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Abstract

Neural-based models have achieved outstand-
ing performance on slot filling and intent clas-
sification, when fairly large in-domain train-
ing data are available. However, as new do-
mains are frequently added, creating sizeable
data is expensive. We show that lightweight
augmentation, a set of augmentation meth-
ods involving word span and sentence level
operations, alleviates data scarcity problems.
Our experiments on limited data settings show
that lightweight augmentation yields signifi-
cant performance improvement on slot filling
on the ATIS and SNIPS datasets, and achieves
competitive performance with respect to more
complex, state-of-the-art, augmentation ap-
proaches. Furthermore, lightweight augmen-
tation is also beneficial when combined with
pre-trained LM-based models, as it improves
BERT-based joint intent and slot filling mod-
els.

1 Introduction

In task-oriented dialogue systems, a spoken lan-
guage understanding component is responsible for
parsing the user utterance into a semantic repre-
sentation. This is often modeled as a semantic
frame (Tur and De Mori, 2011), and typically in-
volves slot filling and intent classification. For ex-
ample, in the utterance “book in Southern Shores
for 8 at Ariston Cafe”, the intent is BOOKING A

RESTAURANT and the corresponding slot values and
slot names are “Southern Shores” (CITY NAME),
“8” (NUMBER OF PEOPLE), and “Ariston Cafe”
(RESTAURANT NAME).

Although neural-based models (Qin et al., 2019;
Goo et al., 2018; Mesnil et al., 2015) have achieved
stellar performance in slot filling (SF) and intent
classification (IC), their performance depend on the
availability of large labeled datasets. Consequently,
they suffer in data scarcity situations, which regu-
larly happen when new domains are added to the
system to support new functionalities.

One of the methods proposed to alleviate data
scarcity is data augmentation (DA), which aims to
automatically increase the size of the training data
by applying data transformations, ranging from sim-
ple word substitution to sentence generation. Re-
cently, DA has shown promising potential for sev-
eral NLP tasks, including text classification (Wei
and Zou, 2019; Wang and Yang, 2015), parsing
(Sahin and Steedman, 2018; Vania et al., 2019), and
machine translation (Fadaee et al., 2017). As for
SF and IC, DA approaches typically generate syn-
thetic utterances by leveraging Seq2Seq (Hou et al.,
2018; Zhao et al., 2019; Kurata et al., 2016), Con-
ditional VAE (Yoo et al., 2019), or pre-trained Nat-
ural Language Generation (NLG) models (Peng et
al., 2020). Such approaches make use of in-domain
data, and are relatively heavyweight, as they require
training neural models, which may involve several
phases to generate, filter, and rank the produced aug-
mented data, thus requiring more computation time.
It is also relatively challenging for deep learning-
based models to generate semantically preserving
synthetic utterances in limited data settings.

In this paper, we show that lightweight augmen-
tation, a set of simple DA methods that produce ut-
terance variations, is very effective for SF and IC
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Figure 1: Examples of applying lightweight augmentation on an utterance in the ATIS dataset.

in a low-resource setting. Lightweight augmenta-
tion considers both text span and sentence varia-
tions. The span-level augmentation aims to diver-
sify slot values in a particular text span through a
semantically preserving substitution of slot values.
The sentence-level augmentation seeks to produce
alternative sentence structure through crop and ro-
tate (Sahin and Steedman, 2018) operations based
on a dependency parse structure.

We investigate the effect of lightweight augmen-
tation both on typical biLSTM-based joint SF and
IC models, and on large pre-trained LM transform-
ers based models, in both cases with a limited data
setting. Our contributions are as follows:

• We present a lightweight text span and sentence
level augmentation for SF and IC. We show
that, despite its simplicity, lightweight augmen-
tation is competitive with more complex, deep
learning-based, augmentation.

• We show that big self-supervised models, such
as BERT (Devlin et al., 2019), ROBERTA (Liu
et al., 2019), and ALBERT (Lan et al., 2020)
can perform well under a low data regime, and
still benefit from lightweight augmentation.

