
Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS), pages 61–65
Virtual Conference, November 19, 2020. c©2020 Association for Computational Linguistics

61

Howl: A Deployed, Open-Source Wake Word Detection System

Raphael Tang,1∗ Jaejun Lee,1∗ Afsaneh Razi,2 Julia Cambre,2
Ian Bicking,2 Jofish Kaye,2 and Jimmy Lin1

1 David R. Cheriton School of Computer Science, University of Waterloo
2 Mozilla

Abstract

We describe Howl, an open-source wake word
detection toolkit with native support for open
speech datasets such as Mozilla Common
Voice (MCV) and Google Speech Commands
(GSC). We report benchmark results of vari-
ous models supported by our toolkit on GSC
and our own freely available wake word de-
tection dataset, built from MCV. One of our
models is deployed in Firefox Voice, a plugin
enabling speech interactivity for the Firefox
web browser. Howl represents, to the best of
our knowledge, the first fully productionized,
open-source wake word detection toolkit with
a web browser deployment target. Our code-
base is at howl.ai.

1 Introduction

Wake word detection is the task of recognizing an
utterance for activating a speech assistant, such as
“Hey, Alexa” for the Amazon Echo. Given that
such systems are meant to support fully automatic
speech recognition, the task seems simple. How-
ever, it introduces a different set of challenges be-
cause these systems have to be always listening,
computationally efficient, and, most of all, privacy
respecting. Therefore, researchers treat it as a sepa-
rate line of work, with most recent advancements
driven by neural networks (Sainath and Parada,
2015; Tang and Lin, 2018).

Unfortunately, most existing toolkits are closed
source and often specific to a target platform. Such
design choices restrict the flexibility of the appli-
cation and add unnecessary maintenance as the
number of target domains increases. We argue that
using JavaScript is a solution: unlike many lan-
guages and their runtimes, the JavaScript engine
powers a wide range of modern user-facing appli-
cations ranging from mobile to desktop ones.

∗ Equal contribution. Order decided by coin flip.

To this end, we have previously developed Hon-
kling, a JavaScript-based keyword spotting sys-
tem (Lee et al., 2019). Leveraging one of the light-
est models available for the task from Tang and Lin
(2018), Honkling efficiently detects the target com-
mands with high precision. However, we notice
that Honkling is still quite far from being a sta-
ble wake word detection system. This gap mainly
arises from the model being trained as a speech
commands classifier instead of a wake word de-
tector; its high false alarm rate results from the
limited number of negative samples in the training
dataset (Warden, 2018).

In this paper, to achieve greater real-world im-
pact, we close this gap in the Honkling ecosystem
and present Howl, an open-source wake word detec-
tion toolkit with support for open datasets such as
Mozilla Common Voice (MCV; Ardila et al., 2019)
and the Google Speech Commands dataset (GSC;
Warden, 2018). Howl is the first in-browser wake
word detection system which powers a widely de-
ployed consumer application, Firefox Voice.1 By
processing the audio in the browser and being
completely open source, including the datasets
and models, Howl is a privacy-respecting, non-
eavesdropping toolkit that users can trust. With
a false reject rate of 16% at five false alarms per
hour of speech, our deployed model has enabled
Firefox Voice to provide a completely hands-free
experience to over 8,000 users in the 9 days since
its launch in August 2020.2

2 Background and Related Work

Although mainstream voice technologies such as
Siri and Alexa are driven by proprietary wake word
detection systems, open toolkits like Porcupine and

1https://github.com/
mozilla-extensions/firefox-voice

2https://twitter.com/jofish/status/
1293017304423215104

http://howl.ai
https://github.com/mozilla-extensions/firefox-voice
https://github.com/mozilla-extensions/firefox-voice
https://twitter.com/jofish/status/1293017304423215104
https://twitter.com/jofish/status/1293017304423215104


62

PreprocessorAudio Dataset
Positive Set

Negative Set

Noise Dataset

Augment Trainer

Model Evaluator

SerializeFilter Align Noise StretchSerialize Optimize Serialize

False Alarm Rate
Model

False Reject Rate
Deploy

Figure 1: An illustration of Howl’s end-to-end pipeline and its control flow. First, we preprocess the incoming
audio dataset by filtering for the wake word vocabulary, aligning the speech, and saving the negative and positives
examples to disk. Next, we introduce a noise dataset and augment the data on the fly at training time. Finally, we
evaluate the optimized model and, if the results are satisfactory, export it for deployment.

