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Abstract

Social-science investigations can benefit from
a direct comparison of heterogenous corpora:
in this work, we compare U.S. state-level
COVID-19 policy announcements with policy
discussions on Twitter. To perform this task,
we require classifiers with high transfer ac-
curacy to both (1) classify policy announce-
ments and (2) classify tweets. We find that co-
training using event-extraction views signifi-
cantly improves the transfer accuracy of our
RoBERTa classifier by 3% above a RoBERTa
baseline and 11% above other baselines. The
same improvements are not observed for base-
line views. With a set of 576 COVID-19 pol-
icy announcements, hand-labeled into 1 of 6
categories, our classifier observes a maximum
transfer accuracy of .77 f1-score on a hand-
validated set of tweets. This work represents
the first known application of these techniques
to an NLP transfer learning task and facilitates
cross-corpora comparisons necessary for stud-
ies of social science phenomena.

1 Introduction

During the initial stages of the COVID-19 crisis,
the U.S. lacked a centralized political response and
a cultural familiarity with pandemics. From a so-
cial science perspective, research into COVID-19
policies and conversations around policy has conse-
quences for both citizens and policy-makers as: (1)
the extent of citizens’ adherence to policy is often
determined by awareness, and (2) in a democracy,
policy-makers aim to produce policy that citizens
are likely to support.

To lay the methodological groundwork for a
such a comparative study of policy and conversa-
tion, we examine methods for cross-corpora trans-
fer learning across COVID-19 government policy
statements and COVID-19 tweets. Such a task is
challenging because the style and intent of each cor-
pus differs while the events discussed do not; i.e.,

State-Level Policy Label
The Governor issued a “Stay
Safe, Stay Home” Directive.

Public Space
Restriction

The Governor announced
[loans] to provide relief for
restaurants, bars, businesses.

Economic
Measures

The Indiana State Department
of Health announced new test-
ing for COVID-19.

Healthcare

Tweets Label
Can You Cancel Your Flight
Because of the Coronavirus?

Travel Re-
strictions

Everyone should start wearing
face masks in crowded public
places.

Healthcare

What will it take for restau-
rants and ALL non-essential
businesses to close?

Public Space
Restriction

Table 1: Sample Policy Announcements (top) and
Tweets (bottom) that we seek to classify, with labels.

the vocabulary is divergent in some respects but
similar in others. Previous transfer learning work
involving Twitter has stayed within tweet corpora:
i.e. multi-lingual tasks (Levy and Yang Wang) or
tweets-to-comment tasks (Tian et al., 2020) where
the style of the transfer task is similar. Compara-
tively less work has focused on comparing a non-
social media corpora with Twitter.

To overcome the stylistic differences between
language in government policy documents and
tweets, we utilize event-extraction and co-training,
achieving a 11% improvement over baseline. We
hypothesize that event-extraction allows us to focus
on similarities between corpora while co-training
allows us to impart signal from differences.



2 Dataset

We use a dataset of roughly 137 million tweets that
researchers collected by analysing variations of the
COVID-19 hashtag (Chen et al., 2020a) and 2,100
state-level government policy announcements that
we scraped and parsed from the National Governors
Association website.1

Each tweet datum consists of the full text of the
tweet, the author’s name, and the date it was sent,
among other features. Each governor’s announce-
ment datum consists of the state of the governor,
the text of the announcement, and the date it was
announced.

We describe first our method for labeling state-
level policy announcements. Then we describe
our method for filtering COVID tweets to policy-
related tweets. Finally, we discuss the models that
we tested in order to classify state policy and tweets
and the steps we took to increase transfer accuracy.

2.1 Labeling Policy Announcements
We hand-label the first 576 governor announce-
ments that we collect, each into one of 6 categories.
We choose categories to help us identify different
treatments for downstream variables (for analysis
in upcoming work, noted in Section 1). Addition-
ally, the top-level labels independently correspond
to treatment categories outlined on the National
Governor Associations website1.

