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Abstract

Recent advances in deep learning have led
to significant advances in both text and mu-
sic representations. However, the representa-
tions and tasks remain largely separate. Most
Music Information Retrieval models focus on
either music or text representations but not
both. In this work we propose unifying these
two modalities in a shared latent space. We
propose building on a common framework of
Transformer-based encoders for both text and
music modalities using supervised and unsu-
pervised methods for pre-training and fine-
tuning. We present initial results and key chal-
lenges that need to be overcome to make this
possible. The result will be a new class of
models that are able to perform advanced tasks
that span both NLP and music.

1 Introduction

Voice-based conversational agents such as Alexa,
Google Assistant, are growing in importance and
allow interaction with music systems using natu-
ral language. However, current approaches only
support interactions with text and metadata (e.g.
playing a specific song). This research will enable
a multi-modal representation that supports conver-
sation about music and its concepts. We propose
using new state-of-the-art deep learning models
that are capable of producing joint latent spaces
of both music and text.

We propose a new multi-modal representation
model we call MusicBERT. It is composed of a
set of modality-specific encoders that are then fed
to a shared model, based on the Transformer. A
key challenge is that audio signals are very long
and standard Transformer models are limited in
the amount of vectors that they can feasibly and
effectively process. As a result, a second layer that
encodes music (and its derived concepts) is needed
to provide some abstraction with current models.

A high-level view of this model is provided in Fig-
ure 1. Similar to how BERT has been adapted for
QA and NLP tasks, the proposed architecture can
be adapted for music QA tasks (Sutcliffe et al.,
2014) using the pre-trained representations.

Although text representations are proven, music
remains challenging. In order to have an effective
music representation the proposed model must ad-
dress two key challenges: 1) What is an effective
low-level encoding of music that works effectively
with Transformers, and 2) What are effective pre-
training loss functions for learning music repre-
sentations that exhibit transfer learning properties.
We hypothesize that this requires having the right
level of semantic representation.

Figure 1: High-level MusicBERT architecture

To train this new multi-modal model we use a
standard music datasets the MuMu dataset (Ora-
mas et al., 2017), that maps album reviews to
a subset of the Million Song Dataset (Bertin-
mahieux et al., 2011). These reviews are not very
granular, been at album-level, but still provide in-
sightful discussions about the musical content of
the tracks contained in the album.



MFCC TLM MTLMR VGGish Audioset MLM MIM
GTZAN (accuracy) 59.83% 77.60% 65.80% 85.9% 83.00% 73.80% 85.30%
Deezer (r2 score) 7.18% 18.58% 9.60% 20.65% 18.38% 14.58% 16.45%

Table 1: SVM evaluation using the Music Representations extracted

2 Background and Related Work

Textual Representation Learning - The use of
Transformers (Vaswani et al., 2017) paired with a
language modeling objective is the current state-
of-the-art for most NLP tasks. Models such as
BERT and similar are effective for NLP tasks and
critically they demonstrate strong transfer learning
effectiveness (Devlin et al., 2018). We use this as
the base for our text-based representations.

Music Representation Recent work by Kim
et al. (2019) explores deep representation learning.
They apply multi-task transfer learning to test the
impact on multiple tasks showing an improvement
in effectiveness when pre-training on additional
external tasks. Similar work on music represen-
tations and transfer learning is (Choi et al., 2017).
They demonstrate the potential for pre-training on
music tagging to create effective latent representa-
tions. Recent work with Transformers for mono-
phonic music by Huang et al. (2018) begins to ad-
dress scalability issues. In contrast, we propose
representations that generalize to polyphonic mu-
sic and raw audio.

Multi-modal Representation This work is in-
spired by multi-modal representations in the field
of Computer Vision, and specifically VisualBERT
(Li et al., 2019). They develop a model that uses
ImageNet concepts to encode the key-points of an
image, and train BERT to translate these visual
vectors into a textual description. We propose us-
ing both encoded audio and audio concepts as a
semantic representation. Instead of ImageNet, we
use AudioSet (Gemmeke et al., 2017), a concept
detector for general audio. Our early results find
that more work is needed in developing an ontol-
ogy specific to music.

3 Method and Preliminary Experiments

In this section we discuss the methods we use in-
cluding the low-level music encoding and train-
ing objective. For low level encoders for our ex-
periments use a word embedding layer as textual
encoder, and the VGGish (Hershey et al., 2017)
model for the music encoder.

To train this model on music data, we experi-
ment with three different pre-training approaches.
A Masked Language Modeling algorithm, a Mu-
tual Information Maximization algorithm taken
from van den Oord et al. (2018) and a standard
classification task on the AudioSet ontology (Gem-
meke et al., 2017). The first algorithm uses a re-
construction loss after masking some of the music
vectors. The second instead aims at maximizing
the Mutual Information between the music vectors
and the multi-modal representations. The last one
is just a multi-label classification of sound events.

Results To evaluate the obtained representa-
tions, we use standard music tasks, and evaluate
the representations using them in an Support Vec-
tor Machine (SVM) on the latent space for each
target, following Choi et al. (2017). We evaluate
on the GTZAN (Tzanetakis and Cook, 2002) and
Deezer (Delbouys et al., 2018) datasets.

We report the results of our initial experiments
in table 1. The results show, VGGish provides
a strong representation, and the MIM and MLM
training hurt effectiveness. We also provided the
results for three baselines. One using the standard
MFCCs (Muda et al., 2010), one base on (Choi
et al., 2017) (TLM) and one base on (Kim et al.,
2019) (MTLMR).

We found that the VGGish encoder output has
very limited variability across time and this makes
it much more challenging for the model to be ef-
fectively trained. Also, there is a blurring effect
on the vectors across time caused by the soft-max
self-attention. This suggests that using sparse-
attention could improve the model effectiveness.

4 Conclusion

We motivate the need for a multi-modal repre-
sentation space and its application to natural lan-
guage music conversation. We introduce the Mu-
sicBERT model to tackle this problem and present
preliminary results on standard music tasks. Our
goal is to advance the capabilities of current mod-
els and enable them to integrate music and text to-
gether in new and more effective representations
that generalize to complex tasks.
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