
Using Latent Semantics of Playlist Titles and Descriptions to Enhance
Music Recommendations

Yun Hao and J. Stephen Downie
School of Information Sciences

University of Illinois at Urbana-Champaign
{yunhao2, jdownie}@illinois.edu

Abstract

Music playlists, either user-generated or cu-
rated by music streaming services, often come
with titles and descriptions. While crucial
to music recommendations, leveraging titles
and descriptions is difficult due to sparsity and
noise in the data. In this work, we propose to
capture useful latent semantics behind playlist
titles and descriptions through proper cluster-
ing of similar playlists. In particular, we clus-
tered 20,065 playlists with both titles and de-
scriptions into 562 groups using track vectors
learned by word2vec model on over 1 mil-
lion playlists. By fitting a Naive Bayes model
on titles and descriptions to predict cluster
membership and using the cluster membership
information for music recommendations, we
present a simple and promising solution to the
cold-start problem in music recommendation.
We believe that when combined with other
sources of features such as audio and user in-
teraction, the proposed approach would bring
further enhancement to music recommenda-
tions.

1 Introduction

In the theory of Information Retrieval (IR), users
formulate “queries” using natural language to ex-
press information needs to IR systems (Baeza-
Yates and Ribeiro-Neto, 1999), and the query
terms make up a sparse semantic space. Simi-
larly, users on music streaming platforms, when
creating new playlists, express their needs for mu-
sic by providing playlist titles and descriptions.
These playlist titles and descriptions also make up
a highly sparse corpus, and capturing useful latent
semantics from such sparse space for making mu-
sic recommendations is challenging. In fact, using
playlist titles for music recommendations can even
worsen the performance of recommender systems
(Zamani et al., 2018).

In this work, we present that through proper
clustering of similar playlists, titles and descrip-
tions can be effectively employed for making more
accurate music recommendations. Specifically,
two stages are included in this work: in Stage
1, track sequences in playlists are used to embed
playlists and tracks into a latent embedding space
using word2vec (Mikolov et al., 2013a), and ag-
glomerative clustering is implemented on playlist
embeddings to form clusters of similar playlists;
in Stage 2, we fit a multinominal Naive Bayes
model on words from playlist titles and descrip-
tions to predict cluster membership and use the
cluster membership information to make music
recommendations. Details of the two stages are
in Section 4 and Section 5, respectively. In Sec-
tion 6, we evaluate the proposed recommending
strategy by the task of making music recommen-
dations given only playlist titles and descriptions,
with several baseline models and strategies com-
pared.

2 Related Work

Works have been done to capture hidden seman-
tics from playlist titles for music recommendation.
Pichl et al. (2015) formed clusters of playlist ti-
tles and interpreted each cluster as a latent mu-
sic listening context for making music recommen-
dations. The authors expanded the corpus by
adding synonyms and hypernyms using WordNet
(Miller, 1995) to deal with sparsity. The same
authors later built on this work and formed sit-
uational clusters using selected playlist titles that
contain activities and other descriptors (e.g., sea-
son, events) to improve music recommender sys-
tems (Pichl and Zangerle, 2018). One of the ACM
RecSys Challenge 20181 tasks is to predict tracks
in playlists given titles only. Approaches adopted

1http://www.recsyschallenge.com/2018/

“Peaceful Piano:
Relax and indulge with some profoundly
beautiful piano pieces.”

“CHRISTMAS VIBES!!:
!!!!!!!! YYAAAAA LETTTTSSS GOOOOO
CHRISTMASSSS LETS GET PUMPED”

“oldies but goodies:
songs my parents liked but now I like
them too”

Spotify API
#1

#2

#3

Figure 1: Example playlists from the datasets

by the top performing teams include matrix fac-
torization on (playlist, track)-title co-occurrence
matrix (Volkovs et al., 2018), character-level con-
volutional neural network to embed playlist titles
(Yang et al., 2018), and using playlist titles as
queries to pseudo-documents generated for each
track by concatenating all the titles of the playlists
that contained a particular track (Kallumadi et al.,
2018).

Starting from the intuition that interpreting
playlist titles and descriptions as plain text is not
effective enough, we propose to fit a language
model on titles and descriptions based on some
“intermediate” information so that the “interme-
diate” information can guide us towards a better
understanding of the language behind playlist gen-
eration.