Two annotators together duplicately label 120 of
the announcements without conferring throughout
the process. On these 120 labels, we report an inter-
annotator agreement of κ = .76. The classes are
imbalanced and the number of labels in each class
is shown in Table 2.

The hierarchical categories encompass broad dif-
ferent policy-types. For instance, the “Government
Preparedness” category corresponds to measures
policymakers took to prepare their governments
for the crisis, including: “Summoning the Na-
tional Guard”, and “establishing a Task Force”.
Numerous policies do not neatly fit into a subcate-
gory: thus, while a rule-based approach was con-
sidered to identify top-level categories, we decided
a classification-based approach was necessary.

2.2 Filtering Policy-Related Tweets
We filter tweets to those that use similar language
as the policy announcements in order to identify
policy-relevant tweets. To do this, we derive a

1https://www.nga.org/

Policy Announcement Type Count
Public Space Restriction 185
Government Preparedness 161
Economic Measures 80
Healthcare 75
Remote Working Policies 22
Travel Restriction 18
Total 576

Table 2: Number of hand-labeled policy announce-
ments in each class.

Processing Example
Text Governor Ivey issued a state of

emergency for Alabama .
Events Ivey issued state of emergency .
Text &
Events

Governor Ivey issued a state of
emergency for Alabama. Ivey is-
sued state of emergency .

Table 3: A sample policy announcement processed us-
ing the 6 data-processing approaches used in our clas-
sification experiments. Full-text was processed using
event-extraction and lemmatization.

bag-of-words representation for each policy an-
nouncement and for each tweet. For each tweet,
we calculate its pairwise cosine similarity with all
the policy announcements. If an announcement
exists with a similarity above .35 to the tweet, then
we consider it a policy-related tweet. We choose
this threshold after cross-validation: our annotators
hand-validated a set of 120 tweets as policy-related
or not.2 Our method achieves an f1-score of .78 for
identifying policy-related tweets3.

2.3 Preprocessing

We preprocess our data before classifying in six
different ways, shown in Table 3. As a baseline,
we consider not preprocessing – simply classifying
the raw text of the announcement or tweet. An-
other method we consider is the lemmatization of
the sentence.4 Lemmatization was considered after
noting that policy announcements and tweets have
significantly different distributions over the tense

2We additionally set our vocabulary inclusion criteria after
cross-validation as well. Our inclusion criterion for words
was that each had to appear in at least 2 documents and not
more 40% of documents in the policy corpus. This resulted in
1, 021 words.

3Note: this evaluation is separate from the classification
task described in later sections.

4Lemmas are derived using https://spacy.io/.

https://www.nga.org/
https://spacy.io/


Present/Future Past
Tweets 0.92 0.08
Policy 0.63 0.37

Table 4: Percentage of sentences in tweets and policy
that are in past or present/future tense.

of their sentences, as shown in Table 45. While
lemmatization should mitigate that difference, it
does not measurably improve the accuracy of our
classifiers. Additionally, for the LogisticRegres-
sion classifier, we experimented with different vo-
cabulary thresholds before choosing an optimal set,
based on performance.

Another set of features we consider are extracted
events: we extract event arguments – agents and
patients – and anchors using a BERT + BiLSTM
neural architecture (Han et al., 2019), as well as
the lemmatized version of these extracted events.
We consider event-extraction after observing that
tweets are significantly more likely to contain opin-
ionated text – policy text has a median subjectiv-
ity of .23 while tweet text has a median subjectiv-
ity of .33.6 We hypothesize event-extraction can
help transfer accuracy by abstracting the content of
tweets from opinions.

3 Methodology

3.1 Classification

We test two classifiers: Logistic Regression on
a TF-IDF normalized7 bag-of-words representa-
tion of each input document, and a pretrained
RoBERTa-base model. We use Logistic Regression
because it is a fast and interpretable baseline. We
consider optimization across a range of l2-norm
constraints on the coefficient sizes and we opti-
mize on held-out training data. We report the top-
performing model in our results.

