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Abstract

This paper introduces our system at NLPTEA-
2020 Task: Chinese Grammatical Error Diag-
nosis (CGED). CGED aims to diagnose four
types of grammatical errors which are miss-
ing words (M), redundant words (R), bad word
selection (S) and disordered words (W). The
automatic CGED system contains two parts
including error detection and error correction.
For error detection, our system is built on the
model of multi-layer bidirectional transformer
encoder and ResNet is integrated into the en-
coder to improve the performance. We also
explore stepwise ensemble selection from li-
braries of models to improve the performance
of the single model. For error correction, we
design two models to recommend corrections
for S-type and M-type errors separately. In of-
ficial evaluation, our system obtains the high-
est F1 scores at identification level and posi-
tion level for error detection, and the second-
highest F1 score at correction level.

1 Introduction

Chinese language is commonly regarded as one of
the most complicated languages. Compared to En-
glish, Chinese has neither singular/plural change,
nor the tense changes of the verb. In addition, word
segmentation usually has to be processed before
deeper analysis, since word boundaries are not ex-
plicitly given in Chinese. All these problems make
Chinese learning challenging to new learners. In
recent years, more and more people with different
language and knowledge background have become
interested in learning Chinese as a second language.
It is necessary to develop an automatic Chinese
Grammatical Error Diagnosis (CGED) tool to help
to identify and correct grammatical errors written
by these people.

In order to promote the development of au-
tomatic grammatical error diagnosis in Chinese
learning, the Natural Language Processing Tech-
niques for Educational Applications (NLP-TEA)
have taken CGED as one of the shared tasks since
2014. Many methods have been proposed to solve
CGED task.

In this work, we introduce our system at
NLPTEA-2020 CGED task. For error detection,
our system is built on the model of multi-layer bidi-
rectional transformer encoder and ResNet is inte-
grated into the encoder to improve the performance.
We also explore stepwise ensemble selection from
libraries of models to improve the performance of
the single model. For error correction, we design
two models to recommend corrections for S-type
and M-type errors separately. More specifically, we
use the RoBERTa (Liu et al., 2019) and the n-gram
language model for the S-type correction, and uti-
lize a combination of pretrained masked language
model and a statistical language model to generate
possible correction results for M-type correction.
In official evaluation, our system obtains the high-
est F1 scores at identification level and position
level for error detection, and the second-highest F1
score at correction level.

The paper is organized as follows: Section 2
briefly introduces the CGED shared task. Section
3 talks about our methodology. Section 4 shows
the experiment result. Section 5 shows the related
work. Finally, the conclusion and future work are
drawn in Section 6.

2 Chinese Grammatical Error Diagnosis

The goal of NLPTEA CGED task is to indicate
errors in the sentences written by Chinese For-
eign Language learners. The sentences contain
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Error Type Original Sentence Correct Sentence

M 每个城市的超市能看到这些食品。 每个城市的超市都都都能看到这些食品。

R 我和妈妈是是是不像别的母女。 我和妈妈不像别的母女。

S 最重要的是做做做孩子想学的环境。 最重要的是创创创造造造孩子想学的环境。

W “静音环境”是是是对对对人人人体体体应应应该该该有危害的。 “静音环境”应应应该该该是是是对对对人人人体体体有危害的。

Table 1: Typical Error Examples, where “M” means type of missing word, “R” means type of redundant word, “S”
means type of word selection and “W” means type of disordered words.
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Figure 1: Architectures of BERT and ResBERT for grammatical error detection, where “BERT” means the multi-
layer bidirectional transformer encoder.

four types of grammatical errors, including missing
words (M), redundant words (R), word selection
errors (S) and word ordering errors (W). The in-
put sentence may contain one or more such errors.
Given a sentence, the system needs to indicate: (1)
If the sentence is correct or not; (2) What kind of
errors the sentence contains; (3) The exact error
position; (4) Possible corrections for S-type and
M-type errors. Some typical examples are shown
in Table 1.

3 Methodology

3.1 Error Detection

We treat the error detection problem as a sequence
tagging problem. Specifically, given a sentence
x, we generate a corresponding label sequence y
using the BIO encoding (Kim et al., 2004). We
then combine ResNet and transformer encoder to
solve the tagging problem.

