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Abstract

Sentence modeling is a vital feature engineer-
ing for document classification. Various fea-
ture extraction and summarization algorithms
have been adopted for efficient classification
of a sentence, e.g., dense word vectors and
neural network classifiers. Recently, the con-
cept of attention for machine translation has
been applied to various natural language pro-
cessing (NLP) tasks and has shown signifi-
cant performance. In this paper, we take a
look at the syntactic categories of the words,
to make up a metadata projection matrix that
assigns strong restrictions on determining the
attention weight. Unlike conventional atten-
tion models, which are considered as a divi-
sion of location-based approaches, our model
adds a selection layer to highlight categori-
cal metadata that may appear more than once.
The proposed algorithm shows improved per-
formance compared to the baselines with the
tasks in syntax-semantics, suggesting a possi-
bility of extension to other fields such as sym-
bolic music or bitstream analysis.

1 Introduction

Sentence modeling, which incorporates featuriza-
tion and embedding, has been widely studied from
short utterances to large-scale documents. Its use-
fulness and broad applicability have been proven
with various classification and regression tasks.
Also, in recent years, attention models have demon-
strated the significant performance of such ap-
proaches, along with deep learning techniques that
have shifted the paradigm of the standard recipes.

In applying the attention models, we noted that
the utility of the syntactic properties should be ex-
plored in a bit wide point of view. Like the notes
in music that have corresponding chords, the ob-
servable components of a sentence are assigned syn-
tactic categories after constituency parsing, such as
noun, verb, and adjective. They are interpreted as
a kind of metadata regarding each token1, that may
appear more than once in the document. We want
to claim such information can be exploited in mak-
ing up the attention weight, not just being adopted
as input-level data. For instance, in an oxymoron
identification task (Cho et al., 2017), given a sen-
tence like “This is a sugar-free sweet tea.”, it may
be beneficial for the analysis to attend to sugar-free
and sweet with a similar concentration, mainly due
to their syntactic property being close to each other.

Although such syntactic properties can be repre-
sented in various ways such as tree structure and de-
pendency, we pay attention to part-of-speech (POS),
for some practicality. First of all, we already have
many computationally efficient tools that can extract
syntactic classes from the tokens of the sentence.
Next, even though the POS tagger is not entirely ac-
curate, the general tendency may provide sufficient
information for classification. This flexibility can be
supportive for the proposed model to analyze corpus
with non-formal sentences such as tweets.

The proposed model differs from the usual self-
attentive models in that it takes into account the in-
formation of syntactic categories while maintaining

1Henceforth, we interchangeably use (token-wise) categori-
cal data, categorical metadata, and categorical information, all
referring to the syntactic classes that each token belongs to.



the original form of classification that uses word
vector sequence2. Furthermore, the model tells us
how much attention we should pay to the compo-
nents with specific syntactic properties, given the
overall summarization of a sentence. The contribu-
tion of this study is as follows:

• We suggest a modified version of the conven-
tional location-based attention model by insert-
ing a simple projection layer that contains in-
formation on the syntactic categories.

• We verify the utility of the proposed scheme
with widely used benchmarks and suggest fur-
ther usage.

2 Related Work

2.1 Sentence embedding

Embedding a sentence into numerics is an essen-
tial process in data-driven sentence classification.
Two major types of representation are widely used,
namely sparse and dense.

One of the most popular sparse word representa-
tions, bag-of-words (BoW) model, is a one-hot en-
coding of the words in the sentence and is most com-
monly used for its conceptual clarity. Another well
known sparse representation is the term frequency-
inverse document frequency (TF-IDF), which con-
veys the relative importance of the terms in each
document.

The main issue of BoW and TF-IDF is that they
can hardly give information about the context win-
dow of each term in a sentence. Thus, count-based
approaches for the local context window of words
have been studied, as in Lebret and Collobert (2013).
However, it can also be problematic because such
approaches can disproportionate weight to words
with large counts. They can also cause a dimen-
sional explosion.

