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Abstract

Here we experiment with the use of infor-
mation retrieval as an augmentation for pre-
trained language models. The text corpus
used in information retrieval can be viewed as
form of episodic memory which grows over
time. By augmenting GPT 2.0 with informa-
tion retrieval we achieve a zero shot 15% rel-
ative reduction in perplexity on Gigaword cor-
pus without any re-training. We also validate
our IR augmentation on an event co-reference
task.

1 Introduction

We are interested in exploring the value of long
term episodic memory in language modeling. For
example, a language model can be used in January
to assign a probability distribution over the state-
ments that will appear in the newspaper in March.
But one month later, in February, the distribution
over the predictions for March should be updated
to take into account factual developments since
the previous prediction. Long term episodic mem-
ory should be taken into account when assigning a
probability to a statement.

Here we take a simple approach in which a pre-
trained GPT language model (Radford et al., 2018a,
2019) is zero-shot augmented with an episodic
memory consisting simply of a corpus of past news
articles. Conceptually the past news articles are
viewed as additional training data which can be
legitimately accessed when evaluating on future
text. In our most basic experiment we calculate
the probability of a future article by first calculat-
ing the probability of its first k sentences using
the pre-trained GPT model. We then use the first
k sentences as a query in an information retrieval
system to extract a relevant past article. We then
insert the past article following the first k sentences
when calculating the probability of the remainder

of the future article using the same pre-trained GPT
model. This is a zero-shot augmentation in the
sense that there is no additional training or fine tun-
ing of the pre-trained model. Our results show that
this augmentation significantly reduces perplexity.
We also present various other experiments includ-
ing results on fine-tuning the model in the presence
of the memory and the effect of this memory on
event co-reference.

2 Related Work

Various language models have utilized external
knowledge or long contexts (Paperno et al., 2016;
Yang and Mitchell, 2017; Peng et al., 2019; Khan-
delwal et al., 2018; Ghosh et al., 2016; Lau et al.,
2017; Grave et al., 2016; Parthasarathi and Pineau,
2018). But these papers do not address the question
of whether additional context or external knowl-
edge is useful as a zero-shot augmentation of large
scale pre-trained NLP models.

The value of external knowledge has previously
been demonstrated for NLP tasks such as natu-
ral language inference (Chen et al., 2018; Yang
et al., 2019), language generation (Parthasarathi
and Pineau, 2018), knowledge base comple-
tion (Toutanova et al., 2015; Das et al., 2017) and
question answering (Sun et al., 2019, 2018; Dhin-
gra et al., 2017). However, all those prior works
assume the model is small and trained from scratch.

As large scale pre-trained models have become
more powerful it is not immediately clear whether
external resources can still add value. The only
work we know of on using external resources in
modern large scale models is Yang et al. (2019)
where a human curated external lexical resource is
used to improve BERT.

Our approach bears some resemblance to neural
cache models (Grave et al., 2016). However, neural
cache models store past hidden states as memory
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and accesses them through a dot product with the
current hidden states. This is different from retriev-
ing knowledge from a corpus-sized memory.

Our approach is also somewhat related to mem-
ory networks (Weston et al., 2014). Memory net-
works have a memory module which can be learnt
jointly with other components. It has shown suc-
cess in applications such as machine reading com-
prehension (Kumar et al., 2016a,b; Shi et al., 2016)
and visual question answering (Na et al., 2017; Ma
et al., 2018; Su et al., 2018). Significant progress in
memory networks has been achieved in both archi-
tecture (Chandar et al., 2016; Miller et al., 2016;
Gulcehre et al., 2017) and model scale (Rae et al.,
2016; Lample et al., 2019).

Several papers have formulated, and experi-
mented with, scalable memory networks — mem-
ory networks that employ some method of effi-
ciently reading and writing to very large neural
memories. This is done with approximate nearest
neighbor methods in Rae et al. (2016) and with
product keys in Lample et al. (2019). These large
memories are used to provide additional model
capacity where the memory contents are trained
over a large data set using gradient descent train-
ing, just as one would train the parameters of a
very large network. It is shown in Lample et al.
(2019) that it is possible to insert a large memory
as a layer in a transformer architecture resulting a
model where the same number of parameters and
the same performance can be achieved with half
the layers and with much faster training time than
a standard transformer architecture. Here, however,
we are proposing zero-shot augmentation with an
external data source used as an episodic memory.

The use of key-value memories in Miller et al.
(2016) is particularly similar to our model. Key-
value memories were used there in treating a corpus
of Wikipedia movie pages as a memory for answer-
ing questions about movies. As in our system,
articles were extracted using word based informa-
tion retrieval. Each article was encoded as a vector
which was then given to a question answering archi-
tecture. This was shown to improve on automated
knowledge base extraction from the same corpus
but was still not competitive with human curated
knowledge graphs for movies. Here we give the
text of the retrieved article directly to the language
model architecture and focus on augmenting large
scale language models.

