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Introduction

Welcome to the ACL 2020 Workshop on NLP for Conversational AI.

Ever since the invention of the intelligent machine, hundreds and thousands of mathematicians, linguists,
and computer scientists have dedicated their career to empowering human-machine communication in
natural language. Although the idea is finally around the corner with a proliferation of virtual personal
assistants such as Siri, Alexa, Google Assistant, and Cortana, the development of these conversational
agents remains difficult and there still remain plenty of unanswered questions and challenges.

Conversational AI is hard because it is an interdisciplinary subject. Initiatives were started in different
research communities, from Dialogue State Tracking Challenges to NIPS Conversational Intelligence
Challenge live competition and the Amazon Alexa prize. However, various fields within the NLP
community, such as semantic parsing, coreference resolution, sentiment analysis, question answering,
and machine reading comprehension etc. have been seldom evaluated or applied in the context of
conversational AI.

The goal of this workshop is to bring together NLP researchers and practitioners in different fields,
alongside experts in speech and machine learning, to discuss the current state-of-the-art and new
approaches, to share insights and challenges, to bridge the gap between academic research and real-
world product deployment, and to shed the light on future directions. “NLP for Conversational AI” will
be a one-day workshop including keynotes, spotlight talks, posters, and panel sessions. In keynote talks,
senior technical leaders from industry and academia will share insights on the latest developments of the
field. An open call for papers will be announced to encourage researchers and students to share their
prospects and latest discoveries. The panel discussion will focus on the challenges, future directions
of conversational AI research, bridging the gap in research and industrial practice, as well as audience-
suggested topics.

With the increasing trend of conversational AI, NLP4ConvAI 2020 is competitive. We received 27
submissions, and after a rigorous review process, we only accept 15. There are total 13 accepted regular
workshop papers and 2 cross-submissions or extended abstracts. The workshop overall acceptance rate
is about 55.5%. We hope you will enjoy NLP4ConvAI 2020 at ACL and contribute to the future success
of our community!

NLPConvAI 2020 Organizers
Tsung-Hsien Wen, PolyAI
Asli Celikyilmaz, Microsoft
Zhou Yu, UC Davis
Alexandros Papangelis, Uber AI
Mihail Eric, Amazon Alexa AI
Anuj Kumar, Facebook
Iñigo Casanueva, PolyAI
Rushin Shah, Google
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Abstract

One of the core components of voice assis-
tants is the Natural Language Understand-
ing (NLU) model. Its ability to accurately
classify the user’s request (or “intent”) and
recognize named entities in an utterance is
pivotal to the success of these assistants.
NLU models can be challenged in some
languages by code-switching or morpho-
logical and orthographic variations. This
work explores the possibility of improving
the accuracy of NLU models for Indic lan-
guages via the use of alternate represen-
tations of input text for NLU, specifically
ISO-15919 and IndicSOUNDEX, a custom
SOUNDEX designed to work for Indic lan-
guages. We used a deep neural network
based model to incorporate the informa-
tion from alternate representations into the
NLU model. We show that using alternate
representations significantly improves the
overall performance of NLU models when
the amount of training data is limited.

1 Introduction
Building NLU models can be more challeng-
ing for languages that involve code-switching.
Recent times have seen a significant surge of
interest in voice-enabled smart assistants, such
as Amazon’s Alexa, Google Assistant, and Ap-
ple’s Siri. These assistants are powered by
several components, which include Automatic
Speech Recognition (ASR) and Natural Lan-
guage Understanding (NLU) models. The in-
put to an NLU model is the text returned by
the ASR model. With this input text, there
are two major tasks for an NLU model: 1) In-
tent Classification (IC), and 2) Named Entity
Recognition (NER).

