
Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS), pages 101–109
Virtual Conference, November 19, 2020. c©2020 Association for Computational Linguistics

101

Pimlico: A toolkit for corpus-processing pipelines and reproducible
experiments

Mark Granroth-Wilding
University of Helsinki

mark.granroth-wilding@helsinki.fi

Abstract

We present Pimlico, an open source toolkit for
building pipelines for processing large corpora.
It is especially focused on processing linguis-
tic corpora and provides wrappers around ex-
isting, widely used NLP tools. A particular
goal is to ease distribution of reproducible and
extensible experiments by making it easy to
document and re-run all steps involved, includ-
ing data loading, pre-processing, model train-
ing and evaluation. Once a pipeline is released,
it is easy to adapt, for example, to run on a
new dataset, or to re-run an experiment with
different parameters. The toolkit takes care of
many common challenges in writing and dis-
tributing corpus-processing code, such as man-
aging data between the steps of a pipeline, in-
stalling required software and combining exist-
ing toolkits with new, task-specific code.

1 Introduction

It is becoming more and more common for con-
ferences and journals in NLP and other computa-
tional areas to encourage, or even require, authors
to make publicly available the code and data re-
quired to reproduce their reported results. It is
now widely acknowledged that such practices lie
at the center of open science and are essential to
ensuring that research contributions are verifiable,
extensible and useable in applications. However,
this requires extensive additional work. And, even
when researchers do this, it is all too common for
others to have to spend large amounts of time and
effort preparing data, downloading and installing
tools, configuring execution environments and pick-
ing through instructions and scripts before they can
reproduce the original results, never mind apply
the code to new datasets or build upon it in novel
research. Whilst sometimes it may be sufficient to
release a script that performs all of the data pro-
cessing, model training and experimental evalua-

tion steps, often this is not a practical approach to
multi-stage processing of large corpora.

We present a toolkit, Pimlico (Pipelined
Modular Linguistic Corpus processing), that ad-
dresses these problems. It allows users to write and
run potentially complex processing pipelines, with
the key goals of making it easy to:

• clearly document what was done;

• incorporate standard NLP and data-processing
tasks with minimal effort;

• integrate non-standard code, specific to the
task at hand, into the same pipeline; and

• distribute code for later reproduction or appli-
cation to other datasets or experiments.

The toolkit is written in Python and released un-
der the open source LGPLv3 license1. It comes
with pre-defined modules to wrap a number of ex-
isting NLP toolkits (including non-Python code)
and carry out many other common pre-processing
or data manipulation tasks. Comprehensive docu-
mentation is maintained online2.

In this paper, we describe the core concepts that
Pimlico is built around and some of its key features.
We also describe a number of the core modules
that come built into the toolkit and we present an
example pipeline. Finally, we explain how the
toolkit addresses the stated goals and outline plans
for future development.

2 Building pipelines

Pimlico addresses the task of building of pipelines
to process large datasets. It allows you to run one
or several steps of processing at a time, with high-
level control over how each step is run, manages

1https://github.com/markgw/pimlico/
2https://pimlico.readthedocs.io/

https://github.com/markgw/pimlico/
https://pimlico.readthedocs.io/

102

[split]
type=pimlico.modules.corpora.split
input=tokenized_corpus
set1_size=0.8

Figure 1: Example configuration section specifying a
single module in a pipeline. The module has a single
input, taken from an earlier module’s output, and a sin-
gle parameter.

the data produced by each step, and lets you ob-
serve these intermediate outputs. Pimlico provides
simple, powerful tools to give this kind of control,
without needing to write any code.

Developing a pipeline with Pimlico involves
defining the structure of the pipeline itself in terms
of modules to be executed and connections between
their inputs and outputs describing the flow of data.
Modules correspond to some data-processing code,
with some parameters. They may be of a standard
type, so-called core modules, for which code is
provided as part of Pimlico. A pipeline may also
incorporate custom module types, for which meta-
data and data-processing code must be provided by
the author.

2.1 Pipeline configuration

At the heart of Pimlico is the concept of a pipeline
configuration, defined by a configuration (or conf)
file, which can be loaded and executed. This speci-
fies some general parameters and metadata regard-
ing the pipeline and then a sequence of modules to
be executed.