To cope with the above, Mikolov et al. (2013) pro-
posed an algorithm that embeds a word into a low
dimensional dense vector that involves a local con-
text window. The real-vectorized words facilitate
similarity computation between the original words

2In other words, here we don’t adopt attachment such as
‘word/POS’.

Figure 1: Descriptive diagram of attention model pre-
sented in self-attentive sentence embedding (Lin et al.,
2017). The arrows in the figure indicate the flow of in-
formation. The triangles in the overall system denote the
fully connectedness to the dense layer, together with the
stated activation functions.

and can be used to represent sentences, e.g., by av-
eraging Le and Mikolov (2014). In Pennington et al.
(2014), the advantages of the approaches in Lebret
and Collobert (2013) and Mikolov et al. (2013) were
combined.

2.2 Modeling techniques in classification

In sentence classification, basic recipes such as naive
Bayes, decision trees, and logistic regression models
were conventionally used. Among such models, the
support vector machine (Cortes and Vapnik, 1995)
showed quite a practical accuracy.

However, ever since the computational break-
through that had taken place in the deep neural
network (DNN) system (Hinton et al., 2006), neu-
ral architectures have been adopted within the sen-
tence classification tasks, along with the emergence
of dense word vectors. Convolutional neural net-
work (CNN), which initially came up for the im-
age classification task (Krizhevsky et al., 2012),
was successfully applied to the sentence classifica-
tion task (Kim, 2014). Recurrent neural networks
(RNN) (Schuster and Paliwal, 1997; Graves, 2012),
which had been proposed to deal with sequential
data processing, also have shown significant perfor-
mance in sentence classification tasks through vari-
ous forms such as gated recurrent unit (GRU) (Tang



et al., 2015) and bi-directional long short-term mem-
ory (BiLSTM) (Chen et al., 2017), comprehensively
summarizing sentences into dense vectors.

Lately, attention models have been applied to the
neural machine translation (Bahdanau et al., 2014)
in the way of multiplying the attention vector with
the decoder-encoder network matrix to generate a
particular target word from the source word. It can
be regarded as jointly training a weight vector aug-
mented to a feature or hidden layers to focus on a
specific part of the input feature. Driven by its con-
ceptual clarity, it was soon applied to areas such as
image captioning (Xu et al., 2015) and natural lan-
guage interface (Liu et al., 2016).

In Lin et al. (2017), the self-attentive embedding
(SA, Figure 1) was applied to the sentence classifica-
tion, by aggregating essential attributes of the hidden
layers into sentence vectors. A word context vector,
which is multiplied by the higher-level representa-
tion of hidden layers in BiLSTM, is used to create
attention (weight) layer with a sum equal to 1.

In detail, for X = XL
1 the input token sequence,

H = HL
1 the hidden layers, weight Wt and bias bt,

the BiLSTM hidden layers are defined as:

Ht = tanh (Wt [Xt, Ht−1] + bt) (1)

As in the right top of Figure 1, each hidden layer
is multiplied with word context vector C to yield a
softmax-ed attention vector α with

∑
t αt = 1, as:

αL
1 = softmax

(
HL

1 � C
)

(2)

where � denotes a column-wise dot product. αL
1 is

further multiplied to HL
1 and is summed to be fed

to the final decision layer, as a representative hidden
layer output:

Ho =
∑
t

αL
1 ⊗HL

1 (3)

where ⊗ denotes a column-wise multiplication of
the scalar weights. In the figure, L equals to the
maximum sentence length max len and ⊕ denotes
the weighted sum of the hidden layers.

Note that this basic architecture covers most of
the sentence-level attention schemes that precede the
contemporary self-attention models (Vaswani et al.,
2017; Devlin et al., 2019). In this regard, at this

point, we consider this structure suffices as a base-
line to implement our scheme on, due to the as-
signment of attention weight being interpretable and
straightforward.