Transformer Encoder
We use the multi-layer bidirectional transformer
encoder (BERT) described in Vaswani et al. (2017)
to encode the input sentence. As shown in Figure
1(a), the model consists of three parts: an input
embedding layer I , an encoder layer E and an
output layer O. Given a sequence S = w0, ......, wN

as input, the encoder is formulated as follows:

h0i = Wewi +Wp (1)

hli = transformer block(hl−1i ) (2)

yBERT
i = softmax(Woh

L
i + bo) (3)

where wi is a current token, and N denotes the
sequence length. Equation 1 thus creates an input
embedding. Here, transformer block includes self-
attention and fully connected layers, and outputs
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hli. l is the number of the current layer, l ≥ 1. L
is the total number of layers of BERT. Equation 3
denotes the output layer. Wo is an output weight
matrix, bo is a bias for the output layer, and yBERT

i

is a grammatical error detection prediction.

Integrating ResNet
Deep neural networks learn different representa-
tions for each layer. For example, Belinkov et al.
(2017) demonstrated that in a machine translation
task, the low layers of the network learn to rep-
resent the word structure, while higher layers are
more focused on word meaning. For tasks that em-
phasize the grammatical nature such as Chinese
grammatical error detection, information from the
lower layers is considered to be important. In this
work, we use the residual learning framework (He
et al., 2016) to combine the information from word
embedding with the information from deep layer.
Given a sequence S = w0, ......, wN as input, Res-
BERT is formulated as follows:

h0i = Wewi +Wp (4)

hli = transformer block(hl−1i ) (5)

Ri = hLi − wi (6)

HL
i = concat(hLi , Ri) (7)

yResBERT
n = softmax(WoH

L
i + bo) (8)

Equation 6 denotes the residual learning frame-
work, where the hidden output of hLi and the in-
put embedding is used to approximate the residual
functions. We then send the concatenation of hLi
and Ri to the output layer.

Stepwise Ensemble Selection from Libraries of
Models
We found that different random seeds and dropout
values may result in different performances at
the end of each training. It is straightforward to
merge different model results to increase the perfor-
mance. Rather than combine all the single models
by weighted averaging, we use forward stepwise
selection from the library of models (Caruana et al.,
2004) to find a subset of models that yield excellent
performance when averaged together. Library of
models is generated using different random seeds

and dropout values. The basic ensemble selection
procedure is very simple:

1. Start with the empty ensemble.

2. Add to the ensemble the model in the library
that maximizes the ensemble’s performance
to the Chinese grammatical error detection
metric on validation set.

3. Repeat Step 2 for a fixed number of iterations
or until all the models have been used.

4. Return the ensemble from the nested set of
ensembles that has maximum performance on
the validation set.

The voting system when selecting the best model
to add at each step is span-level and it works as
follow:

1. Each single model that tags a span of error
text counts as a vote for that span of error text
(e.g., if the word “是” in a given position, is
tagged as an R-type by one single model, then
it receives one vote). Note that only the spans
of text that have been recognized as an error
type by any of the single model are considered
as candidates.

2. Each candidate span of error text is tagged as a
true error if it collected a minimum number of
votes, like 30% * number of subset models.

The simple forward model selection procedure
presented is effective, but sometimes overfits to the
validation set, reducing ensemble performance on
test set. To reduce the overfitting on the valida-
tion set, we make three additions to this selection
procedure as described by Caruana et al. (2004):

Selection with Replacement. With model se-
lection without replacement, performance im-
proves as the best models are added to the ensem-
ble, peaks, and then quickly declines. Selecting
models with replacement greatly reduces this prob-
lem. Selection with replacement allows the models
to be added to the ensemble multiple times. This al-
lows selection to fine-tune ensembles by weighting
models: models added to the ensemble multiple
times receive more weight.

Sorted Ensemble Initialization. The simple
forward model selection procedure starts with the
empty ensemble. Forward selection sometimes
overfits early in selection when ensembles are
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small. To prevent overfitting, we sort the mod-
els in the library by their performance, and put the
N best model in the ensemble before the procedure.
We use N = 5.

