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Abstract

Sarcasm detection in social media with text
and image is becoming more challenging. Pre-
vious works of image-text sarcasm detection
were mainly to fuse the summaries of text and
image: different sub-models read the text and
image respectively to get the summaries, and
fuses the summaries. Recently, some multi-
modal models based on the architecture of
BERT are proposed such as ViLBERT. How-
ever, they can only be pretrained on the image-
text data. In this paper, we propose an image-
text model for sarcasm detection using the pre-
trained BERT and ResNet without any fur-
ther pretraining. BERT and ResNet have been
pretrained on much larger text or image data
than image-text data. We connect the vector
spaces of BERT and ResNet to utilize more
data. We use the pretrained Multi-Head Atten-
tion of BERT to model the text and image. Be-
sides, we propose a 2D-Intra-Attention to ex-
tract the relationships between words and im-
ages. In experiments, our model outperforms
the state-of-the-art model.

1 Introduction

It is becoming popular today for people using text
with images to express their emotions and feelings
in social media. This makes sarcasm detection
more challenging. Sometimes, only when the text
and image are read together can one know whether
it is sarcasm. For example in Figure 1, which are
from the multimodal Twitter dataset (Cai et al.,
2019), the images contain the necessary informa-
tion to determine whether it is a sarcasm.

The previous works about the image-text sar-
casm detection (Cai et al., 2019) and also the image-
text sentiment analysis (Gaspar and Alexandre,
2019; Huang et al., 2019; Zhao et al., 2019; Kruk
et al., 2019) have about two steps: (1) summarizing
the image and text; (2) fusing the summaries of
the image and text. Although some works try to

explore the early fusion, it is still limited. Some
details of text and image would be dropped when
summarizing.

Recently, some multi-modal models based on
the architecture of BERT are proposed such as ViL-
BERT (Lu et al., 2019a,b), LXMERT (Tan and
Bansal, 2019), VisualBERT (Li et al., 2019), and
B2T2 (Alberti et al., 2019). However, these models
are pretrained only on image-text data. In contrast,
BERT can be pretrained on much lager text data
than image-text data. ResNet can also make use of
more image data.

In linear algebra, matrix multiplication can be
understood as a kind of vector space transforma-
tion. In this paper, we provide a new perspective,
the vector space transformation perspective, on this
task. We propose a model to connect the text and
image, and design a Bridge Layer to build the con-
nection. The low-level and high-level image fea-
tures are passed into BERT (Devlin et al., 2019) as
the embedding of BERT.

We use the pretrained BERT and pretrained
ResNet directly without any further pretraining for
this task. Any BERT-like models that are based
on Transformer (Vaswani et al., 2017) can still be
used in our model in the future. Any visual models
can be used in our model in the future as well. Be-
sides, our model does not require huge computing
resources and time for pretraining.

Based on the idea that sarcasm relies on the se-
mantic relationships and contrasts between words,
Tay et al. (2018) uses a softmax and a max function
to extract the relationships and contrasts. How-
ever, the max function drops some information. In
this paper, we propose a method called 2D-Intra-
Attention with a 2D-softmax to handle the 2D re-
lationships. Assuming n is the number of inputs,
with the 2D-softmax, n2 relationships are consid-
ered every time. In contrast, with the max function
(Tay et al., 2018), only n relationships are con-
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(a) “packing is so relaxing” (b) “finally! a thermome-
ter that meets my pre-
cision requirements for
cooking.”

Figure 1: Examples of image-text sarcasm.

sidered. Besides, we also add the image features
into the 2D-Intra-Attention, so the relationships
between words and images are considered.

In experiments, our model outperforms the state-
of-the-art model. Our main contributions are sum-
marized as follows:

• We connect the text and image: we use image
features extracted by pretrained ResNet as the
input of the pretrained BERT and utilize the
Multi-Head Attention of BERT to model the
image features.

• We propose a 2D-softmax to model the 2D
relationships considering n2 relationships and
add image features to the 2D-Intra-Attention
to extract the relationships and contrasts be-
tween words and images.

• We use the pretrained BERT and ResNet di-
rectly. Our model can adopt new BERT-like
models or visual models in the future and
does not require extra computing resources
and time for pretraining.