We use RoBERTa because it is a language model
that has been shown to generalize well across
transfer tasks (Raffel et al., 2019). Importantly,
a pretrained language model is ideal when the
transfer corpus might contain vocabulary words
not contained in the original corpus. We use the

5We determined sentence tense by checking whether the
root of the sentence was a past-tense verb, or if any of the
roots children were past-tense with an auxiliary dependency.

6Derived using the Python package TextBlob.
7TF-IDF refers “term-frequency inverse document fre-

quency” Words are counted by their frequency in the doc-
ument, normalized by their overall appearance in the corpus.

View Example
Full Text Shanghai Disneyland closed

during Lunar New Year due to
coronavirus!!

#1: Events closed Shanghai Disneyland
#2: Text with-
out Events

during Lunar New Year due to
coronavirus!!

Table 5: Co-training preprocessing: A sample tweet
with views used for co-training. View #1 is the ex-
tracted events, View #2 is the text with event words
removed. The labels generated from one view are iter-
atively added to another view’s training set. Then, the
full text along with all added labels are used to train the
final classifier. Not shown but tested as baseline views
are: “noun-phrases”, “verb-phrases”, “random words”.

RoBERTa-base pretrained model8 for our clas-
sification task, although we acknowledge that a
more corpus-specific pretraining, like a Twitter-
specific pretraining or a law-specific pretraining
might achieve higher accuracy (Nguyen et al.,
2020).

3.2 Co-Training

Additionally, we test co-training as a method for in-
creasing transfer accuracy. As formulated by Blum
and Mitchell (1998), co-training is a method for in-
creasing the accuracy of a classifier by using labels
generated by other classifiers with different “views”
of the data (i.e. non-overlapping feature sets). Pre-
vious work has found co-training advantageous in
transfer learning tasks (Wan, 2009).

The views we use are shown in Table 5. For
View #1, we extract events using the method as
described in Section 3.1, and for View #2, we leave
the text without events as the other view. To test the
efficacy of events, we consider additional baseline
views: noun-phrases, verb-phrases, and random
words. For each of the baseline views, we extract
the linguistic component as one view and leave the
rest of the sentence as the other.

We cycle iteratively between views, where for
each view, we train a classifier, use it to label the
top k most confident unlabeled datapoints for each
class, and add them to the training set (we test
different values of k using heldout data, and choose
k = 15, or 30 datapoints from both views. This is
roughly 5% the size of the original dataset9). At

8Provided by huggingface.co.
9In the original co-training paper, authors added 2% the

size of the original dataset (Blum and Mitchell, 1998)

huggingface.co


each iteration, we add the newly labeled data under
one view to the training set used by the other view
(each view’s classifier only ever sees data labeled
by the other view). Also, we test classifier accuracy
trained on the full text with all additional labeled
points.

4 Results

4.1 Experimental Setup

We measure classifier accuracy on two principal
tasks: (1) the baseline classification task on gov-
ernment policy data and (2) the transfer task on
Twitter data.

To report the baseline task, we show 5-fold cross
validation accuracy on the labeled dataset, which
consists of 576 hand-labeled policy announce-
ments. To report on the transfer task, we randomly
select and label a batch of 310 policy-related tweets.
We use these tweets to validate our models’ output
and show confidence using bootstrapped samples.

4.2 Accuracy of Classifiers: No Co-training

In Figure 1a we show micro f1-scores across the 5-
fold validation tests of our classifiers across the
6 labeled classes. For the RoBERTa classifier,
event-extraction has only a marginal effect on held-
out accuracy: only for the RoBERTa Text clas-
sifier does appending events increase the median
micro-f1 score. The highest-performing classifier
is RoBERTa Text & Events, but the addition of
events does not significantly improve the classifier
above RoBERTa Text.

Next, we test how well our classifiers transfer
to labeling the Twitter data. Figure 1b shows the
micro-f1 scores on this validation data over 500-
bootstrapped samples. Similar to the previous anal-
ysis, adding event information explicitly to the clas-
sification task does not significantly change the ac-
curacy. Taken together, these two analyses suggest
that event information is not useful for increasing
classification accuracy without co-training.

