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Abstract

In this paper we propose lyrics information
processing (LIP) as a research field for tech-
nologies focusing on lyrics text, which has
both linguistic and musical characteristics.
This field could bridge the natural language
processing field and the music information re-
trieval field, leverage technologies developed
in those fields, and bring challenges that en-
courage the development of new technologies.
We introduce three main approaches in LIP, 1)
lyrics analysis, 2) lyrics generation and writing
support, and 3) lyrics-centered applications,
and briefly discuss their importance, current
approaches, and limitations.

1 Introduction

For songs that are musical pieces with singing
voices, lyrics text is one of key factors that make
listeners feel songs are attractive because it delivers
messages and expresses emotion. Since the lyrics
text plays an important role in music listening and
creation, some studies in the music information
retrieval (MIR) community have already focused
on it, but not as many as studies that have focused
on musical audio signals and musical scores. Sim-
ilarly, in the natural language processing (NLP)
community there have not been many studies fo-
cusing on lyrics text, and most NLP methods as-
sume prose text, not lyrics text. Since lyrics text
is a series of words, some NLP methods could be
applied to it successfully, but NLP methods are not
always effective for lyrics text because the natures
of lyrics and prose texts are different as described
in Section 2.

We therefore propose to refer to a broad range of
lyrics-related studies as lyrics information process-
ing (LIP), which could also be considered music
information processing for lyrics texts. LIP shares
some core technologies with NLP and MIR, and
research and development of LIP could contribute

to the MIR and NLP communities as follows:
(1) Academic contributions: Since lyrics are an
important aspect of music information, LIP could
broaden the scope of MIR and complement it.
Since lyrics are a difficult form of natural language,
LIP could provide challenging issues that are not
addressed by existing NLP technologies. The na-
ture of lyrics (e.g., style, structure, and semantics)
could also be investigated by automatically analyz-
ing and generating lyrics text data.
(2) Industrial contributions: LIP could open up
practical applications that are useful for listeners
and creators, such as lyrics classification, lyrics ex-
ploration, lyrics summarization, and lyrics writing
support.

This paper gives an overview of LIP by cate-
gorizing lyrics-related studies into three main ap-
proaches: lyrics analysis, lyrics generation, and
applications. Since the concept of LIP is broad
and still emerging, we hope that this paper could
stimulate further development of LIP.

2 Lyrics analysis

Because lyrics and poetry1 have unique linguistic
properties, NLP technologies for prose text are not
always effective enough to analyze lyrics text. In
this section we introduce studies of lyrics analysis
regarding the structure and semantics of lyrics and
its relationship with audio.

2.1 Lyrics structure analysis
Rhyme scheme identification: The rhyme
scheme is the pattern of rhymes at the end of lyric
lines. It is usually represented by using a series of
letters corresponding to lines, in which repeated let-
ters indicate rhymed lines. In the following exam-
ple (RWC-MDB-P-2001 No.83 (Goto et al., 2002)),

1Lyrics and poetry are different types of text because lyrics
are assumed to be sung along with music. However, some
linguistic properties of lyrics and poetry overlap.



two consecutive lines having the same letter rhyme:
A: Race the clock I got to score
A: Work or play Back for more
B: Only true believers rise to the top,
B: Licking the cream of the crop