• The combination of our span based augmen-
tation and transfer learning (e.g. BERT fine-
tuning) yields the best performance for most
cases.

2 Lightweight Data Augmentation

Given the original training data D, DA aims to gen-
erate additional training data D′. For each sentence

S in D, an augmentation operation is applied N
times, which can be empirically determined. Each
augmented sentence S′ is added toD′, and the union
of D and D′ is then used to train the model for SF
and IC. We describe the lightweight DA operations
in the following subsections.

2.1 Slot Substitution (SLOT-SUB)

Our first lightweight method, slot substitution, is
similar to Gulordava et al. (2018), which is based
on substituting a token in a sentence with another
token with a consistent syntactic annotation (i.e.,
part-of-speech or morphology tags). However, un-
like Gulordava et al. (2018), our method is not lim-
ited to single tokens. As slot filling is a semantic
task, rather than syntactic, we can naturally extend
the method from single tokens (i.e., slot names com-
posed by a single token) to multiple tokens (i.e., slot
names composed by multiple tokens, or spans1), still
preserving the semantics associated to a certain slot.

Practically, for slot substitution we take advan-
tage of the fact that SF training data are typically
annotated with the BIO format2. We exploit the fact
that two text spans in different utterances in D are
likely to be semantically similar if they share the
same slot label. We randomly pick one span in the
S and then perform the substitution (Figure 1 Left).
For instance, we can substitute the span “cheapest”,
with other spans having the same slot label (i.e.,

1We define a span as a sequence of one or more tokens that
convey a slot value.

2B indicates the beginning of the span, I indicates the in-
side of the span. O indicates that a token does not belong to
any slot. For example, ”San Francisco” will be annotated as
B-to location I-to location.



COST RELATIVE), such as “least” or “most expen-
sive”.

More formally, we denote a span sp in a sentence
S as a slot-value pair sp = (y, val), and we aim
to produce an alternative pair sp′ = (y′, val′) such
that the slot values are different (val 6= val′) and the
slot labels are the same (y = y′) for both slot-value
pairs. To obtain sp′, we collect a set of candidates
SP ′ = {sp′1, sp′2, ..., sp′n}, by looking for slot spans
in other sentences in D that satisfy our criteria. Af-
ter that, we randomly sample a span from SP ′

to
obtain a sp

′
. We replace sp in S with sp′ to produce

the new augmented sentence S
′
. For example, in the

utterance “show me the cheapest flight from Atlanta
to San Francisco”, one of the spans that can be sub-
stituted is sp = (COST RELATIVE, “cheapest”).
Assuming that from D we can obtain SPaug =
{(COST RELATIVE, “least expensive”), (COST

RELATIVE, “most expensive”), . . . }, we then sam-
ple a sp′ from SP ′ and replace sp in S with sp′ to
produce S′. Notice that the slot values in sp′ are not
necessary synonyms of the original slot value, al-
though their slot label must be the same to preserve
semantic compatibility.

2.2 Slot Substitution with Language Model
(SLOT-SUB-LM)

Our second lightweight method, SLOT-SUB-LM,
shares the goal with SLOT-SUB, i.e., to substitute sp
with sp′. However, we do not use D to look for sub-
stitute candidates, instead we use a large pre-trained
language model to generate the slot value candi-
dates, using the fill-in-the-blank style (Donahue et
al., 2020). The expectation is that large pre-trained
LMs, being trained on massive amount of data, can
produce a sensible text span given a particular sen-
tence context, and possibly produce slot values that
do not occur in D. While we use BERT for our pur-
pose, virtually any pre-trained LM can be used for
SLOT-SUB-LM. Existing works on DA using LMs
(Kobayashi, 2018; Kumar et al., 2020) are applied
on text classification to replace random tokens in the
text, which is not directly applicable to SF. Our ap-
proach focuses on spans conveying slot values, and
include a filtering mechanism to reject retrieved slot
spans that are not semantically compatible.