Code-switching is a phenomenon in which
two or more languages are interchanged within
a sentence or between sentences. An exam-
ple of code-switching from Hindi is ‘मेरी shop-

ping list मǁ dove soap bar जोड़ǁ’ (‘add dove soap
bar to my shopping list’). NLU models ex-
pect ASR to return the text in the above form,
which matches with the transcription of the
training data for NLU models. Then, NLU
model would return the action as Add Items
To Shopping List, while it also recognizes ‘dove
soap bar’ as the actual item name to be added
to the shopping list. However, ASR could in-
consistently return ‘मेरी shopping list मǁ dove
soap बार जोड़ǁ’, where the English word ‘bar’ is
recognized as a Hindi word ‘बार’. Note that
while the Hindi word ‘बार’ means something
different than the English ‘bar’, their pronun-
ciation is similar enough to mislead the ASR
model in the context of mixed-language utter-
ance. In this case, the NLU model should be-
come robust against such ASR mistakes, and
learn that ‘dove soap बार’ is equivalent to ‘dove
soap bar’ in order to correctly recognize it
as an item name. The phenomenon of code-
switching is common amongst other Indic lan-
guages as well.
ASR inconsistencies can cause significant

challenges for NLU models by introducing new
data that the models were not trained on.
Such inconsistencies can occur due to 1) code-
switching in the data, especially when the in-
put text contains more than one script (char-
acter set), 2) orthographic or morphological
variations that exist in the input text, or 3)
due to requirements for multilingual support.
In a language such as English in the United
States, where code-switching is less common,
both ASR and NLU models can perform quite
well, as input data tend to be more consistent.
However, when it comes to Indic languages
such as Hindi, where code-switching is much
more common, the question arises as to which
representation of the input text would work
best for NLU models.
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There is ongoing research on solving mod-
eling tasks for data with code-switching. In
Geetha et al. (2018), the authors explore using
character and word level embeddings for NER
tasks. Some of this research focuses on us-
ing alternate representations of text for NLU
modeling. For example, Johnson et al. (2019)
explore the use of cross-lingual transfer learn-
ing from English to Japanese for NER by ro-
manizing Japanese input into a Latin-based
character set to overcome the script differences
between the language pair. Zhang and Le-
Cun (2017) has shown using romanization for
Japanese text for sentiment classification hurt
the performance of the monolingual model.

In this paper, we explore the possibility of
mitigating the problems related to ASR in-
consistency and code-switching in our input
data by using two alternate representations of
text in our NLU model: ISO-15919 and In-
dicSOUNDEX. ISO-159191 was developed as
a standardized Latin-based representation for
Indic languages and scripts. SOUNDEX is an
algorithm that provides phonetic-like represen-
tations of words. Most work on SOUNDEX
algorithms has focused primarily on monolin-
gual solutions. One of the best known imple-
mentations with a multilingual component is
Beider-Morse Phonetic Matching Beider and
Morse (2010); however, it only identifies the
language in which a given word is written
to choose which pronunciation rules to apply.
Other attempts at multilingual SOUNDEX
algorithms, particularly for Indic languages,
were smaller studies focused on two Indic lan-
guages with or without English as a third lan-
guage. Chaware and Rao (2012) developed a
custom SOUNDEX algorithm for monolingual
Hindi and Marathi word pair matching. Shah
and Singh (2014) describe an actual multilin-
gual SOUNDEX implementation designed to
cover Hindi, Gujarati, and English, which, in
addition to the actual algorithm implementa-
tion, was aided by a matching threshold declar-
ing two conversions a match even if they dif-
fered in up to two characters.

In this study, we use ISO-15919 and Indic-
SOUNDEX representations of text in a deep
neural network (DNN) to perform multi-task
modeling of IC and NER. We experiment

1https://en.wikipedia.org/wiki/ISO_15919

on one high-resource Indic language (Hindi)
and three low-resource Indic languages (Tamil,
Marathi, Telugu). In Section 2, we describe
the two alternate representations of text that
we explore. In Section 3, we describe our data,
model architecture, and detail our experimen-
tal setup. In Section 4, we present our results
followed by our conclusions in Section 5.