This rhyme scheme is “AABB” and is called Cou-
plet2. Since typical prose text analyzers such
as part-of-speech analyzers and grammar tree
parsers cannot analyze rhyme schemes, some stud-
ies addressed the rhyme scheme identification task.
Given a few lines of lyrics (paragraph or stanza)
as the input, their rhyme scheme (ABC label se-
quence) is estimated. For example, Reddy and
Knight (2011) and Addanki and Wu (2013) es-
timated the rhyme scheme by using language-
independent unsupervised methods (e.g., hidden
Markov models) that do not depend on morpholog-
ical and phonological properties.
Lyrics segmentation: While the rhyme scheme is
a line-by-line repetitive structure, lyrics also have a
paragraph-by-paragraph structure like verse-bridge-
chorus. Paragraphs are usually separated by a blank
line, but in some lyrics they are not. Some studies
therefore tackled the lyrics segmentation task in
which the boundaries between paragraphs are esti-
mated from lyrics without blank lines (Watanabe
et al., 2016; Fell et al., 2018). They showed that the
self-similarity matrix, which is often used in music
structure analysis of audio signals in the MIR com-
munity, can be applied to lyrics text to improve the
performance of lyrics segmentation. This is a good
example of integrating NLP and MIR methods to
accomplish a LIP task.
Verse-bridge-chorus labeling: Given paragraphs
of lyrics, assigning a structural label such as verse,
bridge, and chorus to each paragraph is also an
important task. Simple rule-based methods such
as a method of grouping paragraphs with the same
label (Baratè et al., 2013) and a method of labeling
each paragraph (Mahedero et al., 2005) have been
proposed. Since a sufficient amount of lyrics data
annotated with structural labels is still lacking for
machine-learning approaches, there is much room
for improvement.

2.2 Lyrics semantic analysis
Emotional expressions, topics, and stories in lyrics
are factors that have a great influence on listen-
ers’ emotions. Since lyrics tend to be constrained

2There are various rhyme schemes, such as ABAB (Alter-
nate Rhyme), ABABBCBC (Ballade), AAAAA (Monorhyme),
AAABBB (Triplet), and ABBA (Enclosed Rhyme).

by melody lines and have a limited length, a typ-
ical way of expressing messages in lyrics is dif-
ferent from the way they are expressed in prose
text. Lyrics messages are often emotional, inspir-
ing, concise, and (intentionally) obscure. Even if
detailed moods, topics, and stories are not explic-
itly described in lyrics, listeners can enjoy guessing
or inferring them. Some studies have already ana-
lyzed such semantic factors behind lyrics text.

Mood estimation: Supervised learning-based
methods estimating the mood or emotion of lyrics
have been developed (Wang et al., 2011; Hu and
Downie, 2010; Delbouys et al., 2018) and are based
on a word dictionary in which valence and arousal
values (Russell, 2003) are annotated (Bradley and
Lang, 1999; Warriner et al., 2013). Since a lot of
mood estimation methods for audio signals have
been proposed in the MIR community, it would be
possible to develop mood estimation based on both
lyrics text and audio. In the future, unsupervised
methods and support for low-resource languages
are expected to be developed because supervised
learning-based methods require training data of
annotated lyrics, which are language-dependent.

Topic modeling: For lyrics topic modeling, unsu-
pervised methods such as latent Dirichlet allocation
(LDA), non-negative matrix factorization, and their
extensions are often used (Kleedorfer et al., 2008;
Sasaki et al., 2014; Tsukuda et al., 2017). Un-
like mood estimation methods, these methods do
not require training data with valence and arousal
values, which results in the advantage of easily
preparing training data for different languages. The
obtained word topics (clusters) are further used as
clues for classification tasks or used in visualiza-
tion functions for music exploration. It is, however,
difficult to appropriately evaluate the accuracy of
topics obtained by unsupervised learning. A previ-
ous study tackled this difficulty by evaluating the
correlation between estimated topics clusters and
human-annotated ones (Sterckx et al., 2014).

Storyline modeling: Lyric writers consider
themes and stories when writing lyrics. For the
verse-bridge-chorus structure of lyrics, an example
of a storyline represented as a topic transition is
introduction (verse) → past event (bridge) → emo-
tional message (chorus). Watanabe et al. (2018b)
proposed an extended hidden Markov model to
learn this topic transition structure from lyrics data
without supervision. Their model learned topic
transitions that are often found in love songs, hip-



hop songs, and so on even if they are not explicitly
given.