2 Related Work

2.1 Text-Only Sarcasm Detection

Earlier works about sarcasm detection mainly
focused on the text. Traditional methods con-
sider and extract various features (Carvalho et al.,
2009; Davidov et al., 2010; Veale and Hao, 2010;
González-Ibáñez et al., 2011; Reyes et al., 2013;
Riloff et al., 2013; Liebrecht et al., 2013; Ptáček
et al., 2014; Barbieri et al., 2014; Rajadesingan
et al., 2015; Bouazizi and Ohtsuki, 2015; Joshi
et al., 2015), including n-grams, punctuations, sen-
timent, emoticons, incongruity, word frequency,

syntactic patterns, etc. Then the deep learning
came to sarcasm detection. Many methods based
on CNN, LSTM (Hochreiter and Schmidhuber,
1997), and GRU (Cho et al., 2014) were proposed
(Bamman and Smith, 2015; Ghosh and Veale, 2016;
Zhang et al., 2016; Amir et al., 2016; Poria et al.,
2016; Ghosh and Veale, 2017; Peled and Reichart,
2017; Felbo et al., 2017). The deep learning based
methods achieved good performance. After the
BERT was proposed (Devlin et al., 2019), some
works tried to use BERT and achieve better perfor-
mance (Castro et al., 2019; Badlani et al., 2019;
Mao and Liu, 2019). However, these methods were
mainly using the semantic features on the top layer
extracted by BERT.

2.2 Multimodal Sarcasm Detection

Previous works explored the character and behav-
ior of the reader for multimodal sarcasm detection
(Mishra et al., 2016a,b). Some works tried to intro-
duce visual information in sarcasm detection (Schi-
fanella et al., 2016; Cai et al., 2019), but the fusion
is mainly used for summaries. Besides sarcasm
detection, some works about multimodal sentiment
analysis have been done (Wang et al., 2017; Zadeh
et al., 2017; Poria et al., 2015; Gu et al., 2018; Gas-
par and Alexandre, 2019; Huang et al., 2019; Zhao
et al., 2019). Some ideas of multimodal sentiment
analysis are similar to multimodal sarcasm detec-
tion, so it is also possible to adapt our method to
sentiment analysis in the future.

3 Approach

Figure 2 shows the architecture of our model. Our
model contains two parts: Image-Text Fusion and
2D-Intra-Attention.
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Figure 2: Architecture of our model, where “V” denotes the text and “G” denotes the image.

3.1 Image-Text Fusion

Image-Text Fusion includes BERT Layer, ResNet
Layer, and Bridge Layer. In this paper, the term
“BERT” refers to the BERT-like models (Devlin
et al., 2019; Liu et al., 2019; Lan et al., 2019; Sanh

et al., 2019), because any one of them and even the
new BERT-like models in the future can be used in
our model. Similarly, other visual models can also
replace the ResNet (He et al., 2016) in our model.
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3.1.1 ResNet Layer

ResNet Layer provides the detail and summary of
an image. The “Block” of ResNet Layer in Figure 2
means the “building block” in (He et al., 2016),
which contains two 3x3 convolution layers, or two
1x1 convolution layers and one 3x3 convolution
layer. The image features are the tensor of size 7x7
after the “Block, 512” called feature 7x7 and the
tensor of size 1x1 after “avg pool” called feature
1x1 in the following.

The feature 7x7 provides the details of the image.
The feature 1x1 provides a summary of the image.
In this way, every word in the text can pay attention
to the different parts of the image and get more
detail information.

3.1.2 Bridge Layer

Bridge Layer is to build the connection between
ResNet and BERT. Bridge Layer is very important
since ResNet and BERT are pretrained in different
spaces. The image features of ResNet cannot be
passed into BERT directly. The term “space” here
means the vector space or semantic space and is to
describe the representations of ResNet and BERT.
Bridge Layer maps the image features from ResNet
space into BERT space.

Formally, the image features of 7x7 and 1x1 are
passed into two 1x1 convolutions respectively, one
for feature 7x7 and another for feature 1x1. For the
two 1x1 convolutions, the kernel size is 1x1, the
stride is 1, the padding length is 0, the number of
input channel is the number of the channel of image
features such as 1024 or 2048, and the number of
output channel is the hidden size of BERT such
as 768 or 1024. The function of 1x1 convolutions
here equals to fully connected layers. Using 1x1
convolutions and fully connected layers are both
feasible when implementing the Bridge Layer. The
outputs of the two 1x1 convolutions are flattened
and passed into BERT as the embedding of BERT
as shown in Figure 2.

