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Abstract

In this work, we construct an imbalanced
Chinese multi-label text classification dataset,
IMCM. The imbalance is mainly reflected in:
(1) The degree of discrimination among labels
is different. (2) The distribution of labels is
moderately imbalanced. Then, we adopt sev-
eral methods for multi-label classification and
conduct thorough evaluation of them, which
show that even the most competitive models
struggle on this dataset. Therefore, to tackle
these imbalanced problems, we proposed an
alternating attention model, AltXML. Two at-
tention heads which alternately reading se-
quence enable the model capture different
parts of the document rather than one point.
Experimental results show that our proposed
model significantly outperforms the state-of-
the-art baselines in our IMCM dataset, and
also achieves quite good results in several pub-
lic datasets.

1 Introduction

Multi-label classification (MLC) is an important
task in natural language processing (NLP) due to
the increasing number of fields where it can be ap-
plied, such as text classification, tag suggestion, in-
formation retrieval, and so on. Compared to single-
label classification task, multi-label classification
task aims to assign a set of labels to a single instance
simultaneously. However, the number of label sets
grows exponentially as the number of class labels in-
creases and the uncertainty in the number of labels
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per instance inevitably makes the MLC task much
more difficult to solve. Therefore, the key challenge
of this task lies in the overwhelming and uncontrol-
lable size of output space.

Large amount of efforts have been done to-
wards MLC task, including Binary Relevance (BR)
(Boutell et al., 2004), Classifier Chains (CC) (Read
et al., 2011), Label Powerset (LP) (Tsoumakas
and Vlahavas, 2007), PD-Spare (Yen et al., 2016),
SLEEC (Bhatia et al., 2015), AnnexML (Tagami,
2017), PfastreXML (Jain et al., 2016), Parabel
(Prabhu et al., 2018).. In addition to the above meth-
ods, neural networks provide some new approaches:
CNN (Kim, 2014), CNN-RNN (Chen et al., 2017),
SGM (Yang et al., 2018), etc. These methods have
made great progress in capturing label correlations
to cope with the exponential-sized output space, but
still face the problem of high computational com-
plexity and poor scalability.

While utilizing correlations among labels is es-
sential for MLC task, in real-word scenarios, there
are no obvious semantic boundaries among some la-
bels and some seemingly distinct labels may appear
together, especially for text. Moreover, the distribu-
tion of labels may be imbalanced. On the one hand,
the number of instance belonging to a certain label
may outnumber other labels. On the other hand,
there may be a relatively high number of examples
associated with the most common labels or infre-
quent labels (Gibaja and Ventura, 2015). These may
affect the performance of models utilizing correla-
tions of labels. Therefore, it is important to explore
the balance between using correlation to reduce out-
put space and improving the ability to refine labels.



We inspect the commonly used multi-label text
classification datasets consist of Rcv1v2 (Lewis et
al., 2004), AAPD (Yang et al., 2018), etc. Some of
them has been used as benchmarks, but still can not
meet the actual demand. The numbers of class la-
bels or labels per instance is small, and the semantic
boundaries among the labels are obvious to some ex-
tend. Therefore, to further explore this field, we pro-
pose an imbalanced Chinese multi-label text classi-
fication dataset, IMCM 1.

Furthermore, we conduct a detailed evaluation for
diverse MLC models on our dataset and two pub-
lic datasets. Experimental results show that several
models that perform well on other datasets struggle
on our dataset. Our point of view is that, different
from single label classification models which need
to focus on the most important part of the document,
multi-label classification models need to be aware
of different parts. That means that models can’t be
bound by a certainly associated label.

Therefore, inspired by the idea of dilated convo-
lution which has become popular in semantic seg-
mentation (Yu and Koltun, 2016), we propose our
alternating attention model, AltXML. Two attention
heads which alternate reading sequence enable the
model capture different parts of the document rather
than one point. We evaluate our model on differ-
ent datasets. Comparison with other models indi-
cates that the trade-off between using correlation to
reduce output space and improving the ability to re-
fine labels needs further research. In summary, our
contribution is three-fold:

• We construct an imbalanced Chinese multi-
label text classification dataset, IMCM.

• We implement diverse MLC models and pro-
pose our alternating attention model.

• We conduct a detailed evaluation for these
models on three datasets with different imbal-
ance ratios, by comparing on them, our model
achieves promising performance.