Snowboy also exist. Such ecosystems provide an
open-source modeling toolkit, some data, and de-
ployment capabilities. Unfortunately, these ecosys-
tems are still closed at heart; they keep their data,
models, or deployment proprietary. As far as open-
source ecosystems go, Precise3 represents a step in
the right direction, but its datasets are limited, and
its deployment target is the Raspberry Pi.

We further make the distinction between wake
word detection and speech commands classification
toolkits such as Honk (Tang and Lin, 2017). These
frameworks focus on classifying fixed-length audio
as one of a few dozen keywords, with no evaluation
on a sizable negative set, as required in wake word
detection. While these trained models may be used
in detection applications, they are not rigorously
tested for such.

3 System Description

We present a high-level description of our toolkit
and its goals (see Howl’s architecture in Figure 1).
For specific details, we refer users to our code
repository, as linked in the abstract.

3.1 Requirements

Howl is written in Python 3.7+, with notable de-
pendencies being PyTorch (Paszke et al., 2019)
for model training, Librosa (McFee et al., 2015)
for audio preprocessing, and the Montreal Forced
Aligner (MFA; McAuliffe et al., 2017) for speech
data alignment. We release Howl under the Mozilla

3https://github.com/MycroftAI/
mycroft-precise

Public License v2, a file-level copyleft free li-
cense. For speedy model training, we recommend
a CUDA-enabled graphics card with at least 4GB
of VRAM; we used an Nvidia Titan RTX in all of
our experiments. For resource-restricted users, we
suggest exploring Google Colab4 and other cloud-
based solutions.

3.2 Components and Pipeline

Howl consists of the three following major compo-
nents: audio preprocessing, data augmentation, and
model training and evaluation. These components
form a pipeline, in the written order, for producing
deployable models from raw audio data.

Preprocessing. A wake word dataset must first be
preprocessed from an annotated data source, which
is defined as a collection of (audio, transcription)
pairs, with predefined training, development, and
test splits. Since Howl is a frame-level keyword
spotting system, it relies on a forced aligner to pro-
vide word- or phone-based alignment. We choose
MFA for its popularity and free license, and hence
Howl structures the processed datasets to interface
well with MFA.

Another preprocessing task is to parse the global
configuration settings for the framework. Such set-
tings include the learning rate, the dataset path, and
model-specific hyperparameters. The toolkit reads
in most of these settings as environment variables,
which enable easy shell scripting.

Augmentation. For improved robustness and bet-
ter model quality, we implement a set of popular

4https://colab.research.google.com/

https://github.com/MycroftAI/mycroft-precise
https://github.com/MycroftAI/mycroft-precise
https://colab.research.google.com/


63

augmentation routines: time stretching, time shift-
ing, synthetic noise addition, recorded noise mix-
ing, SpecAugment (without time warping; Park
et al., 2019), and vocal tract length perturba-
tion (Jaitly and Hinton, 2013). These are readily
extensible, so practitioners may easily add new
augmentation modules.

Training and evaluation. Howl provides several
off-the-shelf neural models, as well as training and
evaluation routines using PyTorch for computing
the loss gradient and the task-specific metrics, such
as the false alarm rate and reject rate. These rou-
tines are also responsible for serializing the model
and exporting it to our browser-side deployment.

