
Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS), pages 44–51
Virtual Conference, November 19, 2020. c©2020 Association for Computational Linguistics

44

fugashi, a Tool for Tokenizing Japanese in Python

Paul McCann
Cotonoha

howdy@cotonoha.io

Abstract

Recent years have seen an increase in the
number of large-scale multilingual NLP
projects. However, even in such projects,
languages with special processing require-
ments are often excluded. One such lan-
guage is Japanese. Japanese is written
without spaces, tokenization is non-trivial,
and while high quality open source tok-
enizers exist they can be hard to use and
lack English documentation. This paper
introduces fugashi, a MeCab wrapper for
Python, and gives an introduction to tok-
enizing Japanese.

1 Introduction

Over the past several years there’s been a wel-
come trend in NLP projects to be broadly
multilingual. However, even when many lan-
guages are supported, there are a few that
tend to be left out. One of these is Japanese.
Japanese is written without spaces, and decid-
ing where one word ends and another begins is
not trivial. While highly accurate tokenizers
are available, they can be hard to use, and En-
glish documentation is scarce. This is a short
guide to tokenizing Japanese in Python that
should be enough to get you started adding
Japanese support to your application. 1

This paper will begin with a tutorial on
Japanese tokenization using fugashi, along
with notes on issues to be aware of. Following
that will be a discussion of the development of
fugashi, closing with a brief overview of other
Japanese tokenizers usable in Python.

1This paper was originally made available as
a blog post. https://www.dampfkraft.com/nlp/
how-to-tokenize-japanese.html

2 Preparation

First, you’ll need to install fugashi and a to-
kenizer dictionary. For this tutorial we’ll use
fugashi with unidic-lite. You can install them
with this command:

pip install fugashi[unidic-lite]

fugashi comes with a script so you can test
it out at the command line. Type in some
Japanese and the output will have one word
per line, along with other information like part
of speech. Refer to Table 1 for an example.2

3 Sample Code

Now we’re ready to get started with convert-
ing plain Japanese text into a list of words in
Python.

import fugashi
This is our sample text.
"Fugashi" is a Japanese snack primarily made
of gluten.
text = " 麩菓子は、麩を主材料とした日本の菓子。"

The Tagger object holds state about the
dictionary.
tagger = fugashi.Tagger()

words = [word.surface for word in tagger(text)]
print(*words)
=> 麩 菓子 は 、麩 を 主材 料 と し た 日本
の 菓子 。

This prints the original sentence with spaces
inserted between words. In many cases, that’s
all you need, but fugashi provides a lot of other
information, such as part of speech, lemmas,
broad etymological category, pronunciation,
and more. This information all comes from

2All examples in this text use fugashi v1.0.4 and
unidic-lite v1.0.7.

https://www.dampfkraft.com/nlp/how-to-tokenize-japanese.html
https://www.dampfkraft.com/nlp/how-to-tokenize-japanese.html

45

麩 フ フ 麩 名詞-普通名詞-一般 0
菓子 カシ カシ 菓子 名詞-普通名詞-一般 1
は ワ ハ は 助詞-係助詞
、 、 補助記号-読点
麩 フ フ 麩 名詞-普通名詞-一般 0
を オ ヲ を 助詞-格助詞
主材 シュザイ シュザイ 主材 名詞-普通名詞-一般 0
料 リョー リョウ 料 接尾辞-名詞的-一般
と ト ト と 助詞-格助詞
し シ スル 為る 動詞-非自立可能 サ行変格 連用形-一般 0
た タ タ た 助動詞 助動詞-タ 連体形-一般
日本 ニッポン ニッポン 日本 名詞-固有名詞-地名-国 3
の ノ ノ の 助詞-格助詞
菓子 カシ カシ 菓子 名詞-普通名詞-一般 1
。 。 補助記号-句点
EOS

Table 1: Example output from fugashi on the command line. Each column is a different field from
UniDic. This format can be customized; the format here is the default format distributed with UniDic
2.1.2. “EOS” means “End of Sentence”, though MeCab does not perform sentence tokenization, and EOS
is simply emitted at the end of any output.