The purpose of Bridge Layer is only to build
the connection and do transformation instead of
learning something. Other methods such as 3x3
conv are suboptimal because it is more likely to
overfit than learning something we believe. The
task of learning image information should be done
by ResNet and the task of integrating image and
text should be done by BERT.

3.1.3 BERT Layer

BERT Layer has two parts of inputs. One part is
the normal text input. Another part is the image
features that have been mapped into BERT space
by Bridge Layer. The text is passed through the em-
bedding layer and then the transformer, whereas the
image features are passed into the transformer di-
rectly without going through the embedding layer.

The text and image features are passed through
Multi-Head Attention in different ways. Formally,
the attention for words of text is:

v
(l)
i =MultiHeadAttention(

v
(l−1)
1 ,v

(l−1)
2 , . . . ,v

(l−1)
|v| ,

g
(l−1)
1 , g

(l−1)
2 , . . . , g

(l−1)
|g| )

(1)

where v
(l)
i denotes the i-th word at the l-th layer

and g
(l)
i denotes the i-th image feature at the l-th

layer; the |v| denotes the number of words and
the |g| denotes the number of image features. In
this way, every word vi can pay attention to other
words and image features. A word can get detail
information from the 7x7 features and summary of
the image from the 1x1 features.

However, the attention for image features is:

g
(l)
i = MultiHeadAttention(g(l−1)

i ) (2)

Even though Bridge Layer has mapped image fea-
tures into BERT space, the mapped image features
are still not text, and BERT is never pretrained on
the image features. Besides, the CNN of ResNet
has a stronger capacity to learn images and the spa-
tial relationships. The relationships between image
features have been learned in ResNet. Image fea-
ture gi can only “see” itself. The way of gi passing
through Multi-Head Attention is similar to pass-
ing through a fully connected layer. One head of
the normal Multi-Head Attention (Vaswani et al.,
2017) is:

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V (3)

where Q, K, V are query, key, value. For the
attention of gi, the output of softmax will be 1 for
gi and be 0 for others. Therefore, the attention
of one vector gi of one head of the Multi-Head
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Attention becomes:

Attentiong(QgiWQ,KWK ,V WV )

= softmax(
(QgiWQ)(KWK)T√

dk
)(V WV )

= Igi(V WV )

= (IgiV )WV

= VgiWV

= gT
i WV

(4)

WQ ∈ Rm×d, WK ∈ Rm×d, and WV ∈ Rm×d

are parameters for attention calculation as shown in
(Vaswani et al., 2017); m denotes the hidden size
of BERT and d denotes the hidden size of one head
of Multi-Head Attention. Igi ∈ R1×n is a vector
where only the (i+ |v|)-th element is 1 and others
are 0. n is the total number of words and image
features, where n = |v|+ |g|. Qgi ∈ R1×m is the
(i+ |v|)-th vector of Q ∈ Rn×m. Vgi ∈ R1×m is
the (i+ |v|)-th vector of V ∈ Rn×m. The output
of one head of attention of gi ∈ Rm is gT

i WV .
The attention for gi is only to map the gi from the
previous-layer semantic space into the next-layer
semantic space with WV .
gi “seeing” other words and images does not

perform well because it will cause noises and over-
fitting. On the other hand, gi has to “see” itself be-
cause the Multi-Head Attention layer can map the
gi from the previous layer into the next layer. If we
use Bridge Layer to map the image features from
image space into the next-layer semantic space di-
rectly, the model cannot utilize the existed parame-
ters of BERT and need to learn the same informa-
tion from the beginning.

3.1.4 Space Transformation
To explain the idea behind Image-Text Fusion that
matrix multiplication is a kind of vector space trans-
formation, Figure 3 shows the process in space
view. Bridge Layer is the connection between the
image space and the BERT embedding space. The
image features are projected from image space into
BERT embedding space by Bridge Layer. The
Multi-Head Attention of BERT projects the image
features from BERT embedding space into BERT
Layer space, then projects the image features from
the previous-layer space into next-layer space at
every layer.