4.3 Co-Training

To test the impact of co-training on our transfer
learning task, we used co-training in two settings:
(1) we add co-trained labels to new data from the
policy dataset (which is in the same domain as
the training set), (2) we add co-trained labels to
new data from the Twitter dataset (which is from a
different domain than the training set).

Figure 2 shows the results of these two experi-
ments using Logistic Regression as a classifier and
Figure 3 shows the results using RoBERTa as a
classifier. In each figure, we report the accuracy
of our classifiers at each iteration of data augmen-
tation on each view as well as on the full-training
text.

As shown in Figure 2a, when co-training is
tested on heldout data from the training set, it has a
positive effect for the Logistic Regression classifier,
increasing the median f1-score across 5-folds from
.82 to .84. The result is not significant across the
IQR interval (25th percentile to 75th percentile of
held-out runs). On the other hand, as shown in Fig-
ure 3a, co-training had no effect on the RoBERTa
classifier, perhaps indicating that RoBERTa already
reached a ceiling on the amount of signal it derived
from the original training set.

We had hypothesized that co-training could be
successful in helping our models generalize to dif-
ferent corpora. As shown in Figure 2b, co-training
had a negligible effect when applied to the trans-
fer corpus using Logistic Regression. However, as
shown in Figure 3b, co-training had a positive ef-
fect, increasing the validation accuracy from .745
to .774, an increase that was significant across a
500-bootstrapped sample.

We hypothesized that event-information was par-
ticularly useful for co-training as it added the most
meaning to one view (View #1) while also be-
ing conditionally independent of the other (View
#2). To test this hypothesis, we compared different
views, shown in Figure 4. Figure 4a shows the
different views tested on the baseline classification
task. While co-training with events is on par with
co-training with noun-phrases, events performs bet-
ter across folds, indicating better generalization.
Figure 4b shows the different views tested on the
transfer task. Here, co-training with events is the
clear winner, and the only view to increase the
accuracy across tasks.

To explore why co-training might increase the
accuracy of our classifiers, we examined the size
of the vocabulary in training documents across co-
training iterations in Figure 5. As shown in Fig-
ure 5a, the size of the vocabulary was relatively
constant when policy documents were added to
the labeled set during co-training whereas when
tweets were added to the labeled set, the vocabu-
lary continued increasing linearly with the number
of iterations.
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(a) Classifier Accuracy on 5-fold holdout annotated
policy data. The highest score across 5 folds is for Text
& Events with a RoBERTa classifier, achieving a median
micro f1 score of .85.

0.4 0.6 0.8
f1 score

LR Text
LR Events

LR Text & Events
RB Text

RB Events
RB Text & Events

(b) Classifier Accuracy on 310 hand-validated tweets
(500 bootstrapped sample). The highest score is for Text
with a RoBERTa classifier, acheiving a median micro-f1
score across bootstrapped samples of .75.

Figure 1: Classifier Accuracy on (a) training corpus and (b) transfer corpus. The first three rows show different
text preprocessing using Logistic Regression classifier (LR); the last three show the RoBERTa classifier (RB).
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(a) Co-training on Policy Text (Logistic Regression).
Accuracy shown on 5-fold held-out policy data over iter-
ations. Full-text evaluation shows a median 2-point f1-
score improvement over 5-folds. We observe no reduction
in uncertainty.
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(b) Co-training on Tweets (Logistic Regression). Vali-
dation accuracy shown on 310 hand-labeled tweets (500
bootstrapped sample). Full-text evaluation shows a me-
dian 1-point f1-score improvement at iteration 8 from
baseline at iteration 0, from .69 to .70.