UniDic (Den et al., 2008), a dictionary pro-
vided by the National Institute for Japanese
Language and Linguistics (NINJAL).3

fugashi is a wrapper for MeCab (Kudo et al.,
2004), a C++ Japanese tokenizer. MeCab
is doing all the hard work here, but fugashi
wraps it to make it more Pythonic, easier to in-
stall, and to clarify some common error cases.

You may wonder why part of speech and
other information is included by default. In
the classical NLP pipeline for languages like
English, tokenization is a separate step be-
fore part of speech tagging. In Japanese,
however, knowing part of speech is important
in getting tokenization right, so they’re con-
ventionally solved as a joint task. This is
why Japanese tokenizers are often referred to
as “morphological analyzers” (形態素解析器
keitaisokaisekiki).

4 Notes on Japanese Tokenization
There are several things about Japanese tok-
enization that may be surprising if you’re used
to languages like English.

4.1 Lemmas May Not Resemble the
Words in the Text at All

Here’s how you get lemma information with
fugashi:

3Besides the version for modern written Japanese
used here, there are also versions of UniDic for spo-
ken Japanese and different historical varieties of the
language, all available from the UniDic homepage.
https://unidic.ninjal.ac.jp/

import fugashi
tagger = fugashi.Tagger()
text = "..."

print("input:", text)
for word in tagger(text):

feature is a named tuple
holding all the Unidic info
print(word.surface, word.feature.lemma,

sep="\t")

For the output of the script refer to Table 2.
You can see that 用い has 用いる as a

lemma, and thatし has為る andい has居る,
handling both inflection and orthographic vari-
ation. すでに is not inflected, but the lemma
uses the kanji form 既に.

An important detail here is that while
MeCab provides all this information in its out-
put, it’s returned as unstructured text data.
Conventionally a user could use MeCab’s out-
put formatting language to get just the fields
they need, or output all fields and parse
the output to get the desired fields. fu-
gashi provides wrappers for UniDic format-
ted data that handle the parsing and put it
in named tuples for structured access, like
word.feature.lemma.

These lemmas come from UniDic, which by
convention uses the “dictionary form” of a
word for lemmas. This is typically in kanji
even if the word isn’t usually written in kanji
because the kanji form is considered less am-
biguous. For example, この (kono, “this
[thing]”) has 此の (same pronunciation and
meaning) as a lemma, even though normal

https://unidic.ninjal.ac.jp/

46

Input 麩 を 用い た 菓子 は 江戸 時代 から すでに 存在 し て い た 。
Lemmas 麩 を 用いる た 菓子 は エド 時代 から 既に 存在 為る て 居る た 。
Translation Snacks using gluten already existed in the Edo Period.
Input すもも も もも も もも の 内
Lemmas 李 も 桃 も 桃 の 内
Translation Japanese plums and peaches are both kinds of peaches.

Input 彷徨う 陽射し
Lemmas さ迷う 日差し
Translation Wandering sunbeams.

Table 2: Input tokens and their associated lemmas. Lemmas may not bear any visual resemblance to the
raw forms, which can look like an error to users unfamiliar with Japanese, and can be surprising even to
Japanese speakers.

modern writing would never use that form.
This is also true of 為る in the above exam-
ple.

This can be surprising if you aren’t famil-
iar with Japanese, but it’s not a problem. It
is worth keeping in mind if your application
ever shows lemmas to your user for any rea-
son, though, as it may not be in a form they
expect.

Another thing to keep in mind is that
most lemmas in Japanese deal with ortho-
graphic rather than inflectional variation.
This orthographic variation is called 表記ゆ
れ hyoukiyure and causes problems similar to
spelling errors in English.

4.2 Verbs Will Often Be Multiple
Tokens

Inflections of a verb will typically result in mul-
tiple tokens. This can also affect adjectives
that inflect, like 赤い akai (“red”). You can
see this in the verbs at the end of the previous
example, or see Table 3.