3 Proposed Method

In this section, we demonstrate the concept of Pay
Attention to Categories, or PAC structure, which
can adequately reflect the categorical metadata of
each token onto the attention model. It denotes
an insertion of a projection matrix that incorpo-
rates the information on syntactic classes, which
yields the modified attention weight that comes af-
terward. Materializing it accompanies three main
steps, namely (a) constructing word vector se-
quence, (b) feature extraction for the attention
source, and (c) projecting the weight that corre-
sponds with the category of each token (or here, syn-
tactic classes) to the attention layer.

(a) Word vector sequence can be constructed by
methodologies used in general. It is briefly de-
picted at the bottom of Figure 2, especially step (2),
where max len denotes the upper limit of the sen-
tence length regarding word count. Summarizers
such as CNN and BiLSTM employ this as a feature,
using sigmoid (binary case) or softmax (multi-class)
as an activation function.

(b) Attention source utilizes various features ex-
tracted from the sentence. It can be TF-IDFs, av-
eraged word vectors, or the output layer of a CNN
or BiLSTM summarizer. In this paper, (bigram) TF-
IDF and BiLSTM hidden layer output were adopted
based on the performance. They are fed to PAC
structure after passing a single dense layer with rec-
tified linear unit (ReLU) activation, as depicted in
the top of Figure 2.

(c) PAC structure consists of a layer carrying the
category-wise weight (shortly a weight layer), a pro-
jection matrix, and their multiplication (the attention
layer). The size of the weight layer (np) equals to the
number of the categories that appear throughout the
document.

In detail, let S be the attention source and
ReLU, hsig be activation functions. Then, for given
np, we get:

wp = hsig(ReLU(S)) (4)



Figure 2: A Descriptive diagram for the proposed system.

On the other hand, we have a fixed projection layer
which contains the syntactic information regarding
each token. The matrix Proj is of size (np, L), and
each column tells the syntactic category each token
belongs to. In this study, it is represented by POS.
We multiply it with the former weight layer to obtain
the attention layer of width L:

αL
1 = matmul (wp,Proj) (5)

It consists of the weight corresponding to each word
of the sentence and is column-wisely multiplied to
either the hidden layers (PAC-Hidden) or the word
vector sequence (PAC-Word). The two strategies are
depicted in Figure 2, where × denotes a matrix mul-
tiplication and ⊗ denotes a column-wise multipli-
cation of the attention layer to (1) the hidden layer
sequence as BiLSTM output (PAC-Hidden), or (2)
the original word vector sequence (PAC-Word). For
PAC-Word, the weighted word vector sequence be-
comes an input of BiLSTM again.

More on the figure, to help the readers understand,
we specified the number of categories (np = 9), as

shown in the weight layer wp. The sequence of one-
hot encoded vectors of categorical metadata, Proj,
expressed in the form of a projection matrix, con-
veys the weight to the attention layer, concerning the
syntactic class that each column (of hidden layers or
word vector sequence) incorporates. For instance, if
the index regarding a word’s syntactic class is 2, as
in the case of the second and the second to the last,
it is multiplied by the value conveyed from α2. Note
that this setting allows the repetition of the attention
weight. It is worth noting that the activation func-
tion of the weight layer is set to hard sigmoid as in
(4). We surmised that the hidden layer’s information
should be fully retained even after it is transferred to
the projection matrix. Here, hard sigmoid plays a vi-
tal role, minimizing information that can be nullified
in multiplication with the one-hot encoded matrix.

4 Experiment

In this section, we describe the benchmark datasets,
the specific implementation scheme, and the result
comparison with baselines.



4.1 Dataset
Five datasets were used in the evaluation. The spec-
ification for the datasets is displayed along with the
corpus size.

Metalanguage detection (2,393) employs the
corpus for English metalanguage detection (Wilson,
2012), which investigates whether a sentence con-
tains explicit mention terms, namely with the lexi-
cons such as ‘title’ or ‘name’. It contains 629 men-
tioned and 1,764 not-mentioned instances excerpted
from Wikipedia.

Irony detection (4,618) utilizes corpus recently
distributed in SemEval 2018 Task 3 for ironic tweet
detection (Van Hee et al., 2018). All instances (that
includes emoji) in the training set and Gold test data
were used. Only the binary label case was taken into
account. 2,222 instances contains irony and 2,396
does not.

