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Abstract

Detecting metaphors is challenging due to
the subtle ontological differences between
metaphorical and non-metaphorical expres-
sions. Neural networks have been widely
adopted in metaphor detection and become the
main stream technology. However, linguistic
insights have been less utilized. This work
proposes a linguistically enhanced model for
metaphor detection extending one published
work (WAN et al., 2020) by incorporating
the modality norms into attention-based Bi-
LSTM. Results show that the current model
outperforms most recent works by 0.5%-
11% F1, indicating the effectiveness of us-
ing modality norms for metaphor detection.
This work provides a new perspective to de-
tect token-level metaphoricity by leveraging
the modality mismatch between words.

1 Introduction

Metaphors are prevalent in our everyday language
even without our consciousness of its presence as we
speak and write. It induces the unknown using the
known, explains the complex using the simple, and
helps us to emphasize the relevant aspects of mean-
ing resulting in effective communication.

In general, metaphor involves certain concept
transfer from one domain (Source) to another (Tar-
get), as in ‘sweet voice’ (using taste to describe
sound). Lakoff (1980) describes metaphor as a cog-
nitive mechanism (a property of language) reflected
by our conceptual system for structuring our under-
standing of the world. It is a fundamental way to
relate our physical and familiar social experiences

to a multitude of other subjects and contexts (Lakoff
and Johnson, 2008).

As a popular linguistic device, metaphors encode
versatile ontological information, which usually in-
volve e.g. domain transfer (Ahrens et al., 2003;
Ahrens and Jiang, 2020), sentiment reverse (Steen
et al., 2010) or modality shift (Winter, 2019) etc.
Therefore, detecting the metaphors in texts is essen-
tial for capturing the authentic meaning of the texts,
which can benefit many natural language process-
ing applications, such as machine translation, dia-
logue systems and sentiment analysis (Tsvetkov et
al., 2014).

To better understand the intrinsic properties of
metaphors and to provide an in-depth analysis
to this phenomenon, we propose a linguistically-
enriched deep learning model extending one pub-
lished work (WAN et al., 2020) at ACL Figlang 2020
workshop by incorporating the modality norms into
attention-based BiLSTM. As a continuation of their
work, we conduct the current research to further tes-
tify the effectiveness of leveraging conceptual norms
for metaphor detection. For standard reference, we
adopt the dataset of the first and second shared tasks
of metaphor detection on verbs of the VUA cor-
pus (Klebanov et al., 2018)1. Details about the ex-
periment are given in Sections 3-5.

2 Related Work

Research on metaphors have been mainly explored
in the context of political communication, men-
tal health, teaching, discourse analysis, assessment

1http://www.vismet.org/metcor/
documentation/home.html



of English proficiency, among others (Ahrens and
Jiang, 2020; Thibodeau and Boroditsky, 2011; Kath-
palia and Carmel, 2011; Klebanov et al., 2008;
Semino, 2008; Billow et al., 1997; Bosman, 1987).

Over the last decade, automated detection of
metaphor has gained increasing research interest
among the Natural Language Processing commu-
nity. Many approaches have been proposed with sys-
tems such as traditional machine learning classifiers,
deep neural networks and sequential models etc.,
trained on features of word vectors, n-grams, lexical
information, semantic classes, concreteness, word
associations, constructions and frames etc. (Hong,
2016; Rai et al., 2016; Do Dinh and Gurevych, 2016;
Klebanov et al., 2014; Wilks et al., 2013; Bizzoni
and Ghanimifard, 2018; Klebanov et al., 2015).

Early studies of metaphor detection tend to adopt
feature-engineering in a supervised machine learn-
ing paradigm, which construct feature vectors based
on concreteness and imageability, semantic classifi-
cation using WordNet, FrameNet, VerbNet, SUMO
ontology, property norms and distributional seman-
tic models, syntactic dependency patterns, sensorial
and vision-based features (Alnafesah et al., 2020;
Klebanov et al., 2016; Shutova et al., 2016; Gutier-
rez et al., 2016).