2 Related Work

Multi-label classification studies the problem where
each example is represented by a single instance

1https://github.com/NLPBLCU/imcm-dataset

while associated with a set of labels simultaneously.
There are two main types of methods for MLC
task: problem transformation methods and algo-
rithm adaptation methods.

Binary Relevance (BR) transforms the task of
multi-label classification into the task of binary clas-
sification, which is simple and reversible but ignores
potential correlations among labels and may lead to
the issue of sample imbalance. Label powerset (LP)
generates a new class for each possible combination
of labels and then solves the problem as a single-
label multi-class one. Classifier Chains (CC) treats
this task as a sequence labeling problem and over-
comes the label independence assumption of BR due
to classifiers are built upon the previous predictions.
In addition to traditional machine learning methods,
Neural networks provide some new approaches to
MLC task. These methods have made great progress
in multi-label classification task, but still face the
problem of high computational complexity and poor
scalability to meet high-order label correlations.

CNN uses multiple convolution kernels to ex-
tract text feature, which is then input to the linear
transformation layer followed by a sigmoid function
to output the probability distribution over the label
space. CNN-RNN incorporated CNN and RNN so
as to capture both global and local semantic infor-
mation and model high-order label correlations.

Nam et al. (2017) also treat the multi-label classi-
fication task as a sequence labeling problem but re-
place classifier chains with RNN. It allows to focus
on the prediction of the positive labels only, a much
smaller set than the full set of possible labels. Yang
et al. (2018) propose to view the MLC task as a se-
quence generation problem to take the correlations
between labels into account.

Typically, there are two main available multi-label
text classification datasets, which all stem from En-
glish reading materials. Rcv1v2 (Lewis et al., 2004)
is widely used in multi-Label classification task. It
consists more than 80,000 manually classified En-
glish newswire stories, which divided by Lin et al.
(2018). The total number of topic labels is 103.

AAPD (Yang et al., 2018) is a large English multi-
label text classification dataset. It contains abstract
and corresponding topics of 55,840 papers in the
computer science field on the Arxiv. The total num-
ber of subjects is 54.



Figure 1: Distribution and Imbalanced Ratio of labels on IMCM dataet. Imbalanced Ratio is the ratio of the frequency
of the label to the highest frequency.

Datasets Inst. Lab Card. Dens. Len. IR. Train Set Valid Set Test Set

Rcv1v2 804,414 103 3.24 0.031 123.94 17.44 802,414 1,000 1,000
AAPD 55,840 54 2.4 0.044 163.43 6.58 53,840 1,000 1,000

IMCM 52,052 158 3.7 0.023 348.91 10.35 41,642 5,205 5,205

Table 1: Comparison of IMCM dataset with existing MLC datasets. Inst and Lab denote the total number of instances
and labels, respectively. Card means the average number of labels per instance. DENS normalizes Card by the Lab.
Len refers to the average length of the instance. IR indicates how imbalanced the top 50 percentage of labels are.

3 IMCM Dataset

For the purpose of constructing highly reliable
multi-label text classification dataset, we have
collected nearly 60,000 books’ information from
Douban 2, which consists of content summary and
author introduction. Labels of each book are man-
ually marked by members of Douban. Unlike the
above describled datasets, the difference among
some labels in the IMCM is very subtle, such as Hu-
manistic and Human nature. And distribution of la-
bels is very imbalanced, which can be seen in figure
1. These characteristics make it not feasible for la-
bels to be classified in an extensive way. Therefore,
we limited the number of words per instance no less
than 50 to provide adequate information. Finally, we
got 52,286 documents.

In order to evaluate the data effectively, we carry
2https://book.douban.com

Figure 2: Distribution of the number of labels per in-
stance.

on the same distribution sampling to the data. In the
end, we got 41,829 training data, 5,228 validation
data and 5,229 test data. The total number of labels
is 158, the average number of labels per instance
is 3.7 (can be seen in figure 2), the average length
of the instance is 348.91 and the imbalanced ratio



of labels is 10.35. Comparison of IMCM dataset
with existing MLC datasets can be seen in Table 1.
We can see that our dataset is longer than the other
two. Besides, neither like the extreme imbalance of
the labels of the Rcv1v2 dataset nor like the small-
scale imbalance of the labels of the AAPD dataset,
our dataset makes a trade-off. This avoids the over-
whelming interference caused by the extreme imbal-
ance of data, and allows us to make some explo-
rations on this basis.