Subjectivity detection (10,000) refers to Pang
and Lee (2004), which checks if the movie review
contains a subjective judgment, in the view of sen-
timent polarity. It incorporates equally 5,000 in-
stances for each of the subjective and objective re-
views.

Stance classification (3,835) employs a part of the
distributed dataset from SemEval 2016 Task 6 (Mo-
hammad et al., 2016). The original dataset con-
sists of the additional labels corresponding to tar-
get, stance, opinion towards and sentiment informa-
tion. All instances with favor and against stances in
the dataset were excerpted. Among instances with
none as stance, only those not explicitly expressing
opinions were taken into account. There are 1,205,
2,409, and 221 instances for favor, against, and none
each.

Sentiment classification (20,632) utilizes the test
data released in SemEval 2017 Task 4 (Rosenthal et
al., 2017). It consists of 7,059 positive, 3,231 neg-
ative and 10,342 neutral tweets, with all instances
labeled via crowd-sourcing.

4.2 Implementation
The implementation for the whole network was done
with Python libraries, including NLTK (Bird et al.,
2009), Scikit-learn (Pedregosa et al., 2011), and

Keras (Chollet and others, 2015). In particular, POS
tagging and word tokenization process employed the
tools included in NLTK. Here, elaborate implemen-
tation schemes of baselines and the proposed system
are presented.

4.2.1 Baselines
Features Baseline features were chosen from both
sparse and dense ones. For sparse features, TF-IDFs
and their bigrams were extracted. The dimension
(the number of commonly used words) was fixed to
3,000 for a fair comparison, which is the same size
as a multiplication of max len (=30) and word vector
dimension (=100). The uni/bigrams were obtained
via TfidfVectorizer of Scikit-learn.

For dense features, 100-dimensional GloVe (Pen-
nington et al., 2014) pre-trained with 27B token
Twitter data3 was adopted as a word vector dictio-
nary, since the words thereof were expected to cover
the lexicons of the task corpora. The dense static
features were constructed by aggregating the vectors
corresponding to every word in the sentence and nor-
malizing it using the l2 norm. The dense sequential
features were constructed by padding the word vec-
tors with a maximum length of 30.

Basic classifiers All evaluations were conducted
using 10% test set. Non-parameter optimized linear-
kernel SVM of Scikit-learn was used for sparse fea-
tures (TF-IDF-SVM), and NN classifiers in Keras
were used for dense features. NN used for the static
dense features (Averaged GloVe-NN) consists of a
single hidden layer of size hidden dim and is opti-
mized with Adam (Kingma and Ba, 2014) of learn-
ing rate 0.0005. The network was trained with mini-
batch of size 16, reducing the cross-entropy loss.
The implementation toolkit, optimizer, and mini-
batch size for all NN classifiers were not changed
throughout the experiment. For every model, hid-
den dim was chosen as the best case after hyperpa-
rameter tuning with 32, 64, and 128.

CNN and BiLSTM were used in the base-
line sequential feature classification (GloVe-
CNN/BiLSTM). In CNN, two single-channel
convolutional layers (with 32 filters and a window
of size 3) were used with a max-pooling layer
in between. In BiLSTM, time-distributed hidden

3https://nlp.stanford.edu/projects/glove/



layers had an output size of 32*2 = 64 units.

Baseline attention model The attention adopted
from Lin et al. (2017) was implemented as depicted
in Figure 1. The word context vector of size hid-
den dim, which is fully connected to a randomly
initialized layer, is column-wisely dot-multiplied by
the ReLU-activated4 hidden representation of the se-
quential hidden layers of BiLSTM, also of size hid-
den dim and length max len. Note that the product
layer of size max len undergoes the regularization
process using the softmax function (sum to 1), un-
like the model proposed in this work.

