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Abstract

We presents unsupervised melody segmenta-
tion using a language model based on a non-
parametric Bayesian model. We adapt un-
supervised word segmentation with a nested
Pitman-Yor language model (NPYLM) used in
the field of natural language processing to mu-
sical note sequences. Treating music as a lan-
guage, we aim to extract fundamental units,
similar to “words” in natural language, from
symbolic musical note sequences using a data-
driven approach, the NPYLM. We assume mu-
sical note sequences generated by the proba-
bilistic model, integrate a note-level n-gram
language model and motif-level n-gram lan-
guage model, and extract fundamental units
(motifs) from them. This enables us to con-
duct melody segmentation, obtaining a lan-
guage model for the segments, directly from
a musical note sequence without annotation.
We discuss the characteristics of this model by
comparing the rules and grouping structure of
a generative theory of tonal music (GTTM).

1 Introduction

In general, a melody is considered to be time se-
ries data of notes with various properties such as
pitch and duration. We call this time series data a
musical note sequence. In the field of musical in-
formation retrieval (MIR), the task of melody seg-
mentation, that is, division of a musical note se-
quence into meaningful units such as motifs and
phrases, is one of the most important and funda-
mental tasks. Melody segmentation, the division
of a musical note sequence into meaningful units
such as motifs and phrases, is one of the most im-
portant and fundamental tasks in the field of mu-
sical information retrieval (MIR). Motifs are con-
sidered to be one of the most important and fun-
damental units of music (Lerdahl and Jackendoff,
1996). If we are able to divide a musical note
sequence into appropriate motifs, these motifs

can then be used in various tasks such as an-
alyzing a musical structure, automatic composi-
tion, and representation learning via “motif em-
bedding” (Hirai and Sawada, 2019).

There are two types of conventional
melody segmentation method: rule-
based (Lerdahl and Jackendoff, 1996;
Cambouropoulos, 2001; Temperley, 2004),
and statistic based using properties of musical
data (Lattner et al., 2015; Pearce et al., 2010). Al-
though supervised melody segmentation methods
have also been proposed (Hamanaka et al., 2017),
the cost of producing annotation data of sufficient
quality and quantity is enormous. Further, the
interpretation of the motifs is subjective and can
vary from one annotator to another.

In this study, we aim to extract fundamen-
tal units, like “words” in natural language, from
symbolic musical note sequences using an unsu-
pervised data-driven approach. It is not known
how many notes a motif is made up of, and
there are theoretically an infinite number of pos-
sible motifs. Therefore, we have to use the
vocabulary-free n-gram model instead of the con-
ventional n-gram model, which requires motifs to
be defined as a vocabulary in advance. Specifi-
cally, we apply an unsupervised word segmenta-
tion method, a nested Pitman-Yor language model
(NPYLM) (Mochihashi et al., 2009), to a musical
note sequence. A sentence in natural language
(e.g., English) consists of a combination of words.
A word in a natural language consists of a com-
bination of characters. If we think of a character
in natural language as equivalent to a musical note
and a sentence as equivalent to a note sequence of
some length, we can think of the note sequence
as consisting of combinations of motifs with units
corresponding to words in natural language.

There have been studies that apply the Pitman-
Yor language model to music. A hierarchi-



cal Pitman-Yor language model (HPYLM) (Teh,
2006) is an n-gram language model by Pitman-
Yor process which is a generalization of a Dirich-
let process. A variable-order Pitman-Yor language
model (VPYLM) is an extension of a HPYLM that
makes it possible to learn an appropriate context
length n of an n-gram. Yoshii and Goto (2011)
and Nakano et al. (2015) apply a VPYLM to the
chord progression. It is thereby possible to learn
an appropriate n-gram length for each chord.

2 Unsupervised melody segmentation
using nested Pitman-Yor language
model

The musical note sequence s can be expressed as
s = s1s2 · · · sN using musical notes s. When the
motif is designated as m, melody segmentation is
to obtain the motif sequence s = m1m2 · · ·mM .
N is the length of the musical note sequence and
M is the number of motifs in the musical note se-
quence.

When the musical note sequence s =
s1s2 · · · sN is given, unsupervised melody seg-
mentation is considered as the problem of finding
the motif sequence that maximizes the probability
p(m|s) of the motif sequence s = m1m2 · · ·mM

obtained by dividing the note sequence. The
p(m|s) can be computed by the language model.
The model must calculate probabilities for every
possible segmentation of the motif to perform a
melody segmentation. Using an n-gram language
model with a note-level Pitman-Yor process, we
can give probabilities for all possible motif seg-
mentations and thus compute the likelihood of the
motifs. We can sample the word segmentation on
the basis of this probability.