Pipeline. Given these components, our pipeline,
visually presented in Figure 1, is as follows: First,
users produce a wake word detection dataset, either
manually or from a data source like Common Voice
and Google Speech Commands, setting the appro-
priate environment variables. This can be quickly
accomplished using Common Voice, whose ample
breadth and coverage of popular English words al-
low for a wide selection of custom wake words; for
example, it has about a thousand occurrences of the
word “next.” In addition to a positive subset con-
taining the vocabulary and wake word, this dataset
ideally contains a sizable negative set, which is nec-
essary for more robust models and a more accurate
evaluation of the false positive rate.

Next, users (optionally) select which augmenta-
tion modules to use, and they train a model with the
provided hyperparameters on the selected dataset,
which is first processed into log-Mel frames with
zero mean and unit variance, as is standard. This
training process should take less than a few hours
on a GPU-capable device for most use cases, in-
cluding ours. Finally, users may run the model
in the included command line interface demo or
deploy it to the browser using Honkling, our in-
browser keyword spotting (KWS) system, if the
model is supported (Lee et al., 2019).

3.3 Data and Models

For the data sources, Howl works out of the box
with Mozilla Common Voice, a general speech
corpus, and Google Speech Commands, a com-
mands recognition dataset. Users can quickly ex-
tend Howl to accept other speech corpora such as
LibriSpeech (Panayotov et al., 2015) or the Hey
Snips dataset (Coucke et al., 2019). Howl also
accepts any folder that contains audio files and

Model Dev/Test # Par.

EdgeSpeechNet (Lin et al., 2018) –/96.8 107K
res8 (Tang and Lin, 2018) –/94.1 110K
RNN (de Andrade et al., 2018) –/95.6 202K
DenseNet (Zeng and Xiao, 2019) –/97.5 250K

Our res8 97.6/97.8 111K
Our LSTM 95.6/95.2 128K
Our LAS encoder 97.6/97.7 478K
Our MobileNetv2 97.3/97.3 2.3M

Table 1: Model accuracy (%) on Google Speech Com-
mands with the number of parameters. res8 achieves
the best accuracy considering the small model size.

interprets them as recorded noise for data augmen-
tation, which covers popular noise datasets such
as MUSAN (Snyder et al., 2015) and Microsoft
SNSD (Reddy et al., 2019).

For modeling, Howl provides implementations
of convolutional neural networks (CNNs) and re-
current neural networks (RNNs) for wake word
detection. These models are from the existing
literature, such as residual CNNs (Tang and Lin,
2018), a modified listen–attend–spell (LAS) en-
coder (Chan et al., 2015; Park et al., 2019), and
MobileNetv2 (Sandler et al., 2018). Most of the
models are lightweight since the end application
requires efficient inference, though some are pa-
rameter heavy to establish a rough upper bound on
the quality, as far as parameters go. Of particular
focus is the lightweight res8 model (Tang and
Lin, 2018), which is directly exportable to Hon-
kling, the in-browser KWS system. For this reason,
we choose it in our deployment to Firefox Voice.

4 Benchmark Results

To verify the correctness of our implementation, we
first train and evaluate our models on the Google
Speech Commands dataset, for which there exists
many known results. Next, we curate a wake word
detection datasets and report our resulting model
quality. Training details are in the repository.

Commands recognition. Table 1 summarizes
the metrics collected from Howl for the twelve-
keyword recognition task from Speech Commands
(v1), where we classify a one-second clip as one of
“yes,” “no,” “up,” “down,” “left,” “right,” “on,” “off,”
“stop,” “go,” unknown, or silence. We report aver-
age accuracy collected from fifty iterations. The
results indicate that our implementations are com-



64

0 2 4 6 8 10
False Alarms Per Hour

0.1

0.2

0.3

0.4

0.5
Fa

lse
 R

ej
ec

tio
n 

Ra
te

clean dev
clean test
noisy dev
noisy test

Figure 2: Receiver operating characteristic (ROC)
curves for the wake word. The threshold ranges from
0.05 to 1.00 with a marker for every increment of 0.05.

petitive with the state of the art, with the res8
model achieving the highest accuracy of 97.8%
on the test set, despite having fewer parameters.
Our other implemented models, the LSTM, LAS
encoder, and MobileNetv2, compare favorably.