Bagged Ensemble Selection. As the number
of models in a library increases, the chances of
finding combinations of models that overfit the val-
idation set increases. Bagging can minimize this
problem. We reduce the number of models by draw-
ing a random sample of models from the library
and selecting from that sample. If a particular com-
bination of M models overfits, the probability of
those M models being in a random bag of models
is less than (1 − p)M for p the fraction of models
in the bag. We use p = 0.5, and bag ensemble se-
lection 20 times to insure that the best models will
have many opportunities to be selected. The final
ensemble is the average of the 20 ensembles.

3.2 Error Correction

The systems are also required to recommend cor-
rections for S-type and M-type errors. In this work,
we design two different models to recommend cor-
rections for S-type and M-type errors separately.
We will describe them separately.

S-type Correction
For the S-type correction, we mainly use the
RoBERTa (Liu et al., 2019) and the n-gram lan-
guage model. Firstly, we perform domain adapta-
tion on the language model. We use CGED train-
ing sets from previous competitions to fine-tune
RoBERTa-wwm, and combine the CGED data with
news corpora to train a 5-gram language model.

S-type correction includes single-character cor-
rection and multi-character correction. For the
single-character correction, we consider the top
20 generated results of RoBERTa and 3,500 most
frequent characters on L2 learner corpus as can-
didates. We score the candidates according to the
prediction probability of RoBERTa and n-gram, vi-
sual similarity, and phonological similarity (Hong
et al., 2019). Afterward, we select the character
with the highest score as the correction result. For
the multi-character correction, we also select the
top 20 characters generated by RoBERTa at each
position. We put these characters together to form
words and reserved those in the vocabulary as can-
didates. In addition to the four kinds of features
at the single-character correction, we also consider
Levenshtein distance between the error words and
candidate words.

Error R M S W

Train 52,312 11,548 13,931 23,014 3,769

Validation 4,871 1,060 1,269 2,156 386

Table 2: Data statistics

M-type Correction
Specially, we consider the correction of M-type
errors as a cloze task and utilize a combination of
pretrained masked language model and a statisti-
cal language model to generate possible correction
results. Given suspected missing positions, we di-
vide the correction process of M-type errors into
two steps, firstly offering possible corrections, then
evaluating and picking the most reasonable ones.

When using pretrained masked language model,
We first predict the number of missing characters
at the suspected M-type error position through a
BERT-based sequence labeling model. Then we
add the same number of [MASK] symbols as pre-
dicted to the sentence before the position. After-
ward, we use BERT to predict the most likely char-
acter of each [MASK] symbol, which is consid-
ered as correction candidates. When using sta-
tistical language models, we prepared a Chinese
high-frequency vocabulary of L2 learners, and sup-
plement all possible Chinese words from this vo-
cabulary to the suspected M-type error position,
generating a series of correction candidates. To
evaluate the probability of each candidate, we use
them to construct modified sentences and calculate
the perplexity of the original sentence and all mod-
ified sentences using a statistical language model
pretrained on L2 learner corpus. If the perplexity
of modified sentence is significantly lower than
the perplexity of the original sentence, which is
controlled by a manual threshold, we consider the
candidate as a predicted correction result.

4 Experiment

4.1 Dataset
Following the work of Fu et al. (2018), We trained
our single models using training units that con-
tain both the erroneous and the corrected sentences
from 2016 (HSK Track), 2017 and 2018 training
data sets. CGED 2016 HSK track training set
consists of 10,071 training units with a total of
24,797 grammatical errors, categorized as redun-
dant (5,538 instances), missing (6,623), word se-
lection (10,949) and word ordering (1,687). CGED
2017 training set consists of 10,449 training units
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model FPR Detection level Identification Position