3.1.5 Some Details
In this section, we will introduce some important
details about the Image-Text Fusion.

ResNet
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Image Space

Bridge Layer

BERT 
Embedding 

Space

BERT 
Embedding 

Space

Text

BERT Multi-Head Attention 1

BERT Layer 1 
Space

BERT Layer 1 
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BERT Layer 2 
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BERT Layer 2 
Space

 
 

 
 

BERT 
Embedding 
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Figure 3: The space transformation view.

Learning Rate Since BERT and ResNet are pre-
trained models, they usually use a small learning
rate. However, Bridge Layer is not pretrained and
need to build the connection quickly. The learning
rate of Bridge Layer should be greater than BERT
and ResNet. In this way, Bridge Layer can learn
fast and catch up with BERT and ResNet. This
is very important because using the same learning
rate will hinder the model from convergence. Em-
pirically, we suggest that the learning rate of Bridge
Layer should be at least 10x greater than BERT and
ResNet.

Length Limitation The input length of BERT
should be less than 512 because only 512 position
embeddings are pretrained. However, the image
features skip the embedding layer, so introducing
image features will not influence the input length
limitation of text.

Image Features Sequence The Multi-Head At-
tention does not consider position by itself, so
BERT introduces the position embedding. How-
ever, since image features skip the position embed-
ding, the input order of image features is trivial.
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3.2 2D-Intra-Attention
We propose a 2D-softmax function to handle the
2D scores. We also add image features to the 2D-
Intra-Attention to explore the contrasts and dispari-
ties between words and images.

Formally, we define the outputs of both words
and images of BERT as {hi}ni=1, where n is the
total number of words and image features. In other
words: n = |v|+ |g|,hi = vi,hi+|v| = gi.

A pair is defined as:

hij = [hi;hj ] (5)

where [.; .] denotes the concatenation and hij is a
vector. Every hij is passed through a fully con-
nected layer to get score sij as:

sij = Wshij + bs (6)

where Ws ∈ R1×2m and bs ∈ R1 are learnable pa-
rameters, and m denotes the hidden size of BERT.
Then values of sij where i = j are masked, which
is similar to (Tay et al., 2018), and sij where
i > |v| and j > |v| are masked as well.

The 2D-softmax is:

aij =
esij∑n

p=1

∑n
q=1 e

spq
(7)

This 2D-softmax considers sij from two dimension
instead of only one. Then the attention weight âi
is calculated as:

âi =
1

2

n∑
p=1

aip +
1

2

n∑
q=1

aqi (8)

The aij in 2D is projected into the âi in 1D. The
aip and aqi are divided by 2 because every aij is
added twice. The final step of 2D-Intra-Attention
is:

ĥ =
∑
i

âi(Wahi) (9)

where Wa ∈ Rm×m is a learnable parameter.
With the 2D-softmax, n2 pairs can be considered.

For example, if a word has obvious contrasts with
many other words or other parts of images, the
attention weight of the word will be high.

3.3 Final Fusion
The concatenation of the [CLS] of BERT, the ĥ
from 2D-Intra-Attention, and the features 1x1 from
ResNet are passed through a fully connected layer
and a sigmoid function for classification.

4 Experiments

4.1 Training Details
In this section, we will introduce the details and
hyper-parameters for training our model.

Pretrained model Pretrained BERT-base-
uncased (Devlin et al., 2019) and RoBERTa-base
(Liu et al., 2019) with 12 layers, and pretrained
ResNet50 (He et al., 2016) with 50 layers are used.
The ResNet50 we employ is provided by PyTorch
(Paszke et al., 2019).

Optimizer The optimizer is Adam (Kingma and
Ba, 2014) for BERT with linear schedule and a
warm-up ratio of 0.05.

Learning rate The learning rate for RoBERTa
and ResNet50 is 1e-5, and for other parameters
including Bridge Layer is 1e-3.

Image preprocessing For predicting, we resize
the original image making the smaller edge of the
image is 224, then crop the image at the center. For
training, we implement data augment for images
including random crop and randomly change the
brightness, contrast and saturation of the image.