Wake word detection. For wake word detection,
we target “hey, Firefox” for waking up Firefox
Voice. From the single-word segment of MCV, we
use 1,894 and 1,877 recordings of “hey” and “Fire-
fox,” respectively; from the MCV general speech
corpus, we select all 1,037 recordings containing
“hey,” “fire,” or “fox.” We additionally collect 632
recordings of “hey, Firefox” from volunteers. For
the negative set, we use about 10% of the entire
MCV speech corpus. We choose the training, dev,
and test splits to be 80%, 10%, and 10% of the
resulting corpus, stratified by speaker IDs for the
positive set. For robustness to noise, we use por-
tions of MUSAN and SNSD as the noise dataset.
We arrive at 31 hours of data for training and 3
hours each for dev and test.

For the model, we select res8 (Tang and Lin,
2018) for its high quality on Speech Commands
(see evaluation results above) and easy adaptability
with our browser deployment target. We follow
the pipeline mentioned in the previous section to
train ten models with different seeds; details are
not repeated, and hyperparameters can be found in
the repository.

In Figure 2, we present the resulting receiver op-
erating characteristic (ROC) curves generated from
the averaged metrics. As we increase the threshold
in increments of 0.05, we naturally observe lower
false alarm rates at the expense of higher false re-

ject rates. From the figure, we find that, at a thresh-
old of 0.8, Howl achieves five false alarms per hour
of speech with an acceptable 16% false reject rate.
Our negative set contains diverse adversarial ex-
amples that misrepresent real-world usage, e.g.,
many utterances of “Firefox,” which are responsi-
ble for at least 90% of the false positives. Thus,
combined with preliminary results from live testing
the system ourselves, we comfortably choose the
operating point at five false alarms per hour.

We finally note that the discrepancy between the
dev and test curves is likely explained by differ-
ences in the data distribution, not hyperparameter
fiddling, because there are only 76 and 54 clips in
the positive dev and test sets, respectively.

5 Browser Deployment

To protect user security and privacy, wake word
detection must be directly performed on the user’s
device. This setting introduces various technical
challenges, as the available resources are often lim-
ited and may not be accessible. In the case of
Firefox Voice, our target application, the platform
is Firefox, where the major challenge is the limited
support in machine learning frameworks.

However, our previous work demonstrates the
feasibility of in-browser wake word detection with
Honkling (Lee et al., 2019). Our application is
written purely in JavaScript and supports different
models using TensorFlow.js. Since our task is to
provide an accurate wake word detection system
for Firefox Voice, we rewrite the audio processing
logic to match the new Python pipeline and opti-
mize various preprocessing routines to substantially
reduce the computational burden.

To measure the performance of our application,
we refer to the built-in energy impact metric of
Firefox, which reports the CPU consumption of
each open tab. To establish a reference, playing a
YouTube video reports an average energy impact
of 10, while a static Google search reports 0.1. Our
wake word detection model yields an energy im-
pact of only 3, which efficiently enables hands-free
interaction for initiating the speech recognition en-
gine. Our wake word detection demo and browser-
side integration details can be found at https:

//github.com/castorini/howl-deploy.

6 Conclusions and Future Work

This paper introduces Howl, the first in-browser
wake word detection system which powers a widely

https://github.com/castorini/howl-deploy
https://github.com/castorini/howl-deploy


65

deployed application, Firefox Voice. Leveraging
a continuously growing speech dataset, Howl en-
ables a community-based endeavour for building
a privacy-respecting and non-eavesdropping wake
word detection system. To expand the scope of
Howl, our future work includes embedded systems
as deployment targets, where the computational
resources are even more constrained, with some
systems lacking even modern memory managers.

7 Acknowledgments

This work was supported by the Canada First Re-
search Excellence Fund and the Natural Sciences
and Engineering Research Council of Canada.