3 Data

The datasets we used include the Million Playlist
Dataset (MPD) released by Spotify for ACM Rec-
Sys Challenge 2018 as well as 1,417 playlists cu-
rated by Spotify collected via Spotify API2. The
MPD is further divided into two subsets, one with
playlists with descriptions (D1), and one with
playlists without descriptions (D2). Usage of each
subset in this work will be detailed in later sec-
tions. To get more quality titles and descriptions
data, we also collected 1,417 playlists curated by
Spotify (D3). Table 1 shows the summary of
the datasets. Three example playlists from the
datasets are shown in Figure 1. Playlist #1 is a cu-
rated playlist on Spotify, while playlist #2 and #3
are user-generated playlists that have been made
public on Spotify.

4 Clustering of Playlists

4.1 Latent Representations of Playlists

Word embedding approaches, such as word2vec
(Mikolov et al., 2013a) and GloVe (Pennington

2https://developer.spotify.com/documentation/web-api/

Dataset Size
D1 MPD w/ descriptions 18,760
D2 MPD w/o descriptions 981,240
D3 Spotify Curated Playlists 1,417

Table 1: Summary of the datasets

et al., 2014), provide an effective way to learn
dense vector representations of words by leverag-
ing word co-occurrence information. By treating
playlists as the equivalent of sentences, and tracks
as the equivalent of words, similar to (Kallumadi
et al., 2018), we propose to apply word embed-
ding approach to learn a dense vector representa-
tion for each of the unique track IDs and represent
each playlist by aggregating its track embedding
vectors. For learning the track embedding vec-
tors, the word2vec model was chosen and the rea-
sons are as follow: 1) with the continuous bag-of-
word model of word2vec, ordering information is
discarded and is more preferred in the setting of
making “static” recommendations, as opposed to
playlist continuation task in music listening ses-
sion; 2) the linearity of the vector operations is
claimed to weakly hold for the addition of several
vectors by word2vec (Mikolov et al., 2013c), so
aggregating track vectors should yield a meaning-
ful representation of playlists.

All the 1,001,417 playlists in the dataset were
used for learning the latent representations of
playlists so that the learning process can make the
most of the available data. In total, over 64 million
unique tracks were fed to the word2vec model,
and after subsampling (Mikolov et al., 2013b) we
learned 50-dimensional latent representations of
600,501 tracks.

With the learned track vectors, each playlist in
D1 and D3 (20,177 playlists in total) is repre-
sented as the average of its track vectors. Because
not all tracks in the dataset has a dense vector,
there are 112 playlists whose tracks are all absent
from the latent embedding space. These playlists
are discarded, leaving 20,065 playlists with de-
scriptions in the dataset.

4.2 Clusters of Similar Playlists

With latent vector representations of playlists,
groups of similar playlists can be formed using
clustering algorithms. Among options such as
K-means clustering and modularity-based cluster-
ing (Clauset et al., 2004), we found agglomerative
clustering using cosine distances normalized for

Size Top 10 words with highest BiTF from the cluster
1 628 oldies,80s,goodies,classics,soul,love,school,70s,dad,60s
2 597 rap,fire,hype,litty,chill,af,bangers,gang,trap,party
3 458 throwback,throwbacks,childhood,nostalgia,disney,2000s,school,tbt,middle school,bops
4 457 rock,classic,classics,classic rock,oldies,dad,roll,70s,80s,school
5 433 edm,house,electronic,dance,dubstep,chill,trap,gaming,bass,drops

Table 2: Top 5 largest clusters of similar playlists, presented by top 10 words from each cluster

each playlist yields the best result. In total, 580
clusters are formed in the data, including 18 sin-
gletons (clusters with 1 playlist). We removed the
singletons to uncover general patterns in the data,
leaving 562 clusters of similar playlists. Table 2
shows a summary of the top 5 largest clusters.
From the table, it can be shown that playlists in
the same cluster share something similar – genre,
event, mood, etc..

5 Language Modeling on Playlist Titles
and Descriptions via Naive Bayes

Given the clusters of playlists, we fit a multi-
nominal Naive Bayes model using words from
playlist titles and descriptions. Naive Bayes model
was chosen because it is fast and accurate enough
to serve as a proper baseline for text classifica-
tion, and that with multinomial Naive Bayes, each
cluster can be represented as a unigram language
model which allows us to get more insights into
the language used in playlist generation.