2.3 Analysis of the relationship between
lyrics text and music audio

A clear difference between lyrics and poetry is the
presence or absence of accompanying music. Since
investigating the relationship and synchronization
between lyrics and music audio is an important
topic of research, there have been various related
studies that deal with the relationship between syl-
lable stress and pitch (Nichols et al., 2009), the re-
lationship between words and chords (Greer et al.,
2019), the relationship between rests in melody and
boundaries of words, lines, and paragraphs (Watan-
abe et al., 2018a), and lyrics-to-audio alignment
(Kan et al., 2008; Fujihara et al., 2011; Mauch
et al., 2012; Chien et al., 2016; Chang and Lee,
2017; Stoller et al., 2019; Gupta et al., 2019).

3 Lyrics generation and writing support

As natural language generation (NLG) has been
actively researched, automatic lyrics generation
is becoming a popular topic of research. NLG
technologies have been greatly improved in perfor-
mance by deep neural networks (DNNs) and are
utilized in applications such as machine transla-
tion and dialogue systems. Generating poetry and
novels has also been developed, though generating
creative text is challenging. Generating lyrics is
also challenging and has further technical difficul-
ties caused by lyrics-specific musical constraints
such as melodies and rhymes. In this section we
introduce studies of lyrics generation as well as
writing support systems that utilize lyrics genera-
tion methods.

3.1 Automatic lyrics generation

Rhyme-scheme-conditioned lyrics generation:
Since lyrics and poetry often have rhyme schemes
as introduced in Section 2.1, some studies have
addressed the task of generating lyrics and poetry
that satisfy constraints of a rhyme scheme (Barbieri
et al., 2012; Hopkins and Kiela, 2017). In automati-
cally generating lyrics, most methods use language
models such as n-grams and recurrent neural net-
works as well as word sequence search based on
the Markov process. To deal with the constraints,
several extended word-sequence search methods
have been proposed, such as those using the strong
constraint that words that do not satisfy the rhyme

scheme are discarded during word sequence search
and the weak constraint that the score is calculated
based on how well the given rhyme scheme is sat-
isfied.

Melody-conditioned lyrics generation: Al-
though most studies of automatic lyrics generation
have generated lyrics using only text data with-
out considering musical audio signals and musi-
cal scores, some studies have addressed the task
of generating fluent lyrics that are singable when
a melody (a sequence of musical notes) is given
(Lu et al., 2019). Watanabe et al. (2018a) con-
firmed that the frequency of word/line/paragraph
boundaries depends on the duration of rests and
proposed an advanced lyrics language model that
takes advantage of this dependency. Their method
can generate segmented lyrics that are singable
for the verse-bridge-chorus structure of the input
melody. It, however, requires training data in which
lyrics syllables and melody notes are aligned. Such
data could be easily created if technologies such
as the above-mentioned lyrics-to-audio alignment,
lyrics recognition (Hosoya et al., 2005; Dabike and
Barker, 2019; Suzuki et al., 2019), and melody note
transcription (Yang et al., 2017; Román et al., 2018;
Nishikimi et al., 2019) could mature in the future.

Automatic generation of structured lyrics: Most
lyrics generation systems can generate only one
paragraph of lyrics, though lyrics have some para-
graphs in general. This is because language mod-
els for lyrics did not explicitly capture the consis-
tency of topics and relations between paragraphs.
Watanabe et al. (2014) have proposed a probabilis-
tic model that captures topic transitions between
paragraphs to generate lyrics having the storyline.
Fan et al. (2019) have proposed a lyrics genera-
tion method using the long short-term memory lan-
guage model that captures the hierarchical structure
of words, lines, and paragraphs to leverage the de-
pendency of long word sequences. Although these
studies have made it possible to generate lyrics that
are almost consistent in topic, it is still difficult to
generate lyrics that are consistent in meaning.

Ghostwriting: Ghostwriting is a task of generat-
ing new lyrics that follow the style (e.g., rhyme
scheme, phrasing, content, and the number of
words per line) of a given artist. Potash et al.
(2015) proposed a rap-lyrics generation method
based on data-driven learning of the artist’s style
using a DNN-based language model trained with
the artist’s lyrics corpus.