This would be like if “looked” was tokenized
into “look” and “ed” in English. This feels
strange even to native Japanese speakers, but
it’s common to all modern tokenizers. The
main reason for this is that verb inflections are
extremely regular, so registering verb stems
and verb parts separately in the dictionary
makes dictionary maintenance easier and the
tokenizer implementation simpler and faster.
It also works better in the rare case an un-
known verb shows up. (Verbs are a closed class
in Japanese, which means new verbs aren’t
common.)

In the early 90s several tokenizers handled
verb morphology directly, but that approach
has been abandoned over time because of
the advantages of the fine-grained approach
(Kudo, 2018, pp. 21–22). Depending on your

application needs you can use some simple
rules based on part of speech to lump verb
parts together or just discard non-stem parts
as stop words.

4.3 The Tagger Object Has a Startup
Cost

It’s fast enough that you won’t notice for one
invocation, but creating the Tagger is a lot
of work for the computer. When processing
text in a loop it’s important you re-use the
Tagger rather than creating a new Tagger for
each input.

Don’t do this:
for text in texts:

tagger = fugashi.Tagger()
words = tagger(text)

Do this instead:
tagger = fugashi.Tagger()
for text in texts:

words = tagger(text)

If you follow the second pattern MeCab
shouldn’t be a speed bottleneck for normal ap-
plications.

4.4 Always Note Your Tokenizer
Details

If you publish a resource using tokenized
Japanese text, always be careful to mention
what tokenizer and what dictionary you used
so your results can be replicated. Saying you
used MeCab isn’t enough information to re-
produce your results, because there are many
different dictionaries for MeCab that can give
completely different results. Even if you spec-
ify the dictionary, it’s critical that you specify
the version too, since popular dictionaries like
UniDic may be updated over time.4

4If for some reason you are unable to identify the
version of your dictionary, at least report the number
of entries it has, which can be used as a primitive check-
sum.

47

Raw Text Tokenized Output Translation
見た 見 | た saw, looked
見ました 見 | まし | た saw, looked (polite)
見なかった 見 | なかっ | た did not see
受け渡した 受け渡し | た handed over
遊べませんでした 遊べ | ませ | ん | でし | た was unable to play (polite)
赤かった 赤かっ | た red (past tense)

Table 3: Examples of tokenized verbs and adjectives resulting in multiple tokens. Using UniDic results
in fine-grained tokenization, where some tokens are not words in any conventional sense. One class of
adjectives resembles verbs and will also frequently result in multiple tokens when inflected.

5 Development Background

fugashi was originally developed as part of
adding Japanese support to spaCy (Honnibal
and Montani, 2017) due to lack of maintenance
of the mecab-python35 library, but has since
evolved to differentiate itself from that library
in a few ways. The primary goal of fugashi
is to make it as easy as possible to get fast
Japanese tokenization while improving access
to existing linguistic resources.

This section will introduce the important
features of fugashi and touch on how they were
implemented. These features are not unique in
isolation, but bringing them together in one
place is the distinguishing feature of fugashi.

5.1 Binary Wheels
“Wheels” are modern Python packages that
can include platform-specific binary code.6
Distributing wheels allows users to install com-
piled packages even without having a compiler
or other necessary dependencies on their sys-
tems. fugashi provides wheels for Linux, OSX,
and Windows, so that it can be installed with
a single pip command.

Before wheels for MeCab were provided, a
user had to install it from source or through a
package manager. Some Linux distributions
like Debian use code that differs from the
most recent source, making consistent use of
MeCab difficult. Compiling MeCab on Win-
dows is also known to be challenging. Pro-
viding wheels allows for consistent versioning
and easy installs across platforms. This is
critical for integration in open-source projects
where maintainers want to support Japanese

5https://github.com/SamuraiT/mecab-python3
6PEP 427 – The Wheel Binary Package Format 1.0

https://www.python.org/dev/peps/pep-0427/

but don’t have the time to set up a special
development environment to handle it.

fugashi was the first MeCab wrapper to pro-
vide binary wheels for all of Windows, Linux,
and OSX. The code used to build fugashi
wheels was later used to distribute wheels for
mecab-python3.

