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Abstract

The CLEVR dataset has been used exten-
sively in language grounded visual reasoning
in Machine Learning (ML) and Natural Lan-
guage Processing (NLP) domains. We present
a graph parser library for CLEVR, that
provides functionalities for object-centric at-
tributes and relationships extraction, and con-
struction of structural graph representations
for dual modalities. Structural order-invariant
representations enable geometric learning and
can aid in downstream tasks like language
grounding to vision, robotics, compositional-
ity, interpretability, and computational gram-
mar construction. We provide three extensible
main components – parser, embedder, and
visualizer that can be tailored to suit specific
learning setups. We also provide out-of-the-
box functionality for seamless integration with
popular deep graph neural network (GNN) li-
braries. Additionally, we discuss downstream
usage and applications of the library, and how
it accelerates research for the NLP research
community1.

1 Introduction

The CLEVR dataset (Johnson et al., 2017a) is a
modern 3D incarnation of historically significant
shapes-based datasets like SHRDLU (Winograd,
1970), used for demonstrating AI efficacy on lan-
guage understanding (Ontanon, 2018; Winograd,
1980; Hudson and Manning, 2018). Although origi-
nally aimed at the visual question answering (VQA)
problem (Santoro et al., 2017; Hu et al., 2018), its
versatility has seen its use in diverse ML domains,
including extensions to physics simulation engines
for language augmented hierarchical reinforcement
learning (Jiang et al., 2019) and causal reasoning
(Yi et al., 2019).

1Code is available at - https://github.com/
raeidsaqur/clevr-parser

(a) Question on image (Figure 2): ‘Is the color of the metal
block that is right of the yellow rubber object the same as the
large metal cylinder?’
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Figure 1: A question about a CLEVR image visualized
as multimodal parsed graphs

Parallelly, research interest in geometric learning
and GNN (Kipf and Welling, 2016; Schlichtkrull
et al., 2018; Hamilton et al., 2017) based techniques
have seen a dramatic surge in recent deep learning
zeitgeist. In this focused paper, we present a library
that allows easy integration and application of geo-
metric representation learning on CLEVR dataset

https://github.com/raeidsaqur/clevr-parser
https://github.com/raeidsaqur/clevr-parser
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tasks - enabling the NLP research community to
apply GNN based techniques to their research (see
4).

The library has three main (extensible) compo-
nents: 1. Parser: allows extraction of graph struc-
tured relationships among objects of the environ-
ment – both for textual questions, and semantic
image scene graphs, 2. Embedder: allows gen-
eration of latent embeddings using any models or
desired backend of choice (like PyTorch2), 3. Vi-
sualizer: provides tools for visualizing structural
graphs and latent embeddings.

2 Background

CLEVR Environment The dataset consists of
images with rendered 3D objects of various shapes,
colors, materials, and sizes, along with correspond-
ing image scene graphs containing visual semantic
information. Templated question generation on
the images allows the creation of complex ques-
tions that test various aspects of scene understand-
ing. The original dataset contains ≈1M questions
generated from ≈100k questions with 90 question
template families that can be broadly categorized
into five question types: count, exist, numerical
comparison, attribute comparison, and query.

Figure 2: A CLEVR image

The dataset also comes with a defined domain-
specific-language (DSL) function library F , con-
taining primitive functions that can be composed
together to answer questions on CLEVR images
(Johnson et al., 2017b). We delegate further details
of this dataset to (Johnson et al., 2017a) and the
appendix A.

3 CLEVR-PARSER

Here we describe each of the main library compo-
nents in detail.

2https://pytorch.org/

3.1 Parser

Text The parser takes a language utterance,
which can be a question, caption or command,
that is valid in the CLEVR environment, and
outputs a structural graph representation – Gs,
capturing object attributes, spatial relationships
(spatial re), and attribute similarity based
matching predicates (matching re) in the tex-
tual input. This is implemented by adding a
CLEVR object entity recognizer (NER) in the NLP
parse pipeline as depicted by Figure 3. Note that
the NER is permutationally equivariant to the ob-
ject attributes – i.e. a ‘large red rubber ball’ will be
detected as an object by any of these spans: ‘red
large rubber ball’, ‘large ball’, ‘ball’ etc.