Figure 2: Co-training accuracy across 8 iterations of co-training data augmentation for (a) training corpus and (b)
transfer corpus. Co-training was performed using a Logistic Regression classifier on two views of the data: results
shown for Full-Text (blue), View #1 (Orange) and View #2 (Green). The training accuracy for iteration 0 represents
the baseline dataset (i.e. Full Text at iteration 0 corresponds to LR Text in Figure 1). Iteration i represents i× k× l
dataset augmentation for training, where k = 15 is the number of co-training datapoints added per turn per class,
and l is the number of classes. Full-Text is run at each turn on the entire dataset compiled by the co-training views,
as an evaluation. Only the two views contribute labeled data.

This had an effect on the words considered high-
signal by our Logistic Regression classifier (i.e.
with the highest absolute-valued coefficients). In
Table 6, we show the top words at the beginning
of co-training, when the training set included only
policy documents. In Table 7, we show high-signal
words at the end of co-training (iteration 8), when
our training corpus contained 720 tweets in addi-
tion 576 policy documents.

We also examine the percentage of the total high-
signal words that were added – defined as those
with the largest k coefficients in the Logistic Re-
gression model. As shown in Figure 5b, the per-
centage of of high-signal words not in the policy
document corpus increases nonlinearly with the

number of co-training iterations. The maximum
amount of high-signal words across classes not
in the policy documents occurs at the sixth itera-
tion, when 31.5% of the top 100 high-signal words
across classes were not in the policy documents.
This corresponds to a decrease in accuracy on the
sixth iteration in Figure 2b.

5 Discussion

Co-training increases the signal of a downstream
classifier when the dataset is independent, the
views are conditionally independent given the label,
and when the classifiers do not agree on the same
datapoints (Krogel and Scheffer, 2004).

We can assume that the datapoints are indepen-



0 1 2 3 4
Iteration

0.7

0.8

0.9
f1

 sc
or

e

(a) Co-training on Policy Text (RoBERTa). Accuracy
shown on 5-fold held-out policy data over 4 iterations.
We observe a maximum median f1 score of .87 occurs at
iteration 2 although statistically insignificant given IQR.
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(b) Co-training on Tweets (RoBERTa). Validation accu-
racy shown on 310 hand-labeled tweets (500 bootstrapped
sample). Full-text evaluation shows a 3-point improve-
ment at iteration 4 from baseline (iteration 0), .74 to .77.

Figure 3: Co-training accuracy across 4 iterations of co-training data augmentation for (a) training corpus and
(b) transfer corpus. Co-training was performed using RoBERTa classifier.
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(a) Co-training on Policy Text (RoBERTa), Alternate
Views. Accuracy shown on 5-fold held-out policy data
over 4 iterations. Maximum IQR f1 score (median=.87)
occurs with events at iteration 2.
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(b) Co-training on Tweets (RoBERTa), Alternate
Views. Validation accuracy shown on 310 hand-labeled
tweets (500 bootstrapped sample). Events View signifi-
cantly outperforms other views at iteration 4.

Figure 4: Co-training accuracy, different views across 4 iterations of co-training data augmentation for (a)
training corpus and (b) transfer corpus. Co-training was performed using RoBERTa classifier.

dent between corpora, as we do not observe direct
tweeting about specific state-level policy. Addition-
ally, we observe a low degree of agreement on the
same datapoints – across the iterations, we observe
the two classifiers recommending the same new
sample with the same tag less than 5% of the time,
across the two models. In these cases, we randomly
choose one of the views to assign the sample to,
and drop it from the other. Finally, although we
are strictly partitioning the words into one view or
the other, we are not as confident about conditional
independence between the views, as there may still
be structural and syntactic dependence between the
two views that we did not account for.

By tracking the accuracy of each view as well as
the full-text accuracy, we can see that in all cases
(i.e. both co-training setups under both models)
both views gain the signal in the first round of

co-training. In all but one case, View #2: Text \
Events has both the lowest accuracy and the great-
est improvements in accuracy in the early iterations
– the exception being the transfer task and Logistic
Regression (Figure 2b), where View #1: Events
gains more accuracy in the first iteration.