5.2 Dictionary Packages
Use of MeCab requires a dictionary. Histori-
cally MeCab shipped with some dictionaries,
but these have not been updated since 2013
(if not earlier). Installing dictionaries required
manual configuration that could vary depend-
ing on how MeCab had been installed, which
made integrating a dictionary in open-source
Python packages difficult.

As part of supporting fugashi, the UniDic
and IPAdic dictionaries have been packaged
so that they can be installed directly via pip.7
IPAdic is a dictionary that, while not up-
dated since roughly 2007, remains popular for
natural language applications for a variety of
reasons such as compatibility with historical
benchmarks. The previously introduced Uni-
Dic is maintained by NINJAL and is the of-
ficial dictionary of Japanese Universal Depen-
dencies (Asahara et al., 2018).

Because of size limitations on PyPI8, UniDic
is provided in two flavors: the full UniDic pack-
age, based on the latest version, requires an
extra download step, but is otherwise simple
to install and configure. unidic-lite is based on
the 2.1.2 release of UniDic, which is the most
recent release to fit under PyPI’s file size limit

7The PyPI package names are unidic,
unidic-lite, and ipadic.

8PyPI is the Python Package Index, a service that
hosts packages to be installed via pip. https://pypi.
org/

https://github.com/SamuraiT/mecab-python3
https://www.python.org/dev/peps/pep-0427/
https://pypi.org/
https://pypi.org/

48

of 60MB compressed. Both of these dictionar-
ies have been modified slightly to avoid issues
with the default distribution such as marking
unusual punctuation as nouns or tokenizing
any numbers into individual digits.9

Before fugashi was developed, mecab-
python3 releases starting in 2018 included a
bundled IPAdic. Leaving aside the issues with
IPAdic being out of date, this approach is sim-
ilar to Janome and makes the tokenizer easier
to use, but has the downside that it makes it
harder to use other dictionaries. In the case
of mecab-python3 this also had the issue that
it was a change from prior behavior without
notice and caused some confusion. Following
development of pip installable dictionaries for
fugashi, the feature was backported to mecab-
python3.

5.3 Structured Data
Another important feature of fugashi is pro-
viding access to structured data. UniDic in
particular provides a wealth of linguistic in-
formation, such as pronunciation, lemma, ety-
mological category, pitch accent, and even for-
eign spelling.10 Traditionally this information
would be presented in MeCab as a string and
the application would parse it as necessary.
By performing this parsing up-front and deal-
ing with variations in dictionary format auto-
matically, fugashi makes it more accessible for
downstream applications.

This feature is common in tokenizers not
based directly on MeCab, but fugashi was the
first Python MeCab wrapper to include it, and
is (to my knowledge) the only Python tok-
enizer providing structured access to all fields
in UniDic.

5.4 A Pythonic Interface
Besides structured data, the changes fugashi
makes to the MeCab API to make it more

9The MeCab documentation provides instructions
on how to mitigate some of these issues, but doesn’t
distribute modified dictionaries. https://taku910.
github.io/mecab/unk.html

10”Foreign spelling” refers to the spelling of loan-
words in the original language. For example, a naive
romanization ofポール would be pooru, but the UniDic
lemma is ポール-Paul. Similarly パン pan, ”bread”,
has the lemma パン-pao because it comes from the
Portuguese. These spellings can optionally be used in
cutlet, a romanization tool based on fugashi. https:
//github.com/polm/cutlet

Pythonic are subtle but important. The most
obvious example is that the parseToNode func-
tion, used to turn an input string into a Node
object for each token, would normally return
the head of a linked list. Navigating a linked
list using member variables is unremarkable
in C/C++ but distinctly odd in Python. In
deference to the MeCab API mecab-python3
strictly maintains the old interface, while fu-
gashi returns a Python list of nodes, allowing
use in list comprehensions and other Pythonic
idioms.