Before fitting the model, a series of data clean-
ing and preprocessing steps such as normalizing
emojis was implemented on the text data. We omit
the details for brevity here.

We chose binary term frequency (BiTF) as the
text feature to extract from titles and descriptions
because BiTF usually works better with short and
sparse text. Bigrams were also included so that
frequently mentioned artist names such as “Ed
Sheeran” can be preserved. We further pruned the
vocabulary with a minimum term frequency of 3,
which yields a vocabulary of 5,487 tokens.

5.1 Model Details

Stratified sampling was implemented to split the
playlists with descriptions (i.e., D3) into training
(19,044, 95%) and test set (1,003, 5%). We then
fit a Naive Bayes model with Laplace smoothing
on the training set.

6 Evaluation

6.1 Experimental Setup

Evaluation is done by the task of making music
recommendations given playlist titles and descrip-
tions. The baselines to compare are word2vec
word embeddings trained on the training set, pre-
trained GloVe word vectors on 2 billion tweets
(both 50-dimensional and 200-dimensional), as
well as the top-performing approach based on
matrix factorization to dealing with cold-start
playlists from the RecSys Challenge 2018 (vl63).
Naive approaches that either recommend popular
tracks or random tracks are also included as base-
lines.

For all approaches except vl6 and the two naive
approaches, one of two recommending strategies
was employed according to the type of text fea-
tures:

• Cluster-based: predict C potential clusters
and recommend top tracks from the clusters
by track frequencies weighted by normalized
distances between the query playlist and the
predicted clusters centers.

• Similarity-based: retrieve S similar playlists
and recommend top tracks from the playlists
by track frequencies weighted by normalized
distances between the query playlist and the
similar playlists.

We set C = 5 and S = 5 × 11 = 55, where 11
is the median size of clusters in the training set,
for fair comparison. Each model will return 500
candidates for evaluation.

F1, NDCG, R-precision, and R-artist are re-
ported. F1 score measures the retrieval qual-
ity of the approaches while NDCG measures the
ranking quality. R-artist is the same R-precision
metric used for RecSys Challenge 2018 (Zamani
et al., 2018), where artist matches were partially
rewarded even if the predicted track was incor-
rect. For brevity, we only describe the standard

3https://github.com/layer6ai-labs/RecSys2018/

R-precision here. Let R be the set of ground truth
tracks for a playlist, and T be the set of first |R|
tracks returned by the system. R-precision is then
calculated as:

R−precision =
|T ∩R|
|R|

(1)

6.2 Results and Analysis

Table 3 summarizes the evaluation results.
Clearly, our proposed cluster-based strategy yields
the most satisfying result. Of all the baseline ap-
proaches, similarity-based BiTF works the best,
confirming that BiTF is a very effective text fea-
ture that works well for short and sparse text.

In the following two subsections, we present
two examples to illustrate how the clusters may
have helped with making more accurate recom-
mendations.

Model F1@100 F1@500 NDCG@100 NDCG@500 R-prec R-artist
Cluster-based

BiTF 0.0735 0.0524 0.0632 0.0652 0.0692 0.0717
Similarity-based

BiTF 0.0713 0.0463 0.0623 0.0637 0.0663 0.0692
word2vec 0.0663 0.0432 0.0578 0.0589 0.0621 0.0641
GloVe-50d 0.0453 0.0309 0.0392 0.0400 0.0421 0.0436
GloVe-200d 0.0489 0.0339 0.0428 0.0438 0.0457 0.0472

Others
vl6 0.0661 0.0431 0.0588 0.0601 0.0624 0.0658
Popular 0.0381 0.0351 0.0308 0.0320 0.0337 0.0350
Random 0.0002 0.0003 0.0002 0.0002 0.0002 0.0003

Table 3: Evaluation results

6.3 Neighboring Clusters

One of the reasons why the clusters of similar
playlists can help with making recommendations
is that the clustering is effective to group simi-
lar playlists together. Figure 2 shows the 5 near-
est neighbor clusters of the query cluster “Christ-
mas” (shown in bold). According to the top words
from each clusters, all the 5 neighbors seem to
be relevant to “Christmas”; thus it is very likely
that tracks from the neighboring clusters are good
candidates to recommend given a query playlist
comes from the “Christmas” cluster.