Interestingly, in all cases, the full-text output de-
creases in accuracy after the first turn. At all rounds,
the vocabulary of our interpretable model, Logis-
tic Regression, increases, according to Figure 5a.
An increasing vocabulary means that co-training
was adding documents to our training set that used
words that were different from our original training
set with enough frequency to be included. Accord-
ing to Figure 5b, in the first round of co-training,
the high-signal non-policy vocabulary increases at
nearly the highest rate (the highest being at round
6). We hypothesize, based on this vocabulary anal-



Econ. Meas. Gov. Prep. Healthcare Public Space Rest. Travel Rest. Remote Work
childcare national division schools employees employees
meals guard testing march asking meetings
unemployment emergency health gatherings travel telework

Table 6: Top words by coefficient in Logistic Regression model at co-training iteration 0 (i.e. Logistic Regression
trained on 576 policy documents).

Econ. Meas. Gov. Prep. Healthcare Public Space Rest. Travel Rest. Remote Work
sick guard healthcare schools university person
workers national health people international employees
unemployment emergency testing gatherings travel meetings

Table 7: Top words by coefficient in Logistic Regression model at co-training iteration 8 (i.e. Logistic Regression
trained on 576 policy documents and 720 co-trained tweets). Shaded cells are words not considered high-signal in
each class before co-training.

ysis, that the first turn is when the domain expands
the most without enough labels to overcome this
increase in input dimensionality.

Our vocabulary analysis suggests an additional
rationale for why co-training delivered a far greater
effect with RoBERTa – three times the improve-
ment – than it did with Logistic Regression. While
co-training using Logistic Regression may have
increased the label set available, it also increased
the new words that the model had to learn. It could
be that the amount of signal available in the la-
bels could not overcome the sparsity introduced by
the vocabulary expansion. In contrast, because we
utilized pretrained RoBERTa, the new vocabulary
added by the datapoints did not add a correspond-
ing level of sparsity. This suggests that a more
domain-specific pretrained model, like a Twitter-
specific RoBERTa (Nguyen et al., 2020), might
have even greater benefits from co-training, but we
leave that to future work.

We also leave to future work an exploration of
further views that could increase co-training accu-
racy. Further engineering tricks, such as selective
lemmatizing, might perform well as views. How-
ever, as indicated in Figure 4, event-extraction is
a particularly useful view for imparting signal, rel-
ative to the baseline views we considered – base-
lines which have been, in fact, used in the liter-
ature (Pierce and Cardie, 2001). While it’s not
immediately clear why this is the case, we hypothe-
size that extracting events as one view gives us the
clearest conditional independence of views, which
is necessary for co-training to be effective. Inter-
estingly, both the “noun-phrase” baseline and the
“verb-phrase” baseline degrade in performance over

time for the transfer task (Figure 4b). It may be
that these two tasks separate the views similarly:
i.e., what is left over when extracting noun-phrases
is mostly verb-phrases, and vice-versa. As shown
in (Nigam and Ghani, 2000), if the accuracy of
even the most confident co-training labels degrades
over time, then the performance of the co-training
labeled set will also decline. It might be, then, that
none of the views contained enough signal to make
confident predictions.

Overall, in contrast to Figure 1 where Text &
Events had a mixed effect on the classification
accuracy, we show in this paper that co-training
using event-extraction to parse sentences into two
views can be useful in adding signal to a transfer-
learning task.

6 Related Works

6.1 Policy and Twitter Analysis for
Coronavirus

Emerging work has sought to explore the effects of
various policy approaches to the coronavirus out-
break both nationally (Stock, 2020) and in specific
locales (Friedson et al., 2020). Such work uses
a limited number of curated policies to build up
treatment sets: the dataset of treatments is com-
posed of indicator variables and requires manual
annotation and collation to collect. Because we
seek to generalize and expand the treatment dataset
(state-level policies), and explore the conversations
around such treatments, we need to associate treat-
ment labels with specific spans of text (governor
policy announcements) to train classifiers.