5.5 Detailed Error Messages
One other significant change is a creative
workaround for failed initializations of the
Tagger object. Issues like forgetting to install
a dictionary are very common and show up
as errrors at initialization, and are the most
common cause of issues on mecab-python3’s
Github repository, but a bug in MeCab11

causes error messages to be unavailable when
MeCab is used as a library. The workaround
involves passing the intialization arguments to
a separate class and getting the error message
for that. This convoluted process is invisible to
the user. This particular feature doesn’t affect
the API and has been backported to mecab-
python3.

The text of the error message used when
initialization fails is also a departure from
MeCab’s default error messages, which are all
one-line and often leave users confused. In
contrast the fugashi (or mecab-python3) error
message includes a link to a detailed FAQ in
the README, debug information, and a note
that issues need not be filed in English. This
was inspired by similarly detailed error mes-
sages in spaCy.12

5.6 Speed
The difference in processing speed between
tokenizers can be dramatic. In developing
fugashi I created a simple benchmark that
counts words in Natsume Souseki’s I Am a Cat
to make sure I wasn’t unknowingly introducing
performance issues. This is not reflective of all

11https://github.com/taku910/mecab/issues/57
12See the spaCy error code for examples of error mes-

sages written in a friendly style that include links to re-
lated issues or documentation. https://github.com/
explosion/spaCy/blob/master/spacy/errors.py

https://taku910.github.io/mecab/unk.html
https://taku910.github.io/mecab/unk.html
https://github.com/polm/cutlet
https://github.com/polm/cutlet
https://github.com/taku910/mecab/issues/57
https://github.com/explosion/spaCy/blob/master/spacy/errors.py
https://github.com/explosion/spaCy/blob/master/spacy/errors.py

49

Tokenizer Time Relative Time
mecab-python3 290 1.00
fugashi 294 1.01
natto-py 1173 4.04
kytea 2254 7.77
sudachipy 10103 34.83
janome 16496 56.88

Table 4: Processing time in milliseconds for a
simple benchmark word count task. fugashi and
mecab-python3 are roughly equivalent in speed,
with other packages being slower.

real-world workloads, but it is a good task for
getting a rough idea of tokenizer speed. See
Table 4 for the results, which demonstrate that
MeCab is very fast. The run times presented
here are the average over ten runs. The source
code for this benchmark is available online.13

6 Comparison with Other
Tokenizers

There are a tremendous number of tokenizers
for Japanese, and a comprehensive compari-
son is beyond the scope of this paper. This is
a short overview of other tokenizers usable in
Python.

Tokenizers usable in Python may be broadly
grouped into three categories: MeCab wrap-
pers, MeCab-like tokenizers, and other tok-
enizers.

6.1 MeCab Wrappers
Over the years there have been many MeCab
wrappers for Python, though only a few are
still maintained. The original MeCab code14

includes a SWIG15 wrapper which has been
the basis of several tokenizers. The MeCab
wrappers are the fastest Python tokenizers.

mecab-python3 is a MeCab wrapper
based on the SWIG code included in the main
MeCab repository, and is the oldest of the to-
kenizer packages mentioned here, with its first
release in 2014. fugashi was initially devel-
oped in response to a lack of maintenance of
mecab-python3, but since then I have taken
over the project and maintain it in parallel

13https://github.com/polm/
ja-tokenizer-benchmark

14https://github.com/taku910/mecab
15”Simplified Wrapper and Interface Generator”.

SWIG allows a developer to write an interface file for
C/C++ code and generate wrappers in a variety of
languages. http://www.swig.org/

with fugashi. Several developments in fugashi
are based on personal pain points with mecab-
python3, and improvements to fugashi that
don’t affect the API, like pip-installable dictio-
nary support, have been backported. Because
mecab-python3 is widely used the main prior-
ity of maintenance is keeping the existing API
stable for legacy applications, while fugashi is
free to make the API more Pythonic for use in
new applications.