4 Alternating Attention Model

We introduce our proposed model in detail in this
section. First, we give an overview of the model in
Figure 3. It consists of four layers: Word Represen-
tation Layer, Bidirectional LSTM Layer, Alternating
Attention Layer, and Classification Layer.

Figure 3: Overview of the AltXML model

4.1 Word Representation Layer
The input of AltXML is raw tokenized text, each
word is represented by word embedding. Let T and
d respectively represent the length of the input text
and the dimension of word representation. The out-
put of word representation as follows:

X = (x1, x2, ..., xT )

where xt is a dense vector for each word.

4.2 Bidirectional LSTM Layer

We use a Bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) to capture both the left-sides
and right-sides context at each time step, the output
of BiLSTM can be obtained as follows:

−→
ht = LSTM(xt,

−→
ht , Ct−1)

←−
ht = LSTM(xt,

←−
ht , Ct−1)

ht = [
−→
ht ;
←−
ht ]

where ht is obtained by concatenating forward
−→
ht

and backward
←−
ht .

4.3 Alternating Attention Layer

We alternately send the output of the BiLSTM to the
two attention layers, reduce the coupling between
information, so that it is able to remove the nega-
tive effects such as information loss caused by gen-
eral attention mechanism, such as focus on one key
point. The output of alternating attention can be ob-
tained as follows:

m2i =
eh2iw

T
m∑T

t=1 e
h2iwT

m

; m2i+1 = 0

n2i+1 =
eh2i+1w

T
n∑T

t=1 e
h2i+1wT

n

; n2i = 0

a =

T∑
i=1

Relu(m+ n) ∗ hi

where mi and ni is the normalized coefficient of hi.
Besides, it is able to expand the attention at the

polynomial level without increasing the number of
parameters. Thus, it becomes possible for alternat-
ing attention to capture longer-term dependency and
avoid gridding effects caused by dilation.

4.4 Classification Layer

AltXML has one fully connected layers as output
layer. Then, predicted probability ŷ for the label can
be obtained as follows:

ŷ = f(awT + b)

where, function f is sigmoid activation function.



4.5 Loss Function
We uses the binary cross-entropy loss function,
which was used in XML-CNN (Liu et al., 2017) as
the loss function. The loss function is given as fol-
low:

L(θ) = − 1

NL

N∑
i=1

N∑
j=1

yij log(ŷij)+(1−yij) log(1−ŷij)

where N is the number of samples, L is the number
of labels, ŷij ∈ [0, 1] and yij ∈ {0, 1} are the pre-
dicted probability and true values, respectively, for
the i-th sample and the j-th label.

5 Experiments

5.1 Setting
Training details of neural network models are illus-
trated as follows.

• Vocabulary: For training efficiency and gener-
alization, in all datasets, we truncate the full
vocabulary and set a shortlist of 60,000. Note
that, for Chinese, we use Jieba 3 to cut words
and not use domain dictionary.

• Embedding layer: We set word embedding di-
mension to 256 and use randomly initialized
embedding matrix with the normal distribution
N (0, 1). Note that, no pre-trained word em-
beddings are used in our experiments.

• BiLSTM layer: We use single-layered bidirec-
tional LSTM that output dimension in each di-
rection is 100, and randomly initialized it with
uniform distribution U(−

√
k,
√
k), where k =

1
hidden size . As LSTM still suffers from the gra-
dient exploding problem, we set gradient clip-
ping threshold to 10 in our experiments.

• Dropout: We used Dropout after embedding
layer and set dropout ratio to 0.5.

• Optimization: We used the AdamW optimizer
(Loshchilov and Hutter, 2018) with an initial lr
= 0.001 and wd=0.01. The batch size is set to
64.

• Training: We trained model for 20 epochs and
choose the best model according to the perfor-
mance of validation set.

3https://github.com/fxsjy/jieba

Note that, the hyperparameters are consistent across
all datasets.

5.2 Evaluation Metrics

We used the micro-F1 score as our main evaluation
metrics. micro-F1 (Mi-F1) can be interpreted as a
weighted average of the precision and recall. It is
calculated globally by counting the total true posi-
tives, false positives, and false negatives.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

micro-F1 =
2 ∗ Precision ∗Recall
Precision+Recall

5.3 Baselines

• Binary Relevance (BR) (Boutell et al., 2004)
transforms the task of multi-label classification
into the task of binary classification, which is
simple and reversible but ignores potential cor-
relations among labels and may lead to the is-
sue of sample imbalance.