2.1 Modeling of melody using nested
Pitman-Yor language model

In this section, the melody is modeled using a
NPYLM that is an n-gram language model based
on a hierarchical Pitman-Yor (PY) process. The
PY process is a stochastic process that gener-
ates a discrete probability distribution G, which
is similar to a probability distribution G0 (G ∼
PY (G0, d, θ)). When we have a uni-gram distri-
bution of motifs G1, the bi-gram distribution G2

of motifs will be similar to G1. Therefore, we
can generate G2 from a PY process of base mea-
sure G1 (G2 ∼ PY (G1, d, θ)). The uni-gram
motif distribution G1 can be generated as G1 ∼

PY (G0, d, θ). The NPYLM is a hierarchical lan-
guage model in which the note-level HPYLM is
embedded as a base measure of the motif-level
HPYLM. For details, see (Teh, 2006).

2.2 Unsupervised melody segmentation and
training language model

A straightforward method of melody segmenta-
tion is to repeat Gibbs sampling, where every note
is sampled with the probability of being a mo-
tif boundary, and the language model is updated
in accordance with the results of that sampling.
We used a sentence-wise Gibbs sampler of word
segmentation using efficient dynamic program-
ming (Mochihashi et al., 2009). Sampling a new
segmentation, we update the NPYLM by adding a
new sentence in accordance with the new segmen-
tation. By repeating this process for all musical
pieces in a random order, the melody segmentation
and language model are alternately optimized.

The musical note sequence is divided into mo-
tifs as follows. α[t][k] is the probability of note
sequence s1 · · · st with the final k characters being
a motif.

α[t][k] =
t−k∑
j=1

p(stt−k+1|st−k
t−k−j+1) · α[t− k][j]

(1)
where α[0][0] = 1 and sji = si · · · sj .
p(stt−k+1|s

t−k
t−k−j+1) is obtained by the language

model. If α[t][k] can be obtained, we can sample
a motif backward. The length of the motif k is
sampled from the end of the note sequence to its
beginning in accordance with the forward prob-
ability α[t][k] (backward sampling). For details,
see (Mochihashi et al., 2009).

2.3 Representation of musical note sequence
Musical note sequences can be represented in a
number of ways depending on which attributes are
used. In this paper, we assume that a musical note
in music is like a character in natural language.
A melody is considered to be time series data of
notes with the properties of various pitches and du-
rations. Therefore, the following representation of
musical note sequences with pitch and duration is
used.

Pitch-class sequence
A pitch-class sequence considers a melody to be a
sequence of pitch classes. The role of each pitch
class is assumed to be the same in each key. For



example, the note C in the key of C major and the
note D in the key of D major are the same in the
sense that they are both the tonic for their key. For
this reason, we transpose all the keys to the key of
C in advance.

In pitch-class sequences, the octave is ignored,
the sharp and the flat are not distinguished, and
12 different symbols are used. There is a total of
13 symbols: 12 symbols for pitch class and 1 for
rests.

Pitch-interval sequence
A pitch-interval sequence considers the melody as
a sequence of differences between the pitch of the
previous note and the current note. We define a
pitch-interval sequence on the basis of the assump-
tion that the melody is given meaning by the rela-
tive difference in pitch to the previous notes The
Implication-Realization (I-R) model (Narmour,
1990), a music theory that classifies and analyzes
melodies, ives an abstract of the melody by focus-
ing on the relationship between the pitches of the
notes. The intervals are considered up to two oc-
taves above and below (−24 ≤ dt ≤ 24). There-
fore, the resulting number of symbols is 50 (49 +
rest symbol).

Duration sequence
The duration sequence is defined as a sequence
of durations focusing only on the duration of the
notes in a melody. The durations are limited to the
length from a thirty-second note up to two whole
notes. We are also able to represent dotted notes
and tuplets of each note, from thirty-second notes
up to whole notes. Rests are treated as a specific
symbol with the meaning of a rest.

Compound-representation sequence
The three sequences introduced in the previous
section can be combined with one another to form
compound representations. First, we combine the
pitch-class sequence and duration sequence. Cor-
responding symbols from the pitch-class sequence
and the duration sequence are combined to form a
compound representation. We call this the pitch-
class and duration sequence (P-D sequence). Sec-
ond, we combine the pitch-interval sequence and
duration sequence. Similarly combining their re-
spective symbols, we form the pitch interval and
duration sequence (I-D sequence) Third, the com-
bination of the pitch-class sequence and pitch-
interval sequences is called pitch-class and inter-

val sequence (P-I sequence) Finally, we label the
combination of all three sequences (pitch-class,
pitch interval, and duration) as the P-I-D sequence.

3 Evaluation

In this section, we discuss the characteristics of
the melody segmentation obtained with NPYLM,
comparing them with the rules and grouping struc-
ture of a generative theory of tonal music (GTTM).