The mecab16 project on PyPI, formerly
known as mecab-python-windows, is based
on the same SWIG code as mecab-python3
and has basically the same API. It provided
Windows wheels long before mecab-python3,
but since mecab-python3 began offering Win-
dows wheels the differences between the pack-
ages are relatively minor.

natto-py17 is a MeCab wrapper that uses a
cffi interface to avoid needing a compiler and
has simplified some of the MeCab API to be
more Pythonic. However, the cffi interface is
slower than Cython or SWIG, and since a sepa-
rate MeCab install with dictionary is required
that still leaves the user responsible for getting
configuration right.

6.2 MeCab-like Tokenizers
Some tokenizers more or less explicity copy
the design of MeCab while adding features
or improving usability. These tokenizers all
started life as Python projects, which greatly
simplifies tooling, but comes at the expense of
speed; they are much slower than the MeCab
wrappers. This is still fast enough for small
to medium sized corpora, but presents issues
when processing larger amounts of text.

The main features that make a tokenizer
MeCab-like are the use of an extensive dictio-
nary with part of speech information, typically
accessed via a double-array trie, and use of the
Viterbi algorithm to find a minimum cost tok-
enization of a string.

Janome18 is a pure Python tokenizer with
a long history. It includes a slightly modi-
fied IPAdic with the addition of 令和 Reiwa,
the current era name. Since everything nec-
essary is included it’s very easy to use, and

16https://pypi.org/project/mecab/
17https://github.com/buruzaemon/natto-py
18https://github.com/mocobeta/janome

https://github.com/polm/ja-tokenizer-benchmark
https://github.com/polm/ja-tokenizer-benchmark
https://github.com/taku910/mecab
http://www.swig.org/
https://pypi.org/project/mecab/
https://github.com/buruzaemon/natto-py
https://github.com/mocobeta/janome

50

was an inspiration in the development of fu-
gashi. However, since the implementation is
in pure Python, it’s much slower than MeCab;
the Japanese FAQ says it’s roughly ten times
slower.19 Because IPAdic is tightly integrated
it’s also not straightforward to use signifi-
cantly different dictionaries, though there is
experimental support for the IPAdic-based Ne-
ologd20.

SudachiPy21 is a Python port of the
Java-based Sudachi tokenizer (Takaoka et al.,
2018). It has a high-quality UniDic-like dic-
tionary and multiple modes of segmentation,
and has recently been used when creating gold
corpora for NER datasets. I have contributed
to the code base in the interest of improving
performance, Cythonizing performance criti-
cal parts of the code, but unfortunately it is
still significantly slower than MeCab. Like fu-
gashi it distributes dictionaries as pip pack-
ages.

6.3 Other Tokenizers
Some tokenizers use a very different strategy
than MeCab when tokenizing. The examples
listed here all use a model to decide whether
to treat each character boundary as a word
boundary or not.

Nagisa22 is a relatively new tokenizer im-
plemented in Python and based on neural net-
works. It’s easy to use, but at present is sig-
nificantly slower than SudachiPy or Janome.

Juman++23 is implemented in C++ and
uses neural networks to determine word
boundaries (Morita et al., 2015). It has an offi-
cial Python wrapper, but requires the core to-
kenizer to be installed separately, making con-
figuration difficult. Version 2 of the software
has had release candidates released annually
since roughly 2017, but it’s unclear which ver-
sion should be used now. I attempted to do
a simple benchmark using the most recent v2
release candidate but it failed with an error.

KyTea24 uses logistic regression or SVM
19https://mocobeta.github.io/janome/
20https://mocobeta.github.io/janome/

#experimental-neologd-v0-3-3
21https://github.com/WorksApplications/

SudachiPy
22https://github.com/taishi-i/nagisa
23http://nlp.ist.i.kyoto-u.ac.jp/EN/index.

php?JUMAN++
24http://www.phontron.com/kytea/

to determine word boundaries (Neubig et al.,
2011). It’s implemented in C++, but it has a
few Python wrappers. None of them distribute
wheels, so it’s necessary to install the C++ to-
kenizer on your own. It is slower than MeCab
but faster than the MeCab-like tokenizers.

