when using self-attention for single-sequence
classification, the query is a model parameter,8

while the keys and values are functions of RNN hid-
den states. In our case concretely (following Jain
and Wallace (2019); Wiegreffe and Pinter (2019)),

8This independence of the query vector from the instance
is not intuitive in our perspective (it seems natural to us that
different information is relevant for different instances), but in
practice we find that both approaches work equally well.
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Base Concat Tying MLM
#L ↑ Tr. ↓ Un. ↓ Pm. ↑ Tr. ↓ Un. ↓ Pm. ↑ Tr. ↓ Un. ↓ Pm. ↑ Tr. ↓ Un. ↓ Pm.

SST
1 84.2 −2.8 −5.0 83.7 −1.9 −4.7 83.5 −7.0 −18.0 82.8 −5.9 −15.6
2 84.2 −1.0 −1.2 84.5 −0.8 −4.6 84.1 −3.7 −14.5 84.4 −3.8 −5.9
3 84.2 −0.7 −0.7 83.3 −1.3 −1.3 84.6 −2.7 −13.9 82.3 −7.3 −18.0

AG
1 95.9 −2.3 −3.9 95.9 −1.5 −2.6 95.0 −3.3 −14.6 95.2 −1.5 −6.6
2 95.7 −0.3 −0.3 95.9 −1.4 −2.0 95.5 −3.7 −14.8 95.6 −1.6 −3.8
3 95.9 −0.0 −0.1 95.7 −1.0 −1.6 95.4 −2.0 −12.8 95.8 −13.2 −62.5

NG
1 90.9 −9.8 −14.1 91.3 −25.0 −28.2 91.4 −39.7 −43.2 91.5 −76.3 −66.0
2 93.7 −0.9 −5.6 94.0 −6.3 −11.9 92.8 −17.5 −25.5 89.8 −31.6 −35.0
3 92.0 0.0 0.0 91.5 −30.2 −35.7 89.0 −30.3 −39.3 88.5 −17.9 −17.4

IM
1 88.3 −10.0 −13.4 88.3 −10.2 −14.0 87.1 −56.2 −43.3 87.5 −22.8 −26.5
2 88.4 −3.1 −3.8 88.9 −7.2 −9.1 87.6 −51.2 −41.1 87.4 −14.5 −21.7
3 88.5 −1.2 −1.4 88.8 −5.7 −7.8 87.9 −7.6 −21.3 87.1 −87.1 −84.5

Table 6: % F1-scores for trained models (higher is better) and drops in performance (∆ F1) for LSTM models with
multiple layers. The number of layers is indicated in the second column.

the keys and values are the hidden states them-
selves.

With this in mind, Eq. 10 can be written as fol-
lows:

Attention(H) = softmax(
Lq(H)√

dk
)H (11)

where Lq is the trainable query parameter. In our
Pytorch implementation, Lq is a Linear layer,
which is initialised from the Kaiming uniform9 dis-
tribution with the scale parameter

√
5. With this

initialisation, the dot-product attention distribution
in our experiments has always converged to a uni-
form one. When we changed the initialisation to
instead sample from a standard normal distribution,
the dot-product attention converges to a sensible
distribution. We suspect this problem occurs be-
cause the small initial weights of the linear trans-
form scale down the difference norm between the
attention probabilities too much to be distinguished
from the uniform distribution.

D Additional Visualisations of
Regularization Effects

To expand on Fig. 2, we now plot per-token predic-
tion probabilities for multiple models. We some-
times omit the model classification probabilities
not to clutter the plots too much. We select diverse
examples (Figs. 3–7) from the first three batches of
the SST validation split.

9https://github.com/pytorch/pytorch/
blob/master/torch/nn/modules/linear.py#
L79

Figure 3: A negative example: perhaps the analysed
single-layer LSTM is unable to understand even the
simple nuances of language. Here the instance is classi-
fied as negative across all models only due to presence
of the word “difficult”. Note that these models obtain a
near 0.9 F1-score on this dataset.

Figure 4: A clear-cut instance

https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L79
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L79
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L79


142

Figure 5: A long example which further demonstrates lateral information leakage

Figure 6: We observe that for instances where the
model is not clear about the classification, the per-word
probabilities are pretty similar between regularizations.
We believe that lateral information leakage happens
only when the model is confident in its prediction. Base
model prediction confidence is indicated in this exam-
ple (it overlaps with the 0.5 line).

Figure 7: A rare example where the regularised models
are more confident in the correct prediction than the
base model