Generating New Slot Values. Given an utterance
consisting of one or more slot value spans, we
“blank” one of the span and then let the LM to
predict the new tokens in the span. For instance,
we give “show me the round trip flight from
Atlanta to Denver” to the LM for blank predic-
tion. Practically, blank tokens are encoded as spe-
cial [MASK] tokens3 to let the pre-trained LM per-
forming prediction. The decoding of the new tokens
is carried out iteratively from left to right (Figure 1
Middle) and, to produce the surface form of a token,
we apply nucleus sampling (Holtzman et al., 2020)
using the top-p portion of the probability mass. Nu-
cleus sampling has been empirically shown to be
better than beam search, and top-k sampling (Fan et
al., 2018) to produce fluent and diverse texts.

Filtering. While pre-trained LMs are expected to
generate sensible replacements for a span in the ut-
terance, a possible issue is that the new slot span
is not semantically consistent with the original one.
For example, for the original span “cheapest” in
“show me the cheapest round trip flight from At-
lanta to Denver”, the LM could output “earliest”
as a substitution, which does not fit the slot label
COST RELATIVE. To mitigate this issue, we use
a binary sentence classifier as a filter (SLOT-SUB-
LM+Filter) to decide whether S and S′ are seman-
tically compatible, based on the change made on the
slot span. The training of the classifier is composed
of a pair S and S′, with its binary decision label (i.e.,
accept or reject S′). To construct the training data,
for positive examples (accept) we take advantage of
the sentence pair produced by SLOT-SUB, while for
the negative examples (reject) we sample sp′ in D
where y 6= y′ and replace sp in S with sp′ to pro-
duce S′. We use the BERT model as the sentence
pair classifier and we encode the tokens, w, in both
S and S′ sentence pairs, as [CLS]wS

1w
S
2 . . . wS

n

[SEP]wS′
1 wS′

2 . . . wS′
m . On top of BERT, we add a

feed-forward layer that uses the hidden state of the
sentence representation, h[CLS], for prediction.

3We set the number of masked tokens to be the same as
the tokens of the original slot value, e.g. san francisco
is masked as [MASK][MASK], although this number could ac-
tually be sampled as well.



2.3 CROP and ROTATE

The third lightweight method that we present aug-
ments an utterance by changing its syntactic struc-
ture. We adopt the augmentation approach from
Sahin and Steedman (2018) (Figure 1 Right), which
is based on two operations, CROPand rotate, applied
to the dependency parse tree of a sentence. To our
knowledge, this approach has not yet been applied
to slot filling and intent classification, which is a
contribution of our work. Crop focuses on partic-
ular fragments of a sentence (e.g., predicate and its
subject, or predicate and its object), and removes the
rest of the fragments, including its sub-tree, to create
a smaller sentence. Rotate aims to rotate the target
fragment of a sentence around the root of the depen-
dency parse structure, producing a new utterance.
For example, in the utterance “show me the cheap-
est flight from Atlanta to San Francisco”, the word
“me” can be cropped as it is one of the children of
the root verb “show”. While for rotation, the direct
object (“flight”) and its children (“the cheapest”) are
rotated around the root verb. Figure 2 illustrates the
relevant dependency structure manipulation.

3 Experiments and Results

We experimented our lightweight augmentation ap-
proach on three well-known datasets for SF and
IC, namely ATIS (Hemphill et al., 1990), SNIPS
(Coucke et al., 2018) and FB (Schuster et al., 2018).
All datasets are in English. ATIS contains utterances
related to flight domain (e.g., searching flight, book-
ing). SNIPS includes multi-domain utterances such
as weather, movie, restaurant, etc. FB contains ut-
terances from 3 domains, weather, alarm, and re-
minder. To simulate the data scarcity setting, we
follow previous works (Hou et al., 2018; Yoo et
al., 2019) and only use medium-size (i.e., 1/10) of
training data for each dataset. Statistics on the three
datasets are reported in Table 1.