Recently, deep learning methods have been ex-
plored and become the main stream technology for
metaphor detection (Mao et al., 2019; Dankers et
al., 2019; Gao et al., 2018; Wu et al., 2018; Rei
et al., 2017; Gutierrez et al., 2017). To name
a few advances, Brooks and Youssef (2020) build
up an ensemble of RNN models with Bi-LSTMs
and bidirectional attention mechanisms. Chen et
al. (2020) employs BERT to obtain the sentence em-
beddings, and then a linear layer is applied with soft-
max on each token to make predictions. Maudslay et
al.(2020) combines the concreteness of a word with
its static and contextual embeddings as inputs into a
deep Multi-layer Perceptron network for predicting
metaphoricity. Gong et al.(2020) used RoBERTa to
obtain word embeddings and concatenate it with lin-
guistic features (e.g. WordNet, VerbNet) as well as
other features (e.g. POS, topicality, concreteness),
and then feed them into a fully-connected Feedfor-
ward network to make predictions.

Despite many advances in the above studies,
metaphor detection remains a challenging task.

The semantic and ontological differences between
metaphorical and non-metaphorical expressions are
often subtle and their perception may vary from
person to person. These methods show different
strengths on detecting metaphors, yet each has its
respective disadvantages, such as having general-
ization problems or lack association of their results
with the intrinsic properties of metaphors. In Wan
et al. (2020)’s work, they use conceptual features of
modality and embodiment norms for metaphor de-
tection based on traditional classifiers (Logistic Re-
gression), which demonstrates the effectiveness of
using modality exclusivity information for predict-
ing metaphoricity. The current work aims to merge
both strengths of linguistic wisdom and deep learn-
ing power into one architecture with the modality
enriched neural networks, as illustrated in Section 4.

3 Data Description

3.1 The VUA Corpus
The VU Amsterdam Metaphor Corpus
(VUA) (Tekiroğlu et al., 2015)2 is used in the
experiment for training and testing. The dataset
consists of 117 fragments sampled across four gen-
res from the British National Corpus: Academic,
News, Conversation, and Fiction. The data is an-
notated using the MIPVU procedure (Steen, 2010)
with a strong inter-annotator agreement (k>0.8).
This dataset has been used as the competition corpus
for two shared tasks on metaphor detection (Leong
et al., 2018; Leong et al., 2020), which is publicly
available for standard reference.

Information about the size of the sub-genres is
given in Table 1. The training and testing texts, sen-
tences, tokens and percentage of metaphors break-
down of the VUA verb track3 is given in Table 2.

Text Genres No. of Tokens No. of Fragments
Academic texts 49,561 tokens 16 fragments
Conversation texts 48,001 tokens 24 fragments
Fiction texts 44,892 tokens 12 fragments
News texts 45,116 tokens 63 fragments
TOTAL 187,570 tokens 115 fragments

Table 1: Data components of the VUA corpus

2http://www.vismet.org/metcor/documentation/home.html
3The prediction and evaluation in this paper focuses on the

verbs tokens only.



Dataset Training Testing
#texts 90 27
#sents 12,123 4,081
#tokens 17,240 5,873
%M 29% -

Table 2: Number of texts, sentences, tokens, and percent-
age of metaphors for the VUA corpus

3.2 The Modality Norms

The Lancaster Sensorimotor norms (hereinafter
modality norms) collected by Lynott (2019) is used
for constructing the linguistic features in the deep
learning model. The data include measures of
sensorimotor strength (0-5 scale indicating differ-
ent degrees of sense modalities/action effectors) for
39,707 English words across six perceptual modal-
ities: touch, hearing, smell, taste, vision and in-
terception, and five action effectors: mouth/throat,
hand/arm, foot/leg, head (excluding mouth/throat),
torso.4. Examples of five random words and their six
main modality scores are demonstrated in Table 3.

Word A G H V O I
Adopt 1.222 0.056 1.056 1.889 0.111 1.222
Big 0.944 0.167 2.722 3.889 0.111 0.333
Daze 0.455 0.000 0.000 1.953 0.000 3.253
Eat 1.263 4.526 2.158 2.632 2.421 2.474
Learn 3.941 0.765 1.765 3.882 0.588 1.529

A: Auditory; G: Gustatory; H: Haptic;
V: Visual; O: Olfatory; I: Interoceptive

Table 3: Examples of the Modality Norms

The modality with the highest scores (high-
lighted) among the six senses of the words marks
the dominant sense modality for each word, such as
‘Visual’ for words ‘Adopt’ and ‘Big’. As sensorimo-
tor information plays a fundamental role in cogni-
tion, these norms provide a valuable knowledge rep-
resentation to the conceptual categories of the tokens
in the corpus which may serve as salient features for
inferring metaphors. Motivated by the above idea,
we propose a modality enriched neural network to
further testify its effectiveness.