The attention vector was applied to the word se-
quence in two different ways: by directly multiply-
ing it to a hidden layer sequence (SA-Hidden), or by
multiplying it to a word vector sequence (SA-Word).
In the former case, which was suggested in the orig-
inal paper, the final decision was made by investi-
gating the weighted sum of the hidden layers. The
latter case, which was supplemented to observe the
tendency of each strategy, investigates the weighted
word vector sequence with BiLSTM.

4.2.2 The Proposed
The proposed system extracts three input features

from each sentence: attention source, projection ma-
trix, and word vector sequence.

As previously mentioned, two features were
adopted as attention source: TF-IDFs and BiLSTM
outputs. For TF-IDFs, the sparse vector of dimen-
sion 3,000 is itself an attention source5. Unlike the
case of TF-IDFs where the source is assigned as an
input, all parameters of BiLSTM are trained jointly
with the entire system.

The attention source is fully connected to the sin-
gle dense layer of size hidden dim, with ReLU ac-
tivation. Consecutively, this is fully connected to
the weight layer with hard-sigmoid activation, as de-
scribed in the previous section.

The size of the weight layer and the projection
matrix depends on the corpus. In a corpus with
np syntactic classes (the number of categories), a
weight matrix of length np and a projection matrix

4In view of performance and fair comparisons, tanh used in
the original paper was replaced with ReLU.

5In case of META and STANCE, bigram was chosen consid-
ering the comparison result (Table 1).

of size (np , max len) are obtained. Again, the em-
phasis is that the weight layer is optimized in the
training session, but the projection layer is given as
input.

Finally, the attention layer of size max len appears
as the product of the matrix multiplication of the
weight layer and projection layer. All its entries are
multiplied as the weight to each column of either the
hidden layer sequence of BiLSTM (PAC-Hidden) or
the word vector sequence (PAC-Word).

5 Result and Discussion

Per task characteristics The proposed system
surpasses the baseline systems in tasks that are ex-
pected to be accompanied by lexical-semantic anal-
ysis, such as META, IRONY, and SUBJ (Table 1).
Also, it was observed that the systems fit with small
datasets as well, considering the significant im-
provement in META and IRONY. In tasks where se-
mantics are considered much more important, such
as STANCE and SENT, the proposed system showed
a stable and adequate result, not an improvement
in performance. This result implies that the pro-
posed system may rather boost the performance of
the tasks that utilize the existence and meaning of
the lexicons thereof, than the semantic tasks that re-
quire more a latent analysis.

Source and assignment of attention We ob-
served that the tendency regarding attention source,
namely TF-IDF or BiLSTM output, is opaque and
non-consistent, considering that no significant ten-
dency is displayed. On the other hand, the contrast
on Word- level and Hidden- level assignment of at-
tention weight is quite significant per task. Espe-
cially for META, IRONY, and SUBJ, where the pro-
posed methods outperform the baselines, we found
that META highly prefers Word-level assignment,
while Hidden-level assignment works better for the
other two. This directly shows that META con-
cerns the explicit existence of certain lexical terms,
while the other two touch relatively abstract areas of
lexical-semantics.

Under context-dependency Specifically, the
lower performance and stochastic results in
STANCE seem to originate in the omission of target
data in this experiment. It is essential situational



F1 Score Features META IRONY SUBJ STANCE SENT
Sparse
features

TF-IDF 0.5466 0.6236 0.8953 0.4316 0.5604
Bigram TF-IDF 0.5489 0.6137 0.8944 0.4334 0.5509

Dense
features

Averaged GloVe-NN 0.5454 0.6455 0.8845 0.3676 0.6157
GloVe-CNN 0.6800 0.6613 0.9036 0.4141 0.6121

GloVe-BiLSTM 0.6527 0.6639 0.9159 0.4763 0.6304

Attention
SA-Word 0.6363 0.6447 0.9152 0.3703 0.6297

SA-Hidden 0.6478 0.6771 0.9203 0.4317 0.6538

Proposed

TF-IDF PAC-Word 0.7105 0.6679 0.9204 0.4671 0.6241
TF-IDF PAC-Hidden 0.6535 0.7019 0.9268 0.4253 0.6329
BiLSTM PAC-Word 0.7261 0.6585 0.9135 0.4332 0.6353