3.1 Experimental conditions

To investigate the characteristics of the melody
segmentation obtained with NPYLM, we calculate
the F-measure for the segments using the ground
truth of the grouping structure and each of the
rules of the GTTM, although the grouping struc-
ture of the GTTM is not necessarily the best for
a language model. In this experiment, 300 songs
of the GTTM database (Hamanaka) were used as
learning data (302 phrases). This dataset consists
of monophonic melodies of classical music com-
posed by multiple composers. The total number of
notes in the training data set was 12,343, and the
average number of notes for each song was 40.9.

The grouping structure of the GTTM represents
the cognitive grouping of music experts as they
listen to the musical pieces. The sub-rules of the
GTTM, the grouping preference rules (GPR), can
indicate the candidate boundaries of a group. Each
rule does not necessarily coincide with the GTTM
grouping structure, but each one mechanically cal-
culates possible boundaries. We compare the seg-
ments of the proposed method with the GTTM
rules related to the representations of the notes de-
scribed in Section 3. Specifically, we use GPR
2a, 2b, 3a, and 3d. Given four notes n1, n2,
n3, and n4, each GPR draws a grouping bound-
ary if the relationship between n2 and n3 satisfies
the following conditions: resti−1 < resti and
resti > resti+1, where resti is the time interval
from the beginning to the end of the note (GPR
2a); ioii−1 < ioii and ioii > ioii+1, where ioii is
the inter-onset interval (GPR 2b); intervali−1 <
intervali and intervali > intervali+1, where
intervali is the pitch interval (GPR 3a); leni−1 =
0 and leni ̸= 0 and leni+1 = 0, where leni−1 is
the difference of the duration (GPR 3d);

3.2 Experimental results and discussion

Table 1 shows the F-measure of each representa-
tion of the musical note sequence. The row (a)



Representations GPR 2a GPR 2b GPR 3a GPR 3d Grouping
Pitch Interval Duration (Rest) (ioi) (Interval) (Length) Structure

(a) ✓ 8.7 21.6 27.7 9.3 29.4
(b) ✓ 6.4 21.9 22.6 8.0 23.6
(c) ✓ 6.8 18.7 24.3 17.0 34.2
(d) ✓ ✓ 6.3 18.6 24.9 7.7 21.3
(e) ✓ ✓ 6.8 21.0 24.6 13.1 28.1
(f) ✓ ✓ 9.6 19.0 21.8 14.6 24.2
(g) ✓ ✓ ✓ 10.6 17.1 19.5 11.7 21.7

Table 1: F-measure of each representation of the musical note sequence.

Input: note sequence

: Grouping structure : P-I-D sequence
Output: segments

Figure 1: A segmentation result for Bagatelle “Für
Elise” WoO.59 (Ludwig van Beethoven) in the GTTM
database (No. 3).

Input: note sequence

Output: segments

: Grouping structure : Duration sequence : P-I-D sequence

Figure 2: A segmentation result for Má Vlast Moldau
(Bedřich Smetana) in the GTTM database (No. 60).

indicates the results of the pitch-class sequence,
and the row (d) indicates the results of the P-I se-
quence. The F-measure for the grouping structure
was highest when the duration sequence was used.
Figures 1 and 2 show the segmentation results for
musical pieces in the GTTM database (No. 3 and
No. 60). The lines under the musical score indi-
cate that the notes within the range of the line are
in the same grouping.

Regarding GPR 2a, the F-measure was lower
than that of the other rules, regardless of which
representation was used. The current implementa-
tion considers rests to be a special type of note, so
distinguishing whether the group boundary is after
or before a rest is not possible (see Figure 2). Re-
garding GPR 3d, F-measure were higher when us-
ing a representation related to duration than when
using the other representations.

The F-measure for the grouping structure was
highest when the duration sequence was used. The
grouping structure of the GTTM depends on its
metrical structure, such as beats. When the du-

ration sequence is input, we can obtain segments
of the rhythmic pattern that occur frequently in
a note sequence, because we focus only on the
duration, ignoring the pitch completely. In fact,
grouping boundaries were drawn more frequently
at beat positions when using the duration repre-
sentation than when using other representations,
even though the representation did not explicitly
include a metrical structure.

The grouping structure of the GTTM is not nec-
essarily optimal for language models. However,
depending on the application, we may have to
consider giving information about motifs as prior
knowledge and applying semi-supervised learn-
ing to obtain the expected melody segmentation.
This NPYLM enables semi-supervised melody
segmentation.

4 Conclusion

In this study, we performed unsupervised mo-
tif segmentation using a Nested Pitman-Yor Lan-
guage Model. The resulting segments depend on
which attributes are used for musical note rep-
resentation. In the future, we will work on ap-
plication tasks such as musical structure analy-
sis and representation learning using the obtained
segments to verify the usefulness of the segments
obtained with the proposed model. We must also
consider using other representations, e.g., using
abstractions for melody such as I-R model or
melodic contour, and explicitly incorporating the
metrical structure.
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