Figure 3: Entity visualization

Images The parser takes image scene graphs as
input and outputs a structural graph – Gt. The syn-
thesized image scenes accompanying the original
dataset can be used as input. Alternatively, parsed
image scenes generated using any modern seman-
tic image segmentation method (for e.g. ‘Mask-
RCNN’ (He et al., 2017)) can also be used as input
(Yi et al., 2018). A visualized example of a parsed
image is shown in figure 4a. For the ease of repro-
ducibility, we also include a curated dataset ‘1obj’
with parsed image scenes using Mask-RCNN se-
mantic segmentation (AppendixA).

While we provide a concrete implementation us-
ing the SpaCy3 NLP library, any other library like
the Stanford Parser4, or NLTK5 could be used in
its place. The output of the parser from a question
and image is depicted in Figure 1.

3.2 Embedder

The embedder provides ‘word-embedding’
(Mikolov et al., 2017) based representation of
input text utterances and image scenes using a
pre-trained language model (LM). The end-user
can instantiate the embedder with a preferred LM,
which could be a simple one-hot representation
of the CLEVR environment vocabulary, or a
large transformer based SotA LMs like BERT,
GPT-2, XLNet (Peters et al., 2018; Devlin et al.,

3https://spacy.io/
4https://nlp.stanford.edu/software/lex-parser.shtml
5https://www.nltk.org/
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2018; Radford et al., 2019; Yang et al., 2019).
The embedder uses the parser (see section 3.1)
generated graphs Gs,Gt – where graph Gs and Gt
are defined as generic graph G = (V, E ,A), where
V is the set of nodes {1,2,..}, E is the set of edges,
and A is the adjacency matrix – and returns X ,
E, the feature matrices of the nodes and edges
respectively:

Xs, As, Es ← EMBED(S)

Xt, At, Et ← EMBED(T ),
(1)

The output signature of the embedder is a tuple:
(X , A, E), which matches the fundamental data-
structure of popular geometric learning libraries
like PyTorch Geometric (Fey and Lenssen, 2019),
thus allowing seamless integration. We show a
concrete implementation of this use case using Py-
Torch Geometric (Fey and Lenssen, 2019) and
Pytorch in 3.3.2.

3.3 Visualizer

We provide multiple visualization tools for analyz-
ing images, text, and latent embeddings.

3.3.1 Visualizing Structural Graphs
This visualizer sub-component enables visualiza-
tion of the multimodal structural graph outputs –
Gs, Gt – by the parser (see 3.1) using Graphviz
and matplotlib.

Visualizing Images Image graphs (Gt) can have
a large number of objects and attributes. For ease of
viewing, attributes like size, shape (e.g. cylinder),
color (e.g. yellow), and material (e.g. metallic) are
displayed as nodes of the graph (Figure 4a). We ex-
plain elements of Figure 4a to describe the legend
in greater detail. The double circles represent the
objects, and the adjacent nodes are their attributes.
The shape is depicted using the actual shape (e.g.
the cyan cylinder – obj2), and the other attributes
are depicted as diamonds. The size of one of the
diamonds depicts if the object is small or large, e.g.
the large cyan diamond attached to obj2 means that
it is large. The color of all the attribute nodes de-
picts the color of the object (e.g. the cyan color of
obj2). The presence of a gradient in the remaining
diamond depicts the material of the object. For
example, the gradient in the diamond attached to
obj4 means that it is metallic, and the solid fill for
obj2 means that it is rubber. While this legend is
a little lengthy, we found that it makes visualiza-

tion easier, but the user can choose to revert to the
simpler setting of using text to depict the attributes.

Visualizing Text Text corresponding to an image
is a partially observable subset of objects, their rela-
tionships, and attributes. The dependency graph of
the text is visualized just like the images, with only
the observable information being depicted (Figure
4b).