Recent work has also sought to study the con-
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(b) Percentage of Vocabulary carrying high signal that
is not in the policy corpus, i.e. exists only in the Twit-
ter corpus. We define “high signal” as the top k largest
coefficients in the Logistic Regression model.

Figure 5: Increasing size of vocabulary for Transfer
task shows increasingly diverse training data is being
included in the task at each iteration relative to the
Heldout Task, where the vocabulary stays constant over
time.

versations around coronavirus on Twitter. Early
work centered on collecting the dataset (Chen et al.,
2020a) and followup focused on characterizing the
conversations occurring on Twitter (Chen et al.,
2020b). Such work involves unsupervised con-
tent analysis largely based on hashtag counts and
topic modeling. Unsupervised analysis is necessary
in cases where labeled data is unavailable. Addi-
tional followup work has focused on characteriz-
ing conspiracy-related conversations encouraged
by bots on Twitter (Ferrara, 2020). This work uses
pretrained bot-detection models to identify bots,
and unsupervised methods to summarize the con-
tent. Our work differs from this work in that we
seek to analyse a specific part of the Twitter conver-
sation – the policy-related conversation. As such,
we need some notion of what specific threads of
policy exist.

6.2 Cross-Domain Text Classification

This work is in line with cross-domain text classi-
fication, which has been studied widely. As such,
the summary given here is limited, however, much
work in this field focuses on areas where labeled
data is plentiful, such as sentiment classification
across corpora. For example, in early work (Blitzer
et al., 2007), authors used regularized linear clas-
sifiers to enforce finding common word-features
across corpora. They collected positive and neg-
ative Amazon product reviews in four categories
and gathered O(10, 000) labeled datapoints. Re-
cent work using the same dataset utilizes shared-
private encoders has leveraged advances in neural
networks to train high-accuracy models (Wu et al.,
2019).

Both of these works seek to use novel classifi-
cation architectures that are fine-tuned to the task
of multi-domain learning: the first uses classical
techniques (i.e. regularization) to enforce learn-
ing similarities between domains while the other
uses neural architectures to achieve the same goal.
However, both enjoy the advantage of relatively
plentiful data. And, because both are tested only
on held-out data, neither needs to generalize be-
yond the labeled dataset. Our work, on the other
hand, requires a generalizability to unseen future
policy text and tweets, and we have a comparatively
smaller dataset.

Previous work has addressed such problems us-
ing co-training, which is the meta-approach that we
take. In the original co-training paper, authors used
only 12 labeled data to correctly categorize 95%
of 788 web pages (Blum and Mitchell, 1998). Re-
searchers have applied co-training to pure-text clas-
sification as well, using noun-phrases to split views
(Pierce and Cardie, 2001) as well as heuristics – for
instance, (Denis et al., 2003) classifies scientific
articles using “author information” as one view and
body text as another. The limitations of co-training
have been explored: in addition to limitations men-
tioned in previously, researchers show that when
classes are imbalanced, performance degrades (Kir-
itchenko and Matwin, 2011). To our knowledge,
our work is the first to use event-extraction in co-
training for a downstream application.

7 Conclusion

Policy makers can benefit from understanding pub-
lic conversation around policy: public conversation
can help them (1) understand what policies would



be supported and (2) track awareness of policies
intended to promote social wellbeing. Such work
is particularly important in the COVID-19 crisis,
which both dominated the national conversation
and involved policy responses that U.S. citizens
were heretofore unaccustomed to.

In this work, we lay the methodological ground-
work for such studies of COVID policy. We clas-
sified both policy responses and tweets, and have
shown a significant improvement from our Logistic
Regression classifier (which achieved .69 f1-score
on our transfer task), to our co-training RoBERTa
classifier (which achieved a .77 f1-score, with only
576 original labeled examples). Such an improve-
ment allows us to compared policies and tweets,
effectively normalizing for linguistic differences
between the corpora. Such work paves the way
for ongoing work in examining the interplay be-
tween policy and conversation. We hope that future
work can leverage both our labeled data as well as
our cross-domain class predictions to inform policy
makers in COVID-prevention work.
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