Figure 2: Neighboring clusters of “Christmas”. Edge
lengths indicate distances from the query cluster to its
neighbors.

6.4 Candidates with Diversity

By observing the behavior of the Naive Bayes
model, it is interesting to see that when no addi-
tional information is provided to a query word, the
Naive Bayes can recall more diverse potential can-
didates, which may benefit the recommender sys-
tem. For example, in Figure 3 we show the top
5 most likely clusters from which word “study” is
generated. Of the 5 candidate clusters, each indi-
cates a different “group” or “genre” and each can
be relevant to the query word “study” according
to different user tastes or preferences – some peo-
ple may prefer classical music or movie sound-
tracks when study, while some may prefer elec-
tronic dance music (edm) to stay energetic. When
the recommender system has no additional knowl-
edge about the user’s preference, it may be a bet-
ter strategy to provide wider options for the user to
choose from.

Figure 3: Top 5 clusters returned for query word
“study”. A shorter edge length indicates a higher prob-
ability that the query belongs to the cluster.

7 Conclusion and Future Work

In this work, we present that through proper clus-
tering of similar playlists, titles and descriptions
can be effectively employed for making more ac-
curate music recommendations. There are several
future directions to extend this work. First, it is
worth exploring how the method can be combined
with audio signals and user interaction data to fur-
ther benefit music recommender systems. Sec-
ond, other aggregation of the track embeddings for
playlists than averaging can be explored for mak-
ing even more accurate recommendations. Lastly,
evaluating the quality of music recommendations
without user feedback data may not be accurate,
especially when novelty and serendipity (Schedl
et al., 2014) is preferred by users. Therefore, this
work can benefit from some other datasets with
feedback information available as ground truth.

References
Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto.

1999. Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc., USA.

Aaron Clauset, Mark EJ Newman, and Cristopher
Moore. 2004. Finding community structure in very
large networks. Physical review E, 70(6):066111.

Surya Kallumadi, Bhaskar Mitra, and Tereza Iofciu.
2018. A line in the sand: Recommendation or ad-
hoc retrieval? arXiv preprint arXiv:1807.08061.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
conference of the north american chapter of the as-
sociation for computational linguistics: Human lan-
guage technologies, pages 746–751.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Martin Pichl and Eva Zangerle. 2018. Latent Fea-
ture Combination for Multi-Context Music Recom-
mendation. In 2018 International Conference on
Content-Based Multimedia Indexing (CBMI), pages
1–6.

Martin Pichl, Eva Zangerle, and Günther Specht. 2015.
Towards a Context-Aware Music Recommendation
Approach: What is Hidden in the Playlist Name?
In 15th IEEE International Conference on Data
Mining Workshops (ICDM 2015), ICDM 15, pages
1360–1365, Atlantic City. IEEE.

Markus Schedl, Emilia Gómez Gutiérrez, and Julián
Urbano. 2014. Music information retrieval: Recent
developments and applications. Foundations and
Trends in Information Retrieval. 2014 Sept 12; 8 (2-
3): 127-261.

Maksims Volkovs, Himanshu Rai, Zhaoyue Cheng,
Ga Wu, Yichao Lu, and Scott Sanner. 2018. Two-
stage model for automatic playlist continuation at
scale. In Proceedings of the ACM Recommender
Systems Challenge 2018, pages 1–6.

Hojin Yang, Yoonki Jeong, Minjin Choi, and Jongwuk
Lee. 2018. Mmcf: Multimodal collaborative filter-
ing for automatic playlist continuation. In Proceed-
ings of the ACM Recommender Systems Challenge
2018, pages 1–6.

Hamed Zamani, Markus Schedl, Paul Lamere, and
Ching-Wei Chen. 2018. An analysis of approaches
taken in the acm recsys challenge 2018 for auto-
matic music playlist continuation. arXiv preprint
arXiv:1810.01520.

https://doi.org/10.1109/CBMI.2018.8516495
https://doi.org/10.1109/CBMI.2018.8516495
https://doi.org/10.1109/CBMI.2018.8516495
https://doi.org/10.1109/ICDMW.2015.145
https://doi.org/10.1109/ICDMW.2015.145