Composing image and text We also provide an
option to view an image and the text in the same
graph. By connecting corresponding object nodes
from the image and text, we create a bipartite graph
that allows us to visualize all the information that
an image-text pair contains (Figure 4c). Additional
examples from the visualizer are presented in ap-
pendix A.4.

3.3.2 Visualizer - Embeddings
We also provide a visualizer to analyze the embed-
dings produced by using methods in section 3.2.
We use t-SNE (Maaten and Hinton, 2008), which
is a method used to visualize high-dimensional
data on 2 or 3 dimensions. We also offer cluster-
ing support to allow grouping of similar embed-
dings together. Both image (Frome et al., 2013)
and word embeddings (Mikolov et al., 2013) from
learned models have the nice property of capturing
semantic information, and our visualizers capture
this semantic similarity information in the form of
clusters.

Figure 5 plots the embeddings for questions
drawn from two different distributions train and
test, which represent semantically different se-
quences, and they separate out into distinct clusters.

Figure 5: Questions from two different distributions
which form separate clusters

Similarly, Figure 6 analyzes embeddings drawn
from 7 different templates. Questions that corre-
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(a) Visualizing image graph – Gt

(b) Visualizing text graph – Gs

(c) Visualizing joint (image and text) graph – Gu for the above
two figures

Figure 4: Visualizing Gs, Gt, Gu

spond to the same templates form tight clusters
while being far away from other questions.

Figure 6: Questions from 7 different templates forming
tight clusters

4 Related Work and Applications

Some lines of work attempt to generate scene
graphs for images. The Visual Genome library
(Krishna et al., 2017), in a real-world image setting,
is a collection of annotated images (from Flickr,
COCO) and corresponding knowledge graph asso-
ciations. The work of (Schuster et al., 2015) and the
corresponding library which is a part of the Stan-
ford NLP library6, allows scene graph generation
from text (image caption) as input.

Our work is orthogonal to these in that our target
dataset is synthetic, which allows full control over
the generation of images, questions, and ground
truth semantic program chains. Thus, coalesced
with our library’s functionalities, it allows end-
to-end (e2e) control over experimenting on ev-
ery modular aspect of research hypotheses (see
4.1). Further, our work premises on providing mul-
timodal representations – including ground-truth
paired graph (joint graph Gu ← (Gs, Gt)) – which
has interesting downstream research applications.

4.1 Usages and Applications

Applications of language grounding in ML/NLP
research are quite broad. To avoid sounding overly
grandiose, we exemplify possible applications cit-
ing work that pertains to the CLEVR dataset.

Recent work by (Bahdanau et al., 2019) has
shown lack of distributional robustness and compo-
sitional generalization (Fodor et al., 1988) in NLP.
Permutation equivariance within local linguistic
component groups has been shown to help with
language compositionality (Gordon et al., 2020).
Graph-based representations are intrinsically or-

6https://nlp.stanford.edu/software/
scenegraph-parser.shtml

https://nlp.stanford.edu/software/scenegraph-parser.shtml
https://nlp.stanford.edu/software/scenegraph-parser.shtml
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der invariant – thus, may help with language com-
positionality research. Language augmented re-
ward mechanisms are a dense topic in concurrent
(human-in-the-loop) reinforcement learning (Knox
and Stone, 2012; Griffith et al., 2013), robotics
(Knox et al., 2013; Kuhlmann et al., 2004), long-
horizon, hierarchical POMDP problems in general
(Kaplan et al., 2017) – like command completion
in physics simulators (Jiang et al., 2019). Other
applications could be in program synthesis and in-
terpretability (Mascharka et al., 2018), causal rea-
soning (Yao, 2010), and general visually grounded
language understanding (Yu et al., 2016).

In general, we expect and hope that any existing
line or domain of work in NLP using the CLEVR
dataset (hundreds, based on citations), will benefit
from having graph-based representational learning
aided by our proposed library.
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