• Label powerset (LP) (Tsoumakas and Vla-
havas, 2007) generates a new class for each
possible combination of labels and then solves
the problem as a single-label multi-class one.

• Classifier Chains (CC) (Read et al., 2011)
treats this task as a sequence labeling problem
and overcomes the label independence assump-
tion due to classifiers are built upon the previ-
ous predictions.

• CNN (Kim, 2014) uses multiple convolution
kernels to extract text feature, which is then in-
put to the linear transformation layer followed
by a sigmoid function to output the probability
distribution over the label space.

• CNN-RNN (Chen et al., 2017) incorporated
CNN and RNN so as to capture both global and
local semantic information and model high-
order label correlations.

• SGM (Yang et al., 2018) (state-of-the-art)
views the multi-label classification task as a



sequence generation problem, and apply a se-
quence generation model with a novel decoder
structure to solve it.

• RNN+att is our implementation of the RNN-
based model with the normal attention mecha-
nism.

6 Results

The results of AltXML and baseline models on our
IMCM dataset are presented in Table 2. From the
results of the conventional baselines, it can be found
that the machine-learning-based methods for multi-
label text classification still own competitiveness
compared with the deep-learning-based methods.

For the generating model, the SGM+GE achieve
significant improvements on the IMCM dataset,
compared with the machine-learning-based models.
However, there is still a certain gap compared with
the classification model. By contrast, our proposed
model can capture more key features at the same
time and achieve the best performance in the eval-
uation of micro-F1 score, which improves 6.1% of
micro-F1 score compared with the SGM+GE.

Model Mi-P Mi-R Mi-F1

BR 76.8 36.8 49.8
CC 70.5 39.9 51.0
LP 50.7 44.9 47.6

SGM+GE 60.6 54.3 57.3
RNN+Att 69.2 57.2 62.6

AltXML 70.0 57.8 63.3

Table 2: Results on IMCM Dataset.

We also implement our experiments on public
datasets. On the AAPD dataset, similar to the mod-
els’ performance on the IMCM dataset, our AltXML
model achieved good performance, with a 0.8% in-
crease in micro-F1 scores compared to the best, as
shown in Table 3.

On the Rcv1v2 dataset, our AltXML model
still achieves similar performance on micro-F1
on this dataset comparded with Seq2Seq model
(SGM+GE), which illustrates the robustness of our
model. Because we have not adjusted the hyperpa-
rameters, there is still a lot of space for improve-
ment. The results can be seen in Table 4.

Model Mi-P Mi-R Mi-F1

BR 64.4 64.8 64.6
CC 65.7 65.1 65.4
LP 66.2 60.8 63.4

SGM+GE 74.6 67.5 71.0
RNN+Att 72.0 69.7 70.8

AltXML 71.8 71.9 71.8

Table 3: Results on AAPD Dataset.

Model Mi-P Mi-R Mi-F1

BR 90.4 81.6 85.8
CC 88.7 82.8 85.7
LP 89.6 82.4 85.8

CNN 92.2 79.8 85.5
CNN-RNN 88.9 82.5 85.6
SGM+GE 89.7 86.0 87.8
RNN+Att 89.1 85.2 87.1

AltXML 90.1 84.6 87.2

Table 4: Results on Rcv1v2 Dataset.

An interesting finding is that, by comparing
on three datasets, although the Seq2Seq models
achieves the state-of-the-art performance on the
Rcv1v2 English dataset, the generalization on our
IMCM dataset is insufficient. We think there are
two reasons: (1) Compared to the other two datasets,
the number of labels for each instance in our dataset
is more and there are no obvious semantic bound-
aries among some labels. (2) Due to the atten-
tion mechanism cannot improve the performance of
the Seq2Seq model in this task (Lin et al., 2018),
Seq2Seq model cannot capture some useful infor-
mation.

By comparing on the three datasets, our model
achieves promising performance.

7 Conclusions

In this paper, we introduce the first Chinese multi-
label text classification dataset, IMCM. This dataset
focuses on imbalanced multi-label classification.
Among many datasets, our model could also give
significant improvements over various state-of-the-
art baselines. Furthermore, we propose an alternat-



ing attention model to handle the imbalanced prob-
lems, and further analysis of experimental results
demonstrates that our proposed model not only cap-
ture the correlations between labels, but also capture
the more features when predicting different labels.
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