3 Model

We use the pre-trained transformer GPT 2.0 (Rad-
ford et al., 2019). Let Ww and Wp be the subword
and position embeddings respectively. Let M de-
note the total number of layers, for a token at time
step t, the m-th layer’s hidden state hmt is given by:

hmt =

{
Ww +Wp if m = 0

TB(hm−1t ) if 1 ≤ m ≤M

where TB stands for Transformer Block. We use
last layer’s hidden state hMt as the presentation Ht

for the token at time step t. We augment GPT 2.0
with a large episodic memory component, and the
overall architecture is shown in Figure 1.

Figure 1: GPT with large episodic memory component

For a sequence S with T tokens, let S1, . . ., Sp
be the tokens of the first k sentences. Let C be a
sequence (article) retrieved from memory using the
first k sentences as the query, the vector Ht is:

Ht =

{
GPT(S1, . . . , St), if t ≤ p
GPT(S1, . . . , Sp, C, . . . , St), otherwise

That’s to say, for the first k sentences, we directly
feed them to GPT to obtain their representations.
For remaining sentences, their representations are
conditioned on both the first k sentences and the
retrieved context C. Table 1 compares features of
our simple memory augmentation with those of
other memory models.

4 Experiments

We focus on two tasks: document level language
modelling and event co-retrieved . In both tasks we
take a document as input and use first k sentences
to query the memory. To calculate the perplexity
of a document, we compute the log-probability of
a document by multiplying byte level probability,
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Model episodic search memory size
DMN yes exact ∼1K words
SAM: no approx ∼100K slots
KVM: yes exact ≤ 1M slots
LMN: no exact ∼1M slots
Ours: yes approx ∼10M documents

Table 1: Comparison between different models. DMN:
Dynamic Memory Network (Kumar et al., 2016b);
SAM: Sparse Access Memory (Rae et al., 2016); KVM:
Key Value Memory (Miller et al., 2016); LMN: Large
Memory Network (Lample et al., 2019). Memory size
is measured in their own words.

then divide the log-probability by the actual word
count in the query document.

We use Gigaword (Parker et al., 2011) as both
our language modeling test set and as our external
memory. Gigaword contains news from different
sources such as NY Times and XinHua News etc.
For language modelling we use the NY Times por-
tion because it is written by native English speakers.
Since GPT 2.0 is trained on Common Crawl which
contains news collections started from 2008. To
avoid testing on GPT-2 training data, we use Gi-
gaword articles collected prior to 2008. For the
pre-trained language model we use GPT 2.0 (Rad-
ford et al., 2019) 1. It contains three pre-trained
models: GPT Small, Medium and Large.

For information retrieval we use Lucene due to
its simplicity. Given a query document we first do
sentence and word tokenization and then use the
first k sentences to retrieve top 20 retrieved doc-
uments with the default TF-IDF distance metric
provided by Lucene. Since too distant document
pairs are uninformative and too related document
pairs tends to be duplicates of the test article, we
further filter those top ranked documents by time
stamp, news source and cosine similarity. More
specifically, we choose the highest ranked retrieved
document that simultaneously satisfies the follow-
ing three conditions: it comes from a different news
source; it appears earlier but within two weeks
time window of the test document, and the bag of
word cosine similarity between the test and the re-
trieved cannot be larger than 0.6α where α is the
largest bag of word cosine similarity between the
test article and any retrieved articles. To support
fine-tuning experiments we constructed a corpus
of pairs of a query article and a cached retrieved

1https://github.com/huggingface/pytorch-transformers

document. We split the dataset into train/dev/test
by query document’s time stamp. The train/dev/test
size is: 79622,16927,8045. For zero-shot experi-
ments we use the test set of 8045 articles. We do
experiments with k ∈ {1, 2, 5}.

To check the quality of query-retrieved pairs, we
randomly sample 100 pairs from dev set and com-
pute the bag of word cosine similarity between the
two documents. The mean cosine similarity is 0.15.
We also manually inspect them: we ask two NLP
researchers to annotate the query-retrieved pair
as “BAD” or “OK” independently, i.e., if two doc-
uments are almost duplicates or totally unrelated,
then it’s “BAD”, otherwise, it’s “OK”. Among
100 pairs, 83 pairs are “OK”, 17 pairs are “BAD”
due to irrelevance. The Cohen’s kappa coefficient
between two annotations is 0.94.

4.1 Language modelling
For language modeling we try zero-shot memory
augmentation, fine-tuned memory augmentation,
and training a small memory-augmented network
from scratch. When training, we use the Adam
optimizer from GPT 1.0 (Radford et al., 2018b).
The learning rate is 0.001, weight decay parameter
is 0.01, the warm up proportion is 0.1. For other
parameters, we use the default values from GPT
2.0. The fine-tuning on Gigaword takes less than
one day with a single GPU.