BiLSTM PAC-Hidden 0.6400 0.6956 0.9259 0.4475 0.6529

Table 1: Performance comparison of the baselines and the proposed system. META, IRONY, SUBJ, STANCE, and
SENT denote the datasets in Section 4.1, respectively. SA-Word/Hidden refer to the self-attentive embedding models.
TF-IDF and BiLSTM coming before PAC-Word/Hidden represent the attention sources. The final decision of the
proposed systems was also made through BiLSTM. In the baselines and the proposed models, the best scores were
bolded. Underlined cases denote when the proposed system surpasses the baseline.

information in determining a stance towards some-
one but was not digitized in this experiment. Also,
there was a shortage in the number of instances
associated with none. On the other hand, for
instance, in IRONY where situational information
is essential as well, the proposed system showed
an outperformance. It is assumed that in IRONY,
hashtagged information plays a critical role (Cho
et al., 2018), and accordingly, attention is given to
functional parts as well.

Summary We concluded that paying attention
to relatively important syntactic classes such as
verbs (META), nouns (IRONY), or adjectives
(SUBJ·IRONY) is advantageous in some tasks. This
inference is also consistent with the consideration
for polarity items (Krifka, 1995), which takes into
account the relation between words of different syn-
tactic classes. From this point of view, a suitable
application of the proposed system would be a case
where the categorical metadata plays a significant
role in determining the labels of the data, and the
pattern is relatively clear, e.g., bitstream analysis.

5.1 Visualization

The normalized attention weight of baseline and
the proposed, namely SA-Hidden and TF-IDF PAC-
Hidden, are visualized as Figure 3 with two excerpt
sentences from SUBJ.

Considering the property of the dataset, it is clear

that the attention should be given to the words in
the sample sentences that affect the subjectivity. In
the top example, the baseline model pays attention
to vile and tacky, which are the subjective modifiers
indicating the object ghost ship, while the proposed
model addresses best, the superlative which can di-
rectly show the subjectivity of the sentence. Besides,
at the bottom, the proposed model pays attention to
comedy, which reveals the sarcastic tone, while the
baseline only attends to funniest among the lexical
candidate words.

Without a doubt, this kind of advantage in the in-
ference partially benefits from the task being sen-
sitive to specific sentiment items in the sentence.
Nonetheless, beyond the examples above, the pro-
posed model can stably give attention to the specific
categories that seem to be important in analyzing
the document. Given that this kind of consistency is
sometimes threatened in the analysis of informal or
non-canonical utterances, stable fixation of weight
can be advantageous often. Also, we note that each
category’s weight varies with the content of the sen-
tence, making the proposed model differ from hard
attention.

5.2 Further Study
Beyond a simple application that considers syntac-
tic categories as property for words, the proposed
system can be extensively utilized to datasets where
observable components contain metadata of a type



Figure 3: Visualization of the attention weight given to
the subjective example sentences in SUBJ.

that possibly appears more than once. For example,
in a paragraph or large-scale document analysis, a
sentence type or document topic can be used as such
information. In the field of music information re-
trieval, chord information can be provided to the at-
tention model to help predict whether the type of the
musical phrase (Livingstone et al., 2009) is cadence,
semi-cadence, false cadence, or nothing. In acous-
tic event detection (Choi et al., 2017), event labels
can also be used as a property to identify acoustic
scenes, even in the multi-label conditions.

6 Conclusions

In this paper, the concept called Pay Attention to
Categories, or PAC structure, was suggested for ef-
ficient sentence classification. The proposed system
fully utilizes the syntactic class of each token, which
is modeled in terms of POS for words, in making up
a special kind of projection matrix, and employ it in
building up attention weight. Its conceptual simplic-
ity and flexibility were demonstrated with an intu-
itive diagram, and the validity was verified via com-
parison with widely used benchmarks. Beyond util-
ities in many NLP areas, the system is expected to
have a significant role in tasks that require attention
to categorical information.
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