Precision Recall F1 Precision Recall F1 Precision Recall F1

BERT 0.6333 0.6974 0.8626 0.7713 0.5406 0.5721 0.5559 0.3362 0.3178 0.3267

BERT-WWM 0.6966 0.6826 0.8854 0.7709 0.5306 0.5894 0.5585 0.3324 0.3302 0.3313

ELECTRA 0.8530 0.6519 0.9439 0.7712 0.5185 0.6489 0.5764 0.3288 0.372 0.3491

ResELECTRA 0.7709 0.6680 0.9167 0.7728 0.5304 0.6520 0.5849 0.3503 0.396 0.3722

WA Ensemble 0.5675 0.7216 0.8962 0.7885 0.6175 0.5799 0.5981 0.4871 0.3841 0.4295

S Ensemble 0.4333 0.7719 0.8667 0.8166 0.6411 0.6562 0.6486 0.4805 0.4693 0.4748

Table 3: Validation Results using single models and ensemble methods. “S Ensemble” denotes for Stepwise
ensemble model.

with a total of 26,448 grammatical errors, cate-
gorized as redundant (5,852 instances), missing
(7,010), word selection (11,591) and word ordering
(1,995). CGED 2018 training set consists of 1,067
grammatical errors, categorized as redundant (208
instances), missing (298), word selection (87) and
word ordering (474). Table 2 shows the overall
data distribution in the training data.

The sentences from 2017 testing data set are used
for validation. It consists of 4,871 grammatical
errors, categorized as redundant (1,060 instances),
missing (1,269), word selection (2,156) and word
ordering (386).

4.2 Metric

The evaluation method includes four levels:
Detection level. Determine whether a sentence
is correct or not. If there is an error, the sentence
is incorrect. All error types will be regarded as
incorrect.
Identification level. This level could be consid-
ered as a multi-class categorization problem. The
correction situation should be exactly the same as
the gold standard for a given type of error.
Position level. The system results should be per-
fectly identical with the quadruples of the gold
standard.
Correction level. Characters marked as S and
M need to give correct candidates. The model
recommends at most 3 correction at each error.

The following metrics are measured at detection,
identification, position-level.

FalsePositiveRate =
FP

FP + TN
(9)

Accuracy =
TP + TN

TP + FP + TN + FN
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

(13)

Since each team is allowed to submit three re-
sults, we run the stepwise ensemble selection for
three times, according to the performance on detec-
tion level, identification level, position level sepa-
rately.

4.3 Training Details

We try different pre-trained model parameters as
the transformer’s initialization such as BERT (De-
vlin et al., 2018), ELECTRA discriminator (Clark
et al., 2020) and BERT-WWM (Cui et al., 2019).
We find that the models initialized with ELECTRA
discriminator always achieve better performance.
So we select ELECTRA discriminator as the trans-
former’s initialization. More concretely, we use
Chinese ELECTRA-Large discriminator model1

with 1024 hidden units, 16 heads, 24 hidden layers,
324M parameters.

For other parameters, we use streams of 128 to-
kens, a mini-batch of size 64, learning rate of 2e-5
and epoch of 120. We use 16 different random
seeds and 5 different dropout values for each ran-
dom seed to train 80 single models for the stepwise
ensemble selection.

4.4 Validation Results

As shown in Table 3, we build five baseline sys-
tems including: (1) BERT means single model
initialized with BERT (Devlin et al., 2018); (2)

1https://github.com/ymcui/Chinese-ELECTRA
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runs FPR Detection level Identification Position

Precision Recall F1 Precision Recall F1 Precision Recall F1

1 0.1010 0.9649 0.7409 0.8382 0.7769 0.4738 0.5886 0.4970 0.2529 0.3352

2 0.2573 0.9273 0.6213 0.6736 0.7356 0.6213 0.6736 0.4320 0.3514 0.3876

3 0.3257 0.9101 0.8800 0.8948 0.7320 0.6011 0.6601 0.4715 0.3536 0.4041

Best Team 0.0163 - - 0.9122 - - 0.6736 - - 0.4041

Table 4: Error detection performances of Submitted Runs on Official Evaluation Testing data sets. “Best Team”
row records the best scores among all participant teams at each task-specific evaluating metric.

runs Correction Top1 Correction Top3

Precision Recall F1 Precision Recall F1

1 0.246 0.1149 0.1567 0.246 0.1149 0.1567

2 0.2105 0.1540 0.1779 0.2105 0.1540 0.1779

3 0.2290 0.1575 0.1867 0.2290 0.1575 0.1867

Best Team - - 0.1891 - - 0.1885

Table 5: Error correction performances of Submitted Runs on Official Evaluation Testing data sets. “Best Team”
row records the best scores among all participant teams at each task-specific evaluating metric.