As for evaluation, we use standard evaluation
metrics, namely the F1-score for SF and accuracy
for IC4. Performance are calculated as the average
score of ten different runs. In order to compare our
methods, we use two baselines for slot filling and
intent detection: a simple BiLSTM-CRF model, and

4Metric is computed using the standard evaluation script
https://www.clips.uantwerpen.be/conll2000/
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(c) Sentence after applying ROTATE.

Figure 2: Examples of dependency tree operations
on a sentence.

a state of the art BERT-based model, which is fine-
tuned to SF and IC5. Each model is trained for 30
epochs, and we apply early stopping criteria.

For both slot substitution (SLOT-SUB) and slot
substitution with language model (SLOT-SUB-LM)
augmentation methods, we tune the number of aug-
mented sentences per utterance, N , on the dev set
of each dataset. For crop and rotate, we use the de-
fault parameters from Sahin and Steedman (2018).
To produce the dependency parse structure for the
utterances in our datasets, we use Spacy6. All hy-
perparameters are tuned on the dev set. More details
on the settings is provided in Appendix A. For train-
ing the binary classifier for SLOT-SUB-LM+Filter,
we generate the same number of positive (accept)
and negative (reject) training instances7.

In order to allow comparison with more com-
plex data augmentation approaches, we also report

5We use the bert-base-uncased model
6https://spacy.io/
7Details in Appendix B



Label #Utterances (D) #Augmented Training Utterances (D′)

Dataset #slot #intent #train #dev #test SLOT-SUB SLOT-SUB-LM CROP ROTATE

ATIS 79 18 0.4K 500 893 3.9K 0.8K 0.8K 1.1K
SNIPS 39 7 1.3K 700 700 6.3K 2.5K 2.6K 3.7K
FB 16 12 3K 4.1K 8.6K 5.4K 5.4K 5.9K 8.5K

Table 1: Statistics of both the original training data D and the augmented data D′. #train denotes our
medium-size training data setup (10% of full training data). D′ is produced by each augmentation method,
where the number N of augmentations per sentence is tuned on the dev set.

results obtained with state of the art approaches
based on Seq2Seq (Hou et al., 2018) and Condi-
tional Variational Auto Encoder (CVAE) (Yoo et al.,
2019). Our implementation is based on the Hug-
gingface library (Wolf et al., 2019), available at
https://github.com/slouvan/saug.

3.1 Results

Table 2 reports the results on the test sets used in
our experiments. As for comparison, we include
best-reported scores from two state of the art aug-
mentation methods, namely a sequence-to-sequence
(Seq2Seq) based on Hou et al. (2018) and a VAE
based methods from Yoo et al. (2019). Results in
Table 2 (test set) show that lightweight augmenta-
tion is beneficial for both Bi-LSTM CRF and BERT,
on both ATIS (single domain) and SNIPS (multi-
domain) datasets. SLOT-SUB yields the best results
for both the BiLSTM+CRF and BERT models, with
SF performance up to 90.43 on ATIS and 90.66 on
SNIPS, and IC performance to 95.49 on ATIS and
97.11 on SNIPS. As for the FB dataset, models only
gain marginal improvement across lightweight aug-
mentation. We hypothesize that FB is relatively easy
to solve, compared with ATIS and SNIPS, as the slot
filling performance of BiLSTM without augmenta-
tion already achieves a very high F1 score. The im-
provement using augmentation is more significant
for SF rather than for IC.

Out of all lightweight augmentation methods,
SLOT-SUB obtains the best performance, particu-
larly on slot filling on ATIS and SNIPS. The over-
all best performing configuration is a combination
of BERT fine-tuning with SLOT-SUB augmentation.
Given limited training data, BERT fine-tuning with-
out augmentation surpasses BiLSTM-CRF with-
out augmentation by a large margin. Yet, perfor-

mance can be boosted even further with lightweight
augmentation, suggesting that even a big, self-
supervised model, such as BERT can still ben-
efit from augmentation on limited data settings.
The improvements on BiLSTM-CRF indicate that
lightweight augmentation improves the model’s ro-
bustness when trained on small amounts of data. We
find that SLOT-SUB-LM is suboptimal for SF. Our
qualitative observation shows that SLOT-SUB-LM
often generates slot values that are semantically in-
compatible with the original slot label. CROP and
ROTATE can help IC in some cases, although their
improvement is marginal.