Each pipeline module is defined by a named sec-
tion in the file, which specifies the module type,
inputs to be read from the outputs of other, previ-
ous modules, and parameters. For example, the
configuration section in Fig. 1 defines a module
called split. Its type is the core Pimlico module
type corpus split3, which splits a corpus by doc-
uments into two randomly sampled subsets (as is
typically done to produce training and test sets).
The option input specifies where the module’s
only input comes from and refers by name to a
module defined earlier in the pipeline whose output
provides the data. The option set1 size tells the
module to put 80% of documents into the first set
and 20% in the second. Two outputs are produced,
which can be referred to later in the pipeline as
split.set1 and split.set2.

3https://pimlico.readthedocs.io/en/
latest/modules/pimlico.modules.corpora.
split.html

The first module(s) of a pipeline have no inputs,
but load datasets, with parameters to specify where
the input data can be found on the filesystem. A
number of standard input readers are among Pim-
lico’s core module types to support reading of sim-
ple datasets, such as text files in a directory, and
some standard input formats for data such as word
embeddings. The toolkit also provides a factory to
make it easy to define custom routines for reading
other types of input data.

The type of a module is given as a fully qualified
Python path to a Python package. The package
provides separately the module type’s metadata,
referred to as its ‘module info’ – input datatypes,
options, etc. – and the code that is executed when
it is run, the ‘module executor’. The example in
Fig. 1 uses one of Pimlico’s core module types.
A pipeline will usually also include non-standard
module types, distributed together with the conf file.
These are defined and used in exactly the same way
as the core module types. Where custom module
types are used, the pipeline conf file specifies a
directory where the source code can be found.

An example of a complete pipeline conf, using
both core and custom module types, is shown in
Fig. 2 and is described in more detail in Section 6.

2.2 Datatypes

When a module is run, its output is stored ready for
use by subsequent modules. Pimlico takes care of
storing each module’s output in separate locations
and providing the correct data as input.

The module info for a module type defines a
datatype for each input and each output. Pimlico
includes a system of datatypes for the datasets that
are passed between modules. When a pipeline is
loaded, type-checking is performed on the con-
nections between modules’ outputs and subse-
quent modules’ inputs to ensure that appropriate
datatypes are provided.

For example, a module may require a vocabulary
as an input, for which Pimlico provides a standard
datatype. The pipeline will only pass checks if
this input is connected to an output that supplies a
compatible type. The supplying module does not
need to define how to store a vocabulary, since the
datatype defines the necessary routines for writing
a vocabulary to disk. The subsequent module does
not need to define how to read the data, since the
datatype takes care of that too, providing the mod-
ule executor with suitable Python data structures.

https://pimlico.readthedocs.io/en/latest/modules/pimlico.modules.corpora.split.html
https://pimlico.readthedocs.io/en/latest/modules/pimlico.modules.corpora.split.html
https://pimlico.readthedocs.io/en/latest/modules/pimlico.modules.corpora.split.html

103

Options for the whole pipeline
[pipeline]
name=custom_module_example
Pimlico version this is designed to work with
release=0.9.23
Python source dir, relative to config file:
needed for the custom module type
python_path=src/

Specify input paths, etc at the top
[vars]
text_path=%(pimlico_root)s/examples/data/input/bbc/data

Read in the raw text files
[input_text]
type=pimlico.modules.input.text.raw_text_files
files=%(text_path)s/*

Tokenize the text using the spaCy tokenizer
[tokenize]
type=pimlico.modules.spacy.tokenize
input=input_text

Rough filter to remove proper nouns: custom module
[filter_prop_nns]
type=pim_example.modules.filter_prop_nns
input=tokenize

Build vocabulary from words used:
can be used to map words to IDs
[vocab]
type=pimlico.modules.corpora.vocab_builder
input=filter_prop_nns
Only include words that occur >=5 times
threshold=5

input text
Input reader

tokenize
spaCy tokenizer

filter prop nns
Custom document-

map module

vocab
Vocab builder

Figure 2: Full example pipeline which loads a dataset from raw text files, tokenizes it and applies some cus-
tom processing. The file, together with the source code for the custom module type, are available at https:
//github.com/markgw/pimlico/tree/master/examples. Alongside is a graphical representation of the
pipeline structure.