3.2 Writing support system with automatic
lyrics generation

Automatic lyrics generation makes it possible to
develop systems that support lyrics writing. It is
not easy for novices to write lyrics by thinking of
appropriate words and phrases while considering
various constraints and properties. Since candidate
word sequences satisfying various constraints can
be generated automatically, it is useful to show
them to lyric writers to support their creative ac-
tivities. Some studies have developed interactive
systems that support lyrics writing by repeatedly
recommending candidate word sequences that sat-
isfy constraint parameters input by the user.

pâtissier (Abe and Ito, 2012) is an interface that
allows the user to specify syllable counts, syllable
stress, and vowels, and generates candidate sen-
tences that satisfy them. DeepBeat (Malmi et al.,
2016) is an interface that generates and suggests
next-line candidates that rhyme with a line entered
by the user. LyriSys (Watanabe et al., 2017) and
Co-PoeTryMe (Oliveira et al., 2019) are interfaces
that allow the user to specify song structure and
syllable counts, select or enter topics and keywords
for each paragraph, and make the system generate
candidate lyrics that satisfy them. These interfaces
also allow the user to manually edit the generated
lyrics.

4 Applications for a collection of lyrics

Like NLP technologies, LIP technologies are useful
in developing various applications, such as classifi-
cation, exploration, and summarization, for a large
collection of lyrics data.

4.1 Lyrics classification

Given a collection of lyrics, it is useful to classify
and visualize them. Genre classification for lyrics
is a popular approach that has already been stud-
ied (Mayer et al., 2008; Mayer and Rauber, 2011;
Tsaptsinos, 2017). Some characteristics peculiar to
lyrics (e.g., rhyme scheme, structure, meaning, and
relationship with audio) have been used as features
to train a supervised classifier.

4.2 Lyrics exploration

If a user wants to see the lyrics of a song the user
knows, simple text-based lyrics retrieval is enough,
but if a user wants to encounter unfamiliar but in-
teresting lyrics, a content-based music exploration
system focusing on lyrics is necessary. Baur et al.

(2010), Sasaki et al. (2014), and Tsukuda et al.
(2017) have developed such exploration systems
that visualize topics of lyrics and similar artists by
analyzing the content of lyrics using LDA, self-
organizing maps, and so on. Query-by-Blending
(Watanabe and Goto, 2019) is a music exploration
system that enables a user to give flexible queries
related to lyrics, audio signals, and artist tags by
using a unified latent vector space with these three
different modalities embedded.

4.3 Lyrics summarization

In browsing a collection of lyrics, a short sum-
mary of lyrics of each song helps navigate quickly.
Fell et al. (2019) improved the performance of the
lyrics summarization task by combining a general
document summarization method with an audio
thumbnailing method. Summarization more ad-
vanced than simply extracting lines, such as phrase
paraphrasing and compression, requires develop-
ment of advanced technologies for lyrics semantic
analysis.

5 Conclusion

In this paper we have provided an overview of
lyrics information processing (LIP) and have de-
scribed examples of studies from the viewpoint of
lyrics analysis, lyrics generation, and applications.
Those examples are just excerpts taken from a vari-
ety of previous studies and possible future technolo-
gies. For example, the limited space does not allow
us to discuss the relationship with singing infor-
mation processing (SIP) (Goto et al., 2010; Goto,
2014; Humphrey et al., 2019), though we men-
tioned the lyric-to-audio alignment. Since lyrics
are sung by singers, there are many possibilities
to investigate the relationship between lyrics and
the corresponding singing expressions and styles.
Lyrics are thus linguistic, musical, and singable
from the NLP, MIR, and SIP viewpoints, respec-
tively. Since LIP is an emerging interdisciplinary
research field that could be related to various tech-
nologies and disciplines such as natural language
processing, music information retrieval, machine
learning, human-computer interaction, visualiza-
tion, signal processing, linguistics, and musicology,
we expect research on LIP to progress in coming
years from a diverse viewpoint by attracting more
attention due to its importance and potential.
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