Despite its simplicity, SLOT-SUB is also com-
petitive with state-of-the-art heavyweight data aug-
mentation approaches (Seq2Seq and CVAE), signif-
icantly boosting Bi-LSTM and BERT performance
for SF on ATIS and SNIPS. We believe that the key
advantage of SLOT-SUB is its capability to maintain
semantic consistency over the slot spans, which has
revealed to be stronger than that of heavyweight ap-
proaches. This also shows that slot consistency is
crucial for obtaining good performance, particularly
for SF. While the CVAE based approach from Yoo
et al. (2019) has injected slot and intent labels in the
model, it seems that generating semantically consis-
tent utterances is still challenging for deep learning
models, especially when data is limited.

4 Analysis and Discussion

In this Section we discuss several aspects of data
augmentation applied to slot filling and intent detec-
tion.

Impact of number of augmented sentences. To
better understand the effect of the number of
augmented sentences per utterance (N ), we now



Model DA ATIS SNIPS FB

Slot Intent Slot Intent Slot Intent

BiLSTM+CRF None 86.83 90.64 84.51 95.94 93.83 98.47
Seq2Seq (Hou et al., 2018) 88.72 - - - - -
VAE (Yoo et al., 2019) 89.27 90.95 - - - -

SLOT-SUB 89.89† 93.37† 86.45† 96.30† 93.70 98.45
SLOT-SUB-LM 87.03 92.96† 82.82 96.14 91.52 98.20
SLOT-SUB-LM+Filter 87.19 92.01† 82.77 96.08 92.18 98.37
CROP 88.62† 92.32† 85.84† 96.07 93.91 98.64
ROTATE 88.83† 92.33† 85.65 96.39† 94.04 98.56

BERT None 89.39 94.98 89.17 96.70 94.22 98.61

SLOT-SUB 90.43† 95.49† 90.66† 97.11† 94.01 98.59
SLOT-SUB-LM 87.88 94.49 85.65 96.59 91.84 98.47
SLOT-SUB-LM+Filter 88.37 94.57 86.23 96.60 92.60 98.59
CROP 89.47 94.55 89.77 96.78 94.20 98.73
ROTATE 89.57 94.48 89.37 96.81 94.32 98.80

Table 2: Overall results on the test set. Underlined numbers indicate best performing methods for a particular
slot filling + intent model. Bold numbers indicate best overall methods. † indicates significant improvement
over the baseline without augmentation ( p-value < 0.05, Wilcoxon signed rank test).

observe the performance of our best performing
method, SLOT-SUB, while changing N values (we
use {2, 5, 10, 20, 25}) on the dev set. As for ATIS,
increasing N yields a F1 improvement from 90.68
up to 91.62; SNIPS performance increased from 87
F1 and to 88 F1 when increasing N from 2 to 5 and
it is stable around 88 F1 when using N larger than
5; finally, FB is stable around 93.4 to 93.7 F1. Over-
all, the biggest improvement is when N is increased
from 2 to 5, while with higher values only minor im-
provements can still be obtained on ATIS.

Performance on different training data size (D).
Figure 3 displays the gain obtained by SLOT-SUB

for various data size for slot filling. Using smaller
data size (i.e., 5%) than our default setting, SLOT-
SUB still obtains a F1 gain for all datasets. On
the other hand, as we increase the number of train-
ing data, the SLOT-SUB benefit diminishes, without
hurting performance on ATIS and SNIPS. As for FB
we observe a performance drop of less than 1 F1,
which is still relatively low.