Often modules read and write corpora, consist-
ing of a large number of documents. Pimlico pro-
vides a datatype for representing such corpora and a
further type system for the types of the documents
stored within a corpus (rather like Java’s generic
types). For example, a module may specify that it
requires as input a corpus whose documents contain
tokenized text. All tokenizer modules (of which
there are several) provide output corpora with this
document type. The corpus datatype takes care of
reading and writing large corpora, preserving the
order of documents, storing corpus metadata, and
much more.

The datatype system is also extensible in custom
code. As well as defining custom module types, a
pipeline author may wish to define new datatypes to
represent the data required as input to the modules
or provided as output.

2.3 Running the pipeline

Pimlico provides a command-line interface for pars-
ing and executing pipelines. The interface provides
sub-commands to perform different operations re-
lating to a given pipeline. The conf file defining
the pipeline is always given as an argument and the
first operation is therefore to parse the pipeline and
check it for validity. We describe here a few of the
most important sub-commands.

status. Outputs a list of all of the modules in
the pipeline, reporting the execution status of each.
This indicates whether the module has been run;
if so, whether it completed successfully or failed;
if not, whether it is ready to be run (i.e. all of its
input data is available).

Each of the modules is numbered in the list, and
this number can be used instead of the module’s
full name in arguments to all sub-commands.

Given the name of a module, the command out-

https://github.com/markgw/pimlico/tree/master/examples
https://github.com/markgw/pimlico/tree/master/examples

104

puts a detailed report on the status of that module
and its input and output datasets.

run. Executes a module. An option --dry runs
all pre-execution checks for the module, without
running it. These include checking that required
software is installed (see Section 3.2) and perform-
ing automatic installation if not.

If all requirements are satisfied, the module will
be executed, outputting its progress to the terminal
and to module-specific log files. Output datasets
are written to module-specific directories, ready to
be used by subsequent modules later.

Multiple modules can be run in sequence, or
even the entire pipeline. A switch --all-deps
causes any unexecuted modules upon whose output
the specified module(s) depend to be run.

browse. Inspects the data output by a module,
stored in its pipeline-internal storage. Inspecting
output data by loading the files output by the mod-
ule would require knowledge of both the Pimlico
data storage system and the specific storage for-
mats used by the output datatypes. Instead, this
command lets the user inspect the data from a given
module (and a given output, if there are multiple).

Datatypes, as part of their definition, along with
specification of storage format reading and writing,
define how the data can be formatted for display.
Multiple formatters may be defined, giving alterna-
tive ways to inspect the same data.

For some datatypes, browsing is as simple as
outputting some statistics about the data, or a string
representing its contents. For corpora, a document-
by-document browser is provided, using the Ur-
wid4 library. Furthermore, the definition of corpus
document types determines how an individual doc-
ument should be displayed in the corpus browser.
For example, the tokenized text type shows each
sentence on a separate line, with spaces between
tokens.

2.4 Document map modules

A common type of module is one that takes input
from one or more corpora, applies some indepen-
dent processing to each document in turn and out-
puts a new corpus containing the processed data for
the same set of documents. For example, we might
lower-case the text of each document; map words to
IDs from a vocabulary; or perform document-level
topic inference using a pre-trained topic model.

4http://urwid.org/

Pimlico makes it easy to define such modules,
referred to as document map modules. The module
executor can be defined using a factory, simply
specifying a function to be applied independently
to each document. It may also define pre- and post-
processing functions to be run before and after the
document mapping process.

Such modules lend themselves naturally to paral-
lelization, since separate documents can be pro-
cessed independently by worker processes in a
pool. When a document map module is de-
fined using the factory, this simple type of par-
allelization is provided by default, using Python’s
multiprocessing module. The user simply
needs to specify when running a module how many
processes Pimlico should use and this number of
workers will be launched to process documents.

Furthermore, any document map module can be
set to run in filter mode, using the filter=T op-
tion. This causes its processing to be performed
on the fly as required by subsequent modules, in-
stead of being stored to disk. The module then no
longer appears in the list of executable modules,
since it will be executed as necessary to provide
inputs to subsequent modules when they are run. If
an output corpora is used a number of times, this
approach is inefficient, but if not, and especially if
the per-document processing is fast, this can lead
to a more streamlined workflow.