References
Douglas Coimbra de Andrade, Sabato Leo, Martin Loe-

sener Da Silva Viana, and Christoph Bernkopf. 2018.
A neural attention model for speech command recog-
nition. arXiv:1808.08929.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Henretty, Michael Kohler, Josh Meyer, Reuben
Morais, Lindsay Saunders, Francis M. Tyers, and
Gregor Weber. 2019. Common Voice: A massively-
multilingual speech corpus. arXiv:1912.06670.

William Chan, Navdeep Jaitly, Quoc V. Le, and
Oriol Vinyals. 2015. Listen, attend and spell.
arXiv:1508.01211.

Alice Coucke, Mohammed Chlieh, Thibault Gissel-
brecht, David Leroy, Mathieu Poumeyrol, and
Thibaut Lavril. 2019. Efficient keyword spotting us-
ing dilated convolutions and gating. In Proceedings
of the IEEE International Conference on Acoustics,
Speech and Signal Processing.

Navdeep Jaitly and Geoffrey E. Hinton. 2013. Vocal
Tract Length Perturbation (VTLP) improves speech
recognition. In Proceedings of the ICML Workshop
on Deep Learning for Audio, Speech and Language.

Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019. Hon-
kling: In-browser personalization for ubiquitous
keyword spotting. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing.

Zhong Qiu Lin, Audrey G. Chung, and Alexander
Wong. 2018. EdgeSpeechNets: Highly efficient
deep neural networks for speech recognition on the
edge. arXiv:1810.08559.

Michael McAuliffe, Michaela Socolof, Sarah Mihuc,
Michael Wagner, and Morgan Sonderegger. 2017.
Montreal Forced Aligner: Trainable text-speech
alignment using Kaldi. In Proceedings of the
Eighteenth Annual Conference of the International
Speech Communication Association.

Brian McFee, Colin Raffel, Dawen Liang, Daniel P. W.
Ellis, Matt McVicar, Eric Battenberg, and Oriol Ni-
eto. 2015. librosa: Audio and music signal analysis
in Python. In Proceedings of the 14th Python in Sci-
ence Conference.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. LibriSpeech: An ASR
corpus based on public domain audio books. In Pro-
ceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing.

Daniel S. Park, William Chan, Yu Zhang, Chung-
Cheng Chiu, Barret Zoph, Ekin Dogus Cubuk, and
Quoc V. Le. 2019. SpecAugment: A simple aug-
mentation method for automatic speech recognition.
In Proceedings of the Twentieth Annual Conference
of the International Speech Communication Associ-
ation.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. PyTorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems,
pages 8024–8035.

Chandan K. A. Reddy, Ebrahim Beyrami, Jamie
Pool, Ross Cutler, Sriram Srinivasan, and Johannes
Gehrke. 2019. A scalable noisy speech dataset and
online subjective test framework. In Proceedings
of the Twentieth Annual Conference of the Interna-
tional Speech Communication Association.

Tara N. Sainath and Carolina Parada. 2015. Convolu-
tional neural networks for small-footprint keyword
spotting. In Proceedings of the Sixteenth Annual
Conference of the International Speech Communica-
tion Association.

Mark Sandler, Andrew Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. 2018. Mo-
bileNetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition.

David Snyder, Guoguo Chen, and Daniel Povey.
2015. MUSAN: A music, speech, and noise corpus.
arXiv:1510.08484.

Raphael Tang and Jimmy Lin. 2017. Honk: A PyTorch
reimplementation of convolutional neural networks
for keyword spotting. arXiv:1710.06554.

Raphael Tang and Jimmy Lin. 2018. Deep residual
learning for small-footprint keyword spotting. In
Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing.

Pete Warden. 2018. Speech commands: A
dataset for limited-vocabulary speech recognition.
arXiv:1804.03209.

Mengjun Zeng and Nanfeng Xiao. 2019. Effective
combination of DenseNet and BiLSTM for keyword
spotting. IEEE Access.