Is lightweight augmentation beneficial to very
large language models? Motivated by the en-

Figure 3: Gain (∆F1) obtained by SLOT-SUB (SS)
on various training data size. Positive numbers mean
that the model with SS is better than without SS.

couraging results that lightweight augmentation
has obtained on a strong pre-trained LM such
as BERT on low-resource settings (see Table
2), we now further examine the advantage of
lightweight augmentation for other very large pre-
trained LM models, namely Albert (Lan et al.,
2020) and Roberta (Liu et al., 2019). We
use the largest trained models for each of the



Model Aug. ATIS SNIPS

Slot Intent Slot Intent

BERT None 91.6 95.0 89.8 95.0
(large) SS 92.8 95.4 92.8 95.4

Albert None 92.1 94.8 89.5 99.0
(xxl) SS 92.9 95.0 93.6 99.2

Roberta None 90.6 92.8 89.2 98.9
(large) SS 93.2 95.9 92.5 98.8

Table 3: Lightweight augmentation SLOT-SUB (SS)
applied to very large pre-trained LMs.

pre-trained LM, namely bert-large-uncased,
roberta-large, and albert-xxl. Results,
reported in Table 3, show that on limited data set-
tings, all the very large models still benefit from
SLOT-SUB, notably on the performance for SF.

Qualitative Analysis of slot values from SLOT-
SUB vs SLOT-SUB-LM. The performance of
SLOT-SUB especially in SF is better than SLOT-
SUB-LM, as SLOT-SUB maintains semantic consis-
tency on the span level. We observe that SLOT-SUB-
LM often generates slot values that fit the sentence
context but that do not maintain the semantics of the
slots, which hampers the performance in SF (Table
4). The fact that SLOT-SUB-LM often generates
“wrong” slot values makes SLOT-SUB-LM+Filter
also less effective. A possible future direction is to
cast SLOT-SUB-LM as a conditional NLG problem,
incorporating labels at the token-level, although this
is still challenging when data is limited.

5 Related Work

Data augmentation methods have been widely ap-
plied in computer vision, ranging from geometric
transformations (Krizhevsky et al., 2012; Zhong
et al., 2020), data mixing (Summers and Dinneen,
2019), to the use of generative models (Goodfel-
low et al., 2014) for generating synthetic data. Re-
cently, data augmentation has been applied to vari-
ous NLP tasks, including text classification (Wei and
Zou, 2019; Wang and Yang, 2015), parsing (Sahin
and Steedman, 2018; Vania et al., 2019), and ma-
chine translation (Fadaee et al., 2017). Augmenta-
tion techniques for NLP tasks range from operations
on tokens (e.g., substituting, deleting) (Wang and

Yang, 2015; Kobayashi, 2018; Wei and Zou, 2019),
to manipulation of the sentence structure (Sahin and
Steedman, 2018), to paraphrase-based augmentation
(Callison-Burch et al., 2006).

Data augmentation has been also experimented in
the context of slot filling and intent classification.
Particularly, recent methods have focused on the ap-
plication of generative models to produce synthetic
utterances. Hou et al. (2018) proposes a method
that separates the utterance generation from the slot
values realization. A sequence to sequence based
model is used to generate utterances for a given in-
tent with slot values placeholders (i.e., delexical-
ized), and then words in the training data that occur
in similar contexts of the placeholder are inserted
as the slot values. Zhao et al. (2019) also uses a
sequence to sequence model by exploiting a small
number of template exemplars. Yoo et al. (2019)
proposes a solution based on Conditional Variational
Auto Encoder (CVAE) to generate synthetic utter-
ances. In this case the CVAE takes into account both
the intent and the slot labels during training, and the
model generates the surface form of the utterance,
slot labels, and the intent label. Recent work from
Peng et al. (2020) make use of GPT-2 (Radford et
al., 2019), and fine-tuned it to intent and slot-value
pairs to generate utterances.