3 Some key features

3.1 Data management

Data output by a module is stored ready for other
modules to use. Pimlico manages storage locations
specific to the pipeline, module and output, and
provides the correct version of the data to modules
that use the data as input.

Pimlico can be configured to use any location on
the filesystem for pipeline-internal storage. Beyond
this, the user does not need to concern themselves
with the storage structure, nor data storage formats,
which are managed by the datatype system.

The command-line interface provides a reset
command to remove the output data of a given
module and any subsequent modules that depend
on it. This is useful, for example, if changing a
module parameter and rerunning it.

3.2 Software dependencies

Executing a module will often depend on having
some software installed. This may be Python pack-

http://urwid.org/

105

[model_train]
type=mycode.modules.train_model
input=tokenized_text
regularization=0.1
layers=5|10

[model_eval]
type=mycode.modules.eval_model
input=model_train

model train[5]
layers=5

model train[10]
layers=10

model eval[5]
Evaluation of
layers=5

model eval[10]
Evaluation of
layers=10

Figure 3: Example pipeline fragment defining a module with alternative values for an option. The diagram shows
how the two modules are expanded into branches for the alternatives.

ages, for pure Python modules, or other types of
software. For example, Pimlico’s core modules in-
clude wrappers around the OpenNLP Java toolkit,
so running modules of one of these types requires
the Java Runtime Environment (JRE) as well as the
OpenNLP jar packages.

Pimlico includes a software dependency man-
agement system. Software dependencies of many
different types can be defined, such as Python pack-
ages, Java libraries, compiled C++ binaries and
so on. A software dependency definition includes
a routine to test whether the software is available
and, wherever possible, a routine to automatically
install the software in a location that is local to
the pipeline’s execution environment. For exam-
ple, Python dependencies can be simply defined by
reference to a Pip5 package, which can be automat-
ically downloaded and installed within a Python
virtual environment using the Pip library.

Each module type lists software that it depends
on to run as part of its module info. When the
user attempts to run a module or checks whether
it is ready to run (using the run subcommand,
Section 2.3), Pimlico checks all the dependencies
and installs the necessary software by running the
installation routine. A module’s executor is strictly
separated from its module info and is not loaded
until all dependency checks are passed. This allows
a module type programmer to freely write code
within the executor that loads dependent libraries.

For example, the core module for training topic
models using the Gensim toolkit (Řehůřek and So-
jka, 2010) can only be run when the Gensim Python
library is installed. Its module info declares this
dependency. When a user attempts to run a mod-
ule of this type in a pipeline, Pimlico uses Pip to
automatically install the library before executing.
In this way, another user subsequently receiving
the pipeline does not need to make sure that they

5https://pip.pypa.io/en/stable/

have installed this package on their system before
running the pipeline.

Requirements of specific versions of dependen-
cies are currently supported for some types of de-
pendencies. In future, this will be extended, in-
cluding more sophisticated handling of conflicting
versions within a pipeline.

3.3 Module alternatives

Examples so far have been of linear pipelines,
where each module’s output feeds into the input for
the next. Pipeline structures are not restricted to
this: they may branch arbitrarily by defining multi-
ple modules that take input from the same source,
or combine branches with a single module that
takes multiple inputs. Several tools are provided to
assist concise definition of complex pipeline struc-
tures. One we describe here is module alternatives.

Consider a hypothetical module type, used in
Fig. 3, that takes one input corpus and trains a ma-
chine learning model on the data. It has a parameter
layers which takes a numeric value. We wish to
train models with several different values for this
parameter and apply the same evaluation to each.

We could do this by defining multiple modules
of this type, each training a different model. We
would then need to duplicate the subsequent eval-
uation module to create a version for each model.
Pimlico provides a more concise way to do this. We
define one module, model train, and specify a
list of alternative values for the layers parameter:
layers=5|10. The module is automatically ex-
panded into multiple modules, one for each parame-
ter value. Each is given a distinct name, which may
be specified explicitly or automatically generated –
model train[5] and model train[10].