Zero-shot and fine-tuning results Following
Radford et al. (2019), we first evaluate our model
on Gigaword with zero-shot setting and then fine-
tune the model. The results are given in Table 2.

Model Size woc k=1 k=2 k=5

GPT-Small 35.15 29.29 30.54 32.38
GPT-Medium 22.78 19.84 20.54 21.48
GPT-Large 19.90 17.41 18.00 18.80

GPT-Small 23.03 21.01 21.89 22.66

Table 2: Perplexity for zero-shot (top 3 rows) and fine-
tuning (last row) settings when use different k to re-
trieve the context. woc: without retrieved context.

From Table 2, we see that with additional context
retrieved from episodic memory, for all different
GPT models, we obtain significantly lower perplex-
ity than using original GPT 2.0. When fine tuning
the model with context, we can further reduce the
overall perplexity. We only fine tune GPT small
due to our GPU memory constraints. Preliminary
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analysis indicates that most of the perplexity re-
duction comes at content words and semantically
rich words where predictions require broader con-
text. This is consistent with the phenomena found
in Khandelwal et al. (2018). We further find that
smaller k leads to slightly worse retrieval qual-
ity, however, more continued sentences will ben-
efit from the retrieved context. Since Gigaword
contains newswire, the first several sentences usu-
ally are importation summarizations, thus overall,
smaller k will result in lower perplexity.

Train from scratch We also investigate train-
ing this form of memory-augmented model from
scratch on our query-retrieved pairs. For these ex-
periments we train smaller transformers and the
results are given in Table 3. From Table 3, we see
that additional context still helps and we can get
decent perplexity even with quite small models.

Model Config woc k=1 k=2 k=5

E=384,H=6,L=6 35.62 31.94 33.18 35.26
E=384,H=8,L=8 33.67 29.62 30.76 32.73
E=576,H=8,L=8 31.32 27.38 28.54 30.63

Table 3: Perplexity when train from scratch. E: hidden
states dimensionality; H: # of head; L: # of layer. GPT-
Small has the configuration: E=764, H=12, L=12.

When context is irrelevant We also evaluate
our method on Wikitext-2/103, in which the re-
trieved context is irrelevant due to domain differ-
ence between Wikipedia and Gigaword. In this
case, we use the most top ranked document from
Gigaword as reference. Table 4 shows that irrele-
vant contexts have very little impact on perplexity.

Dataset woc k=1 k=2 k=5

Wikitext-2 28.67 28.96 28.95 28.70
Wikitext-103 25.38 25.68 25.56 25.39

Table 4: Zero-shot perplexity using GPT-Small

4.2 Event Co-reference
Intuitively episodic memory is useful because it
contains information about the particular events
mentioned in the test document. With this in mind
we evaluate our approach on the event co-reference
dataset ECB+ (Cybulska and Vossen, 2014). ECB+
contains 982 documents clustered into 43 topics,
and has two evaluation settings: coreferring men-
tions occurring within a single document (within

document) or across a document collection (cross
document). For the event co-reference pipeline, we
follow the joint modeling method of Barhom et al.
(2019) where they jointly represented entity and
event mentions with various features and learned
a pairwise mention/entity scorer for coreference
classification. We augment their mention features
with the mention’s vector representations extracted
from either GPT 2.0 or our zero-shot augmented
GPT 2.0. For event co-reference, we use the whole
test document to retrieve the context from Giga-
word. From Table 5, we see that the context can
help boost the CONLL F1 score.

System MUC B3 CONLL

Within Document

KCP 63.0 92.0 81.0
JM 70.9 93.5 85.1
JM+GPT 80.1 93.5 85.2
JM+GPT+CTX♣ 80.2 93.9 85.4

Combined Within and Cross Document

CV 73.0 74.0 73.0
KCP 69.0 69.0 69.0
JM 80.9 80.3 79.5
JM+GPT 81.2 80.2 79.6
JM+GPT+CTX♣ 81.3 80.5 79.8

Table 5: F1 score on ECB+ dataset. KCP: Kenyon-
Dean et al. (2018) where they add a clustering-oriented
regularization term; CV: Cybulska and Vossen (2015)
where they add the feature calculated from “event tem-
plate”; JM: Barhom et al. (2019). ♣: we also feed the
retrieved context to GPT to get the representation.

5 Conclusion

In this paper we propose a method to augment a
pre-trained NLP model with a large episodic mem-
ory. Unlike previous work, we use information
retrieval to handle a large external corpus of text
and feed retrieved documents directly to language
models. Evaluation results on language modelling
and event co-reference show the promise of our
method. To the best of our knowledge, this is
the first work that augments pre-trained NLP mod-
els with large episodic memory. In principle, the
memory-augmented GPT-2 can be used as a variant
of GPT-2 for any downstream tasks, such as GLUE
tasks (Wang et al., 2018), although we have not
experimented with that here.
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