Parameters number The number of parameters
of our model for experiments is 151M. The learn-
able parameters are initialized by (He et al., 2015).

GPU & Environment The model is running on a
GPU of NVIDIA GeForce RTX 2080 Ti. Due to the
limited GPU RAM, we use gradient accumulation
for training. The operating system is Ubuntu 18.04.
We use PyTorch 1.4.0 (Paszke et al., 2019) and
Transformers 2.4.1 (Wolf et al., 2019) to implement
our model. We also use mixed precision training
with NVIDIA Apex 0.1 (Micikevicius et al., 2017)
to accelerate our model.

Running time It takes an average of 343 seconds
per epoch. We run the model 10 times and record
the best result.

Metrics The metrics for evaluation are F1-score,
precision, recall, and accuracy, which are imple-
mented by Scikit-learn (Pedregosa et al., 2011).

4.2 Comparison
The dataset for experiments is the multimodal
image-text Twitter dataset (Cai et al., 2019). This
data contains image and text as shown in Figure 1.

The description of other compared models are
as follows:
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F1-score Precision Recall Accuracy

IARN (Tay et al., 2018) 0.7894 0.7991 0.7799 0.8343
DMAF (Huang et al., 2019) 0.7891 0.7479 0.8352 0.8224
MMHFM (Cai et al., 2019) 0.8018 0.7657 0.8415 0.8344
VisualBERT (Li et al., 2019) 0.7968 0.7666 0.8294 0.8351
LXMERT (Tan and Bansal, 2019) 0.8014 0.7783 0.8259 0.8393
ViLBERT (Lu et al., 2019b) 0.8171 0.7752 0.8637 0.8468
Our model using BERT 0.8235 0.8001 0.8484 0.8564
Our model using RoBERTa 0.8605 0.8295 0.8939 0.8851

Table 1: Comparison of different models.

IARN Multi-dimensional Intra-Attention Recur-
rent Network (IARN) (Tay et al., 2018). This
model proposed a looking in-between method for
text-only sarcasm detection.

DMAF Deep Multimodal Attentive Fusion
(DMAF) (Huang et al., 2019). We use this image-
text sentiment analysis model in comparison since
sarcasm detection and sentiment analysis share
some similarities.

MMHFM Multi-Modal Hierarchical Fusion
Model (MMHFM) (Cai et al., 2019), a fusion
model for image-text sarcasm detection.

VisualBERT VisualBERT (Li et al., 2019) is
a pretrained visual-text model for vision-and-
language tasks, which consists of a stack of Trans-
former layers.

LXMERT LXMERT (Tan and Bansal, 2019) is
a pretrained visual-text model learning the vision-
and-language connections based on a large-scale
Transformer model.

ViLBERT ViLBERT (Lu et al., 2019a,b) is a pre-
trained visual-text model which extends the BERT
architecture to a multi-modal model. ViLBERT
was proposed in (Lu et al., 2019a) at first, then
was improved by multi-task training in (Lu et al.,
2019b).

Table 1 shows the results. Since ViLBERT is
based on BERT (Devlin et al., 2019), we also use
BERT (Devlin et al., 2019) in our model to give
a fair comparison. Our model with BERT outper-
forming other models verifies the effectiveness of
our model. Moreover, due to the advantage that
our model can adopt different pretrained models,
if we use RoBERTa (Liu et al., 2019), which was
proposed at the time close to ViLBERT, our model

can outperform other models significantly. One im-
provement of RoBERTa comes from using larger
data, and our model can make use of the data by
adopting RoBERTa.

Our model outperforming ViLBERT and other
pretrained visual-text models is mainly because
ViLBERT is only pretrained on limited image-text
data. In contrast, our model utilizes more unsuper-
vised text data and image data, and only needs to
learn a transformation.

4.3 Ablation Studies

In this section, pretrained BERT-base-uncased (De-
vlin et al., 2019) and pretrained ResNet50 (He
et al., 2016) are used. The term “classification”
here means the classification layer at the top of Fig-
ure 2, which contains a fully connected layer and a
sigmoid function. The description of different sets
are as follows:

BERT A text-only model that uses the [CLS]
of BERT (Devlin et al., 2019) for classification.