Subsequent modules can also be expanded au-
tomatically, propagating the set of alternatives
through the pipeline to create separate branches. In
our example, we define a single evaluation module

https://pip.pypa.io/en/stable/

106

model eval, which declares its input to come
from model train (the name of the training
module prior to expansion). This is expanded into
model eval[5] and model eval[10], each
alternative taking input from the respective model
training module.

Further details of expansion, combination and
naming of module alternatives are given in the doc-
umentation.

3.4 Pipeline variants

In a pipeline that processes a large corpus, it can
take hours or even days to run a single module.
While developing and testing the pipeline, it is not
convenient to blindly write the entire configuration
and module code without testing, or to have to
execute long-running modules simply to get some
input data to test custom code later in the pipeline.
Pimlico provides a solution: pipeline variants.

Variants are independent pipelines, sharing no
internal datasets or state, defined by a single config
file. A special syntax can be used in the file to
prefix lines that are to appear only in a specific
variant. Other lines are included in all variants.
This can be used to set different values of module
parameters in different variants, or even include
whole modules in only one variant. When Pimlico
is run, it will by default load the standard variant,
always called ‘main’. A command-line option can
specify another variant to load.

The most common use of this is to define a small
variant, which only processes a small subset of the
input data. It may do this, for example, by setting
parameters of the input reader, or including a subset
module to truncate the corpus. The entire pipeline
can then be run to test configuration and custom
code and sanity-check the resulting datasets, before
setting the pipeline running on the full dataset.

Other uses of this feature include running an
identical pipeline on different input corpora.

4 Code distribution

One of the key problems that Pimlico sets out to
solve is the difficulty of distributing code in a way
that makes it easy for others to reproduce and ex-
tend the processing. It achieves this by making
the full processing pipeline explicit in the pipeline
conf file. It is therefore crucial that (a) it is easy to
distribute all the necessary files to re-run a pipeline;
and (b) it is easy for someone else, given these files
to get the pipeline running.

4.1 Releasing pipelines

Three elements of a pipeline need to be distributed:
(1) a full description of the processing pipeline;
(2) any code needed to run the pipeline that is not
part of a standard library; and (3) input data. (1)
is trivial with Pimlico, since a pipeline’s conf file
is all that is needed. (2) requires simply that all
code in the path from which custom code is loaded
is distributed. This can simply be packaged into
an archive together with the conf file. Pimlico’s
source code does not need to be distributed, since
it can be downloaded as necessary. Other libraries
will generally be downloaded and installed auto-
matically by Pimlico when the pipeline is to be run,
as described in Section 3.2.

Pimlico does not attempt to address the distri-
bution of datasets used as input data. It is usually
appropriate to distribute these separately in a way
that respects licenses and handles distribution of
large files. Much of the time, input data is not spe-
cific to a pipeline, but comes from existing corpora.

4.2 Using and extending pipelines

Upon receiving the files providing (1) and (2)
above, you can use Pimlico’s bootstrap tool to set
up a working environment for running the pipeline.
A Python script, bootstrap.py, is available
from the online documentation. This reads the
config file to check what version of Pimlico was
used when it was originally run and downloads the
same release. It then prompts Pimlico to set up a
Python virtual environment and install core soft-
ware dependencies. After this, the pipeline is ready
to be loaded and run.

Having loaded a pipeline and set up the environ-
ment, it is easy to extend or adjust the pipeline to
run further experiments or build on the previous
work. New modules can be added and parameters
to the existing modules changed. Pimlico’s system
of standardized internal datatypes for passing data
between modules also makes it straightforward to
apply the same pipeline to a different dataset. All
that is required is a suitable input reader for the new
data (see Section 2.1). This supplies the dataset in
a standard, pipeline-internal format, so the rest of
the pipeline can be run without modification.

5 Core module types

Pimlico comes with a large number of core module
types, for which a pipeline author needs to write no
code, but simply define the module configuration

107

in their config file. This set is being constantly
expanded.

The following list gives some examples of core
module types provided with Pimlico. The full list
is available in the documentation.