7 Summary

fugashi combines the speed of MeCab with
the ease-of-use of more recent tokenizers, strik-
ing a balance that’s widely useful. fugashi is
not faster than existing tokenizers; it does not
have a new or better dictionary; it does not
have new features; it merely takes the best
of the available resources, puts them together,
and makes sure that everything works in a vari-
ety of environments with a minimum of effort.
As noted in (Agirre et al., 2018), to document
best practices is good, but to automate them
is better. While it’s hoped that newer tokeniz-
ers like SudachiPy will be able to catch up in
performance soon, at present fugashi is a good
choice for many applications.

The past year has seen many new develop-
ments in the world of Japanese tokenizers. For
more information on current Japanese tokeniz-
ers in Python, refer to Konoha25 or Toiro26,
which wrap multiple tokenizers and allow com-
parisons between them.

8 Acknowledgments

The author would like to thank all the con-
tributors to fugashi, particularly Aki Ariga for
providing Windows support.

References
Eneko Agirre, Oier López de Lacalle, and Aitor

Soroa. 2018. The risk of sub-optimal use of open
source NLP software: UKB is inadvertently
state-of-the-art in knowledge-based WSD. In
Proceedings of Workshop for NLP Open Source
Software (NLP-OSS), pages 29–33, Melbourne,
Australia. Association for Computational Lin-
guistics.

Masayuki Asahara, Hiroshi Kanayama, Takaaki
Tanaka, Yusuke Miyao, Sumire Uematsu, Shin-
suke Mori, Yuji Matsumoto, Mai Omura, and
Yugo Murawaki. 2018. Universal dependencies
version 2 for japanese. In LREC.

25https://github.com/himkt/konoha
26https://github.com/taishi-i/toiro

https://mocobeta.github.io/janome/
https://mocobeta.github.io/janome/#experimental-neologd-v0-3-3
https://mocobeta.github.io/janome/#experimental-neologd-v0-3-3
https://github.com/WorksApplications/SudachiPy
https://github.com/WorksApplications/SudachiPy
https://github.com/taishi-i/nagisa
http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN++
http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN++
http://www.phontron.com/kytea/
https://doi.org/10.18653/v1/W18-2505
https://doi.org/10.18653/v1/W18-2505
https://doi.org/10.18653/v1/W18-2505
https://github.com/himkt/konoha
https://github.com/taishi-i/toiro

51

Yasuharu Den, Junpei Nakamura, Toshinobu
Ogiso, and Hideki Ogura. 2008. A proper ap-
proach to japanese morphological analysis: Dic-
tionary, model, and evaluation. In LREC.

Matthew Honnibal and Ines Montani. 2017. spaCy
2: Natural language understanding with Bloom
embeddings, convolutional neural networks and
incremental parsing. To appear.

Taku Kudo. 2018. 形態素解析の理論と実装 [Mor-
phological Analysis: Theory and Implementa-
tion] (Japanese). 近代科学社.

Taku Kudo, Kaoru Yamamoto, and Y. Matsumoto.
2004. Applying conditional random fields to
japanese morphological analysis. In EMNLP.

Hajime Morita, D. Kawahara, and S. Kurohashi.
2015. Morphological analysis for unsegmented
languages using recurrent neural network lan-
guage model. In EMNLP.

G. Neubig, Yosuke Nakata, and S. Mori. 2011.
Pointwise prediction for robust, adaptable
japanese morphological analysis. In ACL.

Kazuma Takaoka, Sorami Hisamoto, Noriko Kawa-
hara, Miho Sakamoto, Yoshitaka Uchida, and
Yuji Matsumoto. 2018. Sudachi: a Japanese
tokenizer for business. In Proceedings of
the Eleventh International Conference on Lan-
guage Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources
Association (ELRA).

https://www.aclweb.org/anthology/L18-1355
https://www.aclweb.org/anthology/L18-1355