BERT + 1D-Intra-Att A text-only model that
uses the output of 1D-Intra-Attention (Tay et al.,
2018), whose inputs are the outputs of BERT, for
classification.

BERT + 2D-Intra-Att A text-only model that
uses the output of 2D-Intra-Attention, whose inputs
are the outputs of BERT, for classification. 1D-
Intra-Attention (Tay et al., 2018) was designed for
text-only model, so we also add 2D-Intra-Attention
to this text-only model to compare these two atten-
tions.

Concatenation of BERT and ResNet An
image-text model that concatenates the [CLS]
of BERT whose inputs are text and the output of
ResNet for classification. In other words, the model
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F1-score Precision Recall Accuracy

BERT 0.8051 0.7741 0.8388 0.8381
BERT + 1D-Intra-Att 0.8074 0.7766 0.8407 0.8430
BERT + 2D-Intra-Att 0.8088 0.7782 0.8420 0.8439
Concatenation of BERT and ResNet 0.8144 0.7830 0.8485 0.8436
Concatenation of BERT and ResNet + 2D-Intra-Att 0.8168 0.7856 0.8505 0.8476
Image-Text Fusion 0.8214 0.7992 0.8449 0.8541
Image-Text Fusion with Bridge Layer using 3x3 conv 0.8202 0.7978 0.8438 0.8509
Image-Text Fusion + 2D-Intra-Att (our model) 0.8235 0.8001 0.8484 0.8564

Table 2: Ablation Studies.

[CLS]

Classification

BERT Layer

Bridge Layer

ResNet LayerImage
Text

Figure 4: Overview of Image-Text Fusion used in ab-
lation studies.

uses image features but does not use them as the
inputs for BERT.

Concatenation of BERT and ResNet + 2D-
Intra-Att An image-text model that concatenates
the [CLS] of BERT whose inputs are text, the out-
put of ResNet, and the output of 2D-Intra-Attention
for classification.

Image-Text Fusion The Image-Text Fusion part
in this paper. It is important to note that the output
of ResNet is used in Final Fusion for classification
instead of in Image-Text Fusion. We do not use the
output of ResNet for classification here but only
the [CLS] as shown in Figure 4, so the image
information must go through Bridge Layer and
BERT Layer to reach the classification. If Bridge
Layer cannot transform image features or BERT
Layer cannot integrate text and image, the result
should be similar to BERT or even worse because
image features may cause noises.

Image-Text Fusion with Bridge Layer using 3x3
conv The Image-Text Fusion in this paper that
uses the [CLS] of BERT for classification with
Bridge Layer using 3x3 conv with padding length
1 instead of 1x1 conv.

Table 2 shows the results. Both Image-Text
Fusion and BERT only use the [CLS] of BERT

for classification, and the difference is that BERT
Layer of Image-Text Fusion has image input. This
is proof that BERT Layer and Bridge Layer are ef-
fective because image information must go through
them to reach the classification. BERT Layer and
Bridge Layer must handle image inputs well to give
a better result. With image input, the score of Con-
catenation of BERT and ResNet is improved by
0.93% compared with BERT, but is still worse than
ViLBERT. Image-Text Fusion achieves 1.63% im-
provement compared with BERT and outperforms
ViLBERT without 2D-Intra-Attention.

The bad result of Image-Text Fusion with
Bridge Layer using 3x3 conv verifies the effec-
tiveness of using 1x1 conv in Bridge Layer. Our
idea for Bridge Layer is just transforming so that
the model can utilize pretrained parameters as
much as possible instead of learning them from
the beginning.

2D-Intra-Attention gives 0.14% improvement
for BERT + 2D-Intra-Att compared with BERT
+ 1D-Intra-Att and 0.37% improvement compared
with BERT. Also, 2D-Intra-Attention gives 0.21%
improvement for Image-Text Fusion + 2D-Intra-
Att compared with Image-Text Fusion.

5 Conclusion

In this paper, we propose an image-text model
for image-text sarcasm detection. We propose a
novel way to integrate image and text information.
Our model outperforms the state-of-the-art model.
Comparing with multi-modal models, our model
utilizes more text and image data instead of only
the image-text data. Our model can adopt differ-
ent pretrained language models and visual models
directly without any further pretraining.
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