• Generic corpus manipulation, including shuf-
fling, concatenation, truncation, subsampling,
random splitting

• Vocabulary building, word-to-ID mapping

• Gensim topic model training (Řehůřek and
Sojka, 2010)

• Malt dependency parsing (Nivre et al., 2006)

• OpenNLP6 tokenization, POS tagging, con-
stituency parsing

• Word embedding (Mikolov et al., 2013) load-
ing, manipulation, storing

• Word embedding training using word2vec
(Mikolov et al., 2013) and fastText (Mikolov
et al., 2018)

• Text normalization (lower-casing, etc.)

• Scikit-learn classifier training (Pedregosa
et al., 2011)

The core module types also serve as a reference
for defining custom module types. For example,
the current release contains several module types
wrapping tools from OpenNLP, but not coreference
resolution. If a user wishes to use the OpenNLP
coreference resolver, it is a relatively simple mat-
ter to define a custom module in their own source
directory, using one of the existing wrappers as a
model.

6 A worked example

An example of a full pipeline config file is shown
in Fig. 2. This simple pipeline loads a corpus from
a directory containing text files, each representing
a single document. It applies tokenization to each
document using the core document-map module
that wraps spaCy’s tokenizer.

Then it applies some custom processing to the
tokens of each document, using a module type de-
fined specifically for this pipeline and found in

6https://opennlp.apache.org/

the accompanying source directory7. The resulting
corpus is finally passed through the core vocabu-
lary builder, which builds a vocabulary from all the
words used in the corpus.

7 Software licenses

Pimlico itself is released under the GNU LGPLv3
license. However, it provides access to a large num-
ber of software packages, with a wide range of
different licenses. Software dependencies are in-
stalled only when required, so use of Pimlico does
not fall under the terms of all of these – only those
required by the modules of the user’s pipeline.

It can be important to know what licenses apply
to all the code used by a pipeline. The Pimlico
codebase keeps track of the licenses that apply to
software that may be installed to support the use of
the core module types. The command licenses
produces a list of the licenses of all of the soft-
ware used by a given pipeline, or alternatively just
particular modules.

8 Related toolkits

Some proprietary tools exist for similar purposes to
Pimlico8. However, the use of a proprietary tool to
build a pipeline in itself precludes easy replication
and extension by other authors, so we focus here
on open source tools.

Two recently released examples of toolkits for
building NLP pipelines are Forte and PSI. Forte
(Liu et al., 2020) is constructed around similar
concepts to Pimlico and it too provides wrappers
around other NLP toolkits. PSI (Gralinski et al.,
2012, Platform for Situated Intelligence) is similar
in its goals and design to Forte. Pimlico’s focus
is on control of the execution of static pipelines to
process large datasets and the management of the
data as it passes through the pipeline. For these pur-
poses, it provides a powerful set of tools not built
into other toolkits. It does not provide facilities to
run pipelines in a way that can be dynamically inte-
grated into other systems. We see this as a distinct
use case with different design requirements, one
that is well catered for by toolkits like Forte and
PSI.

Many other toolkits focus specifically on NLP
tools, allowing models to be trained and applied

7The source code is not shown here, but the full example,
including code, can be found in the documentation.

8For example, I2E, https://www.linguamatics.
com/products/i2e.

https://opennlp.apache.org/
https://www.linguamatics.com/products/i2e
https://www.linguamatics.com/products/i2e

108

for standard NLP tasks. Some provide their own
structures for defining pipelines that chain multiple
tasks (e.g., Qi et al., 2020; Manning et al., 2014;
Honnibal and Montani, 2017). Pimlico provides a
general framework for processing of large datasets,
incorporating NLP tasks by providing wrappers
around toolkits such as these. Unlike with these
toolkits, data loading, pre- and post-processing can
be handled in a single pipeline definition, requiring
minimal (or no) code to be written.

Other general toolkits exist for building and run-
ning data-processing pipelines, such as Bonobo9.
An alternative approach to developing Pimlico
would have been to define a library of modules for
NLP-specific tasks that could be used from such a
toolkit. We chose instead to develop an infrastruc-
ture tuned to the type of corpus processing and data
management that is typical in NLP experiments
and tasks.

9 Conclusions

We have introduced the Pimlico toolkit for building
pipelines for processing large corpora. We set out
to address four key goals in improving the process
of writing, running and distributing pipelines.

1. Pimlico provides clear documentation of
pipelines in the form of a simple definition
in a text file, containing pipeline structure and
parameters for every step.