4https://osf.io/7emr6/

4 The Modality Enriched Model

In the modality enriched model, words are processed
with the integration of linguistic features and word
embedding. We map the modality scores of the
words to the norms and obtain modality representa-
tions and then use them as inputs to neural networks.
The architecture of the modality enriched model is
demonstrated in Figure 1.

Figure 1: The Modality Enriched Model

Let H ∈ Rd×N be a matrix consisting of hidden
vectors [h1, h2....hN ] that is produced by LSTM,
where d is the size of hidden layers and N is the
length of the given sentence. The attention mech-
anism will produce an attention weight α. The final
sentence representation is given by:

h = H × αT

We also add a additional Linear layer. The final
probability distribution is:

y = softmax(Wsh+ bs)

Let y be the target distribution for sentence, ŷ be the
predicted sentiment distribution. Train to minimize
the cross-entropy error between y and ŷ for all sen-
tences.

loss = −
∑
i

∑
j

yji logŷ
j
i + λ || θ ||2

We use glove embedding and modality vectors to
represent the input data. The red circle denotes the



usual embedding, the gray circle represents the lin-
guistics feature. We concatenate both representation
to generate a new representation as the input of the
next layer. LSTM layer produces a hidden status of
each word in a sentence. We use these status to cal-
culate an attention weight which will be multiplied
with output of LSTM layer. Finally, we get a proba-
bility distribution of 0-1 label to train the model and
as the prediction result.

5 Experimental Results

In order to evaluate the effectiveness of the proposed
model for metaphor detection, we randomly select a
development set (4,380 tokens) from the training set
(17,240 tokens) in proportion to the Train/Test ratio
of the task in Leong et al. (2020). The evaluation
results are summarized in Table 4 below:

Category Approach P R F1
Baseline uni-gram + LR 0.52 0.66 0.58
Linguistic modality + linear 0.61 0.56 0.58

modality + LSTM 0.70 0.68 0.69
Neural Glove + LSTM 0.74 0.75 0.75
Enriched modality + Glove + LSTM 0.77 0.76 0.76

Table 4: Evaluation Results of the System

In Table 4, the baseline of using unigram as fea-
tures and logistic regression (LR) as the classifier is
implemented for a basic comparison. It is a com-
monly adopted baseline in the tasks of metaphor de-
tection. We also implement several sub-categories
of approaches before trying the enriched model, in-
cluding the linguistic and neural networks in sepa-
rate and also in combination. The results show an
18% F1 improvement of the enriched model over the
baseline, a 7% F1 improvement over pure linguistic
model, a 1.5% F1 improvement over the pure neu-
ral network model, and this superiority is salient and
consistent in terms of both P (Precision) and R (Re-
call).

To further demonstrate the effectiveness of our
method, this following table presents the compar-
isons of our system to some highly related recent
works on the same task. All the results are publicly
available, as reported in Leong et al. (2020). The
detailed results are displayed in Table 5 below:

Our method obtains very promising results: it out-
performs 6/7 highly related works to a great extent
(0.5%-11% F1 gain), also approaching a reachable

performance (a 4% F1 discrepancy) to the Top 1
work in record (Su et al., 2020). Moreover, our
results are consistently superior to the top base-
line and other linguistically-based or deep learn-
ing approaches. This suggests the effectiveness of
leveraging modality norms in neural networks for
metaphor detection, echoing the hypothesis in Wan
et al. (2020) that metaphor manifests a concept mis-
match (modality shift in particular) between source
and target.

6 Conclusions

We presented a linguistically enhanced method for
metaphor detection of VUA verbs using modality
features plus attention-based neural network in con-
tinuation of Wan et al. (2020)’s first implementa-
tion on using conceptual norms for metaphor detec-
tion. Inter- and cross-approach comparisons among
state-of-the-arts all demonstrate the effectiveness of
adding modality information into neural networks
for enhancing the performance of metaphor detec-
tion. It reconfirms the hypothesis that metaphor
manifests a concept mismatch (modality shift in par-
ticular) between source and target. Future work will
expand the current experiment to predictions of all
four lexical words across more datasets.
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