BERT-WWM means single model initialized with
BERT-WWM (Cui et al., 2019); (3) ELECTRA
means single model initialized with ELECTRA dis-
criminator (Clark et al., 2020); (4) ResELECTRA
means single model with ResNet unit added; (5)
WA Ensemble means simple weighed averaging
ensemble model.

Table 3 shows the overall performances of our
model on the 2017 test data. The ELECTRA sin-
gle model achieves much better performance than
both the BERT single model and the BERT-WWM
single model. We conjecture that ELECTRA dis-
criminator is trained without masked tokens, and
this makes it more suitable for CGED task which
is very sensitive to surrounding words. The ResE-
LECTRA single model achieves more than 2 point
improvements on position level over the baseline
ELECTRA single model, which proves the effec-
tiveness of integrating ResNet unit. The stepwise
selection ensemble model achieves almost 10 point
improvements on position level over the best ResE-
LECTRA single model. Even compared with WA
ensemble model, the stepwise selection ensemble
model also achieves more than 4 point improve-
ments.

4.5 Testing Results

Table 4 shows the performances on error detec-
tion. Our system achieves the best F1 scores at the
identification level and position level. Although
we achieve the highest position-level F1 score of

0.4041 among all teams, there still has a wide gap
for our system to solve the Chinese grammatical
error diagnosis.

Table 5 shows the performances on error cor-
rection. We achieve the second-highest correction
top1 score. Since we only provide zero or one can-
didate word, our correction top1 score is the same
as our correction top3 score.

5 Related Work

The researchers used many different methods to
study the English Grammatical Error Correction
task and achieved good results (Ng et al., 2014).
Compared with English, the research time of Chi-
nese grammatical error diagnosis system is short,
the data sets and effective methods are lacking.
Chen et al. (2013) still used n-gram as the main
method, and added Web resources to improve detec-
tion performance. Lin and Chu (2015) established a
scoring system using n-gram, and get better correc-
tion options. In recent years, Chinese grammatical
error diagnosis has been cited as a shared task of
NLPTEA CGED. Many methods are proposed to
solve this task (Yu et al., 2014; Lee et al., 2015,
2016). Zheng et al. (2016) proposed a BiLSTM-
CRF model based on character embedding on bi-
gram embedding. Shiue et al. (2017) combined
machine learning with traditional n-gram methods,
using Bi-LSTM to detect the location of errors and
adding additional linguistic information, POS, n-
gram. Li et al. (2017) used Bi-LSTM to generate
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the probability of each characters, and used two
strategies to decide whether a character is correct
or not. Liao et al. (2017) used the LSTM-CRF
model to detect dependencies between outputs to
better detect error messages. Yang et al. (2017)
added more linguistic information on LSTM-CRF
model such as POS, n-gram, PMI score and de-
pendency features. Their system achieved the best
F1-scores in identification level and position level
on CGED2017 task. Fu et al. (2018) added richer
features on BiLSTM-CRF model such as word seg-
mentation, Gaussian ePMI, combination of POS
and PMI. They also adopted a probabilistic en-
semble approach to improve system performance.
Their system achieved the best F1-score in iden-
tification level and position level on CGED2018
task.

6 Conclusion and Future Work

The paper describes our system on NLPTEA-2020
CGED task, which combines ResNet and BERT for
Chinese Grammatical Error Diagnosis. We also de-
sign two different ensemble strategies to maximize
the model’s capability. At all six evaluating levels,
we have the best F1 scores in identification level
and position level, the second-highest F1 score in
correction top1 level, the third-highest F1 score
in detection level. In the future, we are planning
to build a more powerful grammatical error diag-
nosis system with more training data and try to
improve the system’s ability by using the different
cross-domain corpus.
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