2. It is easy to incorporate standard NLP tasks
using the core modules provided with the
toolkit, for which only a definition of inputs
and parameters is required. Among these are
wrappers for commonly used NLP toolkits.

3. Integrating custom code into the pipeline is
straightforward, by defining custom module
types. An extensive array of factories, tools
and templates means that typically only a
small amount of code is required beyond the
code to be executed.

4. The resulting pipeline definition and code can
easily be packaged and distributed. Tools
are provided to make the process of setting
up the execution environment and installing
software quick and simple. It is then possible
to extend or adjust the pipeline by editing
the conf file, or apply to other datasets by
replacing input modules.

9https://www.bonobo-project.org/

The toolkit effectively addresses common prob-
lems encountered in using NLP tools to process
large datasets, releasing code for experiments or
other corpus processing for others to use, and run-
ning someone else’s released code in a new envi-
ronment or on new data. As such, we present it
as a key contribution to free distribution of code
to accompany NLP research and replicability of
experiments.

9.1 Future work

Pimlico is under active development and new fea-
tures are constantly being added. Several planned
enhancements are worth noting in particular.

We plan to continue to expand the set of core
modules to include wrappers around other NLP
and machine learning toolkits. Many excellent new
NLP toolkits have been released in recent years and
have yet to be wrapped by core Pimlico modules,
or have only partial wrappers. In many case, the
addition of a wrapper is quick and requires only a
small amount of code. Further commonly used pre-
processing methods not currently covered by core
modules, like Byte-Pair Encoding, would make
pipeline development for modern NLP methods
faster.

Pimlico includes a number of input readers for
standard formats in which corpora are stored. How-
ever, many different formats are used for NLP cor-
pora, often specific to one corpus. We plan to ex-
pand the set of core input reader modules, to allow
more corpora to be read into a pipeline without
requiring custom module code.

Modules currently assume that a corpus is a fixed
unit, with a known size. Whilst this is often the
case, there are exceptions. For example, if data is
generated on the fly, a corpus could in effect have
an infinite length. In future, it may be desirable to
extend Pimlico’s conception of a corpus to cover
such cases.

Pipeline development and use could be helped
by a visual tool to inspect pipeline structure and
execution status. This could take the form of a tool
to output images like those in the figures of this
paper, or an interactive graphical interface as an
alternative to the command-line interface.

We plan to add a system similar to the manage-
ment of software dependencies for fetching pre-
trained models. For example, OpenNLP provides
models for a number of languages for some of its
components. Currently, the user must download

https://www.bonobo-project.org/

109

these models themselves in order to be able to run a
module that uses them. The specification of which
model to use, however, is part of the pipeline con-
fig. The new model management system would be
able to download the models prior to running the
module in question, just as software dependencies
are downloaded and installed automatically.

We have chosen not to build into the toolkit any
system for storing, fetching or managing input data.
However, corpora are increasingly available on-
line in standard repositories and formats, thanks
to projects like Hugging Face10. Pipelines using
such corpora could include a specification of where
their input data can be retrieved from, such that it
could be automatically downloaded as part of the
execution process.

10 Acknowledgements

Pimlico has been developed to support work in a
number of different projects. It has been supported
by: European Commission FP7 framework grant
611560 (WHIM); the Academy of Finland grant
12933481 (Digital Language Typology). European
Union Horizon 2020 research and innovation pro-
gramme grants 770299 (NewsEye) and 825153
(EMBEDDIA).

References
Filip Gralinski, Krzysztof Jassem, and Marcin Junczys-

Dowmunt. 2012. Psi-toolkit: A natural language
processing pipeline. Computational Linguistics,
458:27–39.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Zhengzhong Liu, Avinash Bukkittu, Mansi Gupta,
Pengzhi Gao, Swapnil Singhavi, Atif Ahmed, Wei
Wei, Zecong Hu, Haoran Shi, Eric P. Xing, and Zhit-
ing Hu. 2020. Forte: Composing Diverse NLP tools
For Text Retrieval, Analysis and Generation.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-

10https://huggingface.co/datasets

tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia. Association for Computational Linguistics.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations.

Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–
50, Valletta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

https://huggingface.co/datasets
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