In comparison to existing, state of the art, aug-
mentation methods for slot filling and intent detec-
tion, the augmentation methods proposed in this pa-
per can be considered as lightweight because they
do not require any separate training based on deep
learning models for generating additional data. Still,
lightweight augmentation maintains consistent slot
semantic substitutions, a feature that is crucial for
effective data augmentation. In the spectrum of
existing augmentation methods, i.e., from words
manipulation to paraphrasing-based methods, our
lightweight approaches lie in the middle, as we fo-
cus either on particular text spans that convey slot
values, or on particular structures in the dependency
parse tree of the utterance.

6 Conclusion

We showed that lightweight augmentation for slot
filling and intent detection in low-resource settings
is very competitive with respect to more com-



Dataset Slot Original Sentence SLOT-SUB SLOT-SUB-LM

ATIS DEPART TIME List all flights leaving
Denver on Continental
on Sunday after 934
pm

List all flights leaving
Denver on Continental
on Sunday after 7 pm

List all flights leav-
ing Denver on Conti-
nental on Sunday after
Christmas day

FROMLOC

CITYNAME

List all flights leaving
Denver on Continen-
tal on Sunday after 934
pm

List all flights leaving
Atlanta on Continen-
tal on Sunday after 934
pm

List all flights leaving
Boston on Continental
on Sunday after 934
pm

AIRLINES NAME I need a flight on Air
Canada from Toronto
to San Diego with a
layover in DC

I need a flight on
Northwest Airlines
from Toronto to San
diego with a layover in
DC

I need a flight on
a Thursday from
Toronto to San Diego
with a layover in DC

SNIPS CONDITION

DESCRIPTION

Will it be sunny in Ey-
ota Hawaii on February
seventh 2025

Will it be humid in Ey-
ota Hawaii on February
seventh 2025

Will it be held in Ey-
ota Hawaii on February
seventh 2025

SPATIAL

RELATION

What is the closest cin-
ema today playing ani-
mated movies

What is the close-by
cinema today playing
animated movies

What is the under-
ground cinema today
playing animated
movies

RESTAURANT

TYPE

I need to book a pub
in Cammack village
Wyoming for a party of
seven

I need to book a fast
food restaurant in
Cammack village
Wyoming for a party of
seven

i need to book a lodge
in Cammack village
Wyoming for a party of
seven

FB DATE TIME Set alarm for 4 am to-
morrow morning

Set alarm at 6 tomor-
row morning

Set alarm for me to-
morrow morning

LOCATION How hot is it in Hong
Kong ?

How hot is it in Fair-
banks ?

How hot is it in the
mornings ?

Table 4: Samples of sentences from SLOT-SUB and SLOT-SUB-LM. The bold text span denotes the span
that is substituted. The text span in blue denotes semantically consistent replacements, while red indicates
semantically inconsistent substitutes.

plex deep learning based data augmentation. A
lightweight method based on slot values substitu-
tion, while preserving the semantic consistency of
slot labels, has proven to be the more effective. We
also show that large self-supervised models, like
BERT, can benefit from lightweight augmentation,
suggesting that a combination of data augmentation
and transfer learning is very useful, and has the po-
tential to be applied to other NLP tasks.

As for future work, it would be interesting to see
the effect of using the augmented data generated by
SLOT-SUB as additional training data for deep learn-
ing based augmentation models. Encouraged by the
results of our lightweight augmentation, our work
can also be experimented on semantic tasks with
similar characteristics, such as Named Entity Recog-
nition.
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Appendix A. Hyperparameters

Hyperparameter Value

Learning rate 10−5

Dropout 0.1
Mini-batch size 16
Optimizer BertAdam
Number of epoch 30 (bert-base-uncased)

10 (bert-large,
roberta-large,
albert-xxl)

Early stopping 10

nbaug Tuned on {2, 5, 10}
Nucleus sampling top-p = 0.9
Max rotation 3
Max crop 3

Table 5: Hyperparameters used for the Transformer
based models and data augmentation methods

Appendix B. Training Data for
SLOT-SUB-LM+Filter

Dataset #train

ATIS 7,846
SNIPS 24,472
FB 52,798

Table 6: Total training examples for SLOT-SUB-
LM+Filter. The number of positive and negative ex-
amples are the same.