2 Alternate representations of text

Using data transcribed in the original script of
a language can cause problems for both mono-
lingual and multilingual NLU models. For a
monolingual model in a language where code-
switching, orthographic variations, or rich
morphological inflections are common, NLU
models may not be able to perform well on
all the variations, depending on the frequency
of these variations in the training data. For
multilingual models, words with similar sound
and meaning across different languages (e.g.,
loanwords, common entities) cannot be cap-
tured if the words are written in their original
script. For example, the same proper noun ‘tel-
ugu’ is written as ‘तेलुग’ु in Hindi, as ‘ெத�f’
in Tamil, and as ‘čలుగు’ in Telugu. Although
they sound similar and mean the same thing,
NLU model will see them as unrelated tokens
if they are represented in their original scripts
in the input data.
From the NLU point of view, a text repre-

sentation that can minimize variations of the
same or similar words within a language and
across different languages would be beneficial
for both IC and NER tasks. In this section,
we explore two alternative ways of text rep-
resentations for Indic languages: ISO-15919
and a SOUNDEX-based algorithm, which we
call IndicSOUNDEX. Compared to using the
original scripts, these two alternatives can rep-
resent the variants of the same word or root
in the same way. For example, in the origi-
nal Hindi script (i.e., Devanagari), the word
for ‘volume/voice’ can be represented in two
forms: ‘आवाज़’ and ‘आवाज’. These two forms,
however, are uniformly represented as ‘āvāj’
in ISO-15919 and as the string ‘av6’ in Indic-
SOUNDEX. Similarly, the English word ‘list’
may be transcribed as ‘list’ or as ‘Ê�Ǡ’ in Tel-
ugu; however, they map to the same Indic-
SOUNDEX representation, ‘ls8’.
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2.1 ISO-15919

ISO-15919 is a standardized representation of
Indic scripts based on Latin characters, which
maps the corresponding Indic characters onto
the same Latin character. For example, ‘क’ in
Devanagari, ‘క’ in Telugu, and ‘க’ in Tamil are
all represented by ‘k’ in the ISO-15919 stan-
dard. Consequently, ISO-15919 can be used
as a neutral common representation between
Indic scripts. However, ISO-15919 has some
downsides. Indic scripts often rely on implicit
vowels which are not represented in the orthog-
raphy, which means they cannot be reliably
added to a transliterated word. Additionally,
Indic scripts have a character called a halant,
or virama, which is used to suppress an in-
herent vowel. This character, although usu-
ally included orthographically in a word, does
not have an ISO-15919 representation and so
is lost in an exact, one-to-one conversion. Fi-
nally, it is not always the case that the same
word in two different Indic scripts will have
the same ISO-15919 conversion due to script-
to-script and language-to-language differences
and irregularities. Table 1 below shows some
examples of conversion using ISO-15919.

2.2 IndicSOUNDEX

SOUNDEX algorithms provide phonetic-like
representations of words that attempt to re-
duce spelling and other orthographic varia-
tions for the same or similarly-sounding words,
mainly to increase recall in information re-
trieval or text search tasks. This is done by fol-
lowing a set of simple steps which may include
removing vowels, reducing character duplica-
tion, and mapping sets of characters to a sin-
gle character, based on whether they 1) sound
similar or 2) are used in similar environments
in similar sounding words. For example, at
its most extreme, American SOUNDEX maps
‘c’, ‘g’, ‘j’, ‘k’, ‘q’, ‘s’, ‘x’, and ‘z’ to the same
character: ‘2’.

IndicSOUNDEX is a custom SOUNDEX ap-
proach designed to work on Hindi, Marathi,
Telugu, Tamil, Malayalam, Punjabi, Bengali,
Kannada, Gujarati, and English. Table 1
shows some examples of conversion using In-
dicSOUNDEX:

3 Experimental Setup
3.1 Data
For our experiments, we chose datasets from
four Indic languages: Hindi, Tamil, Marathi,
and Telugu. For Hindi, we use an inter-
nal large-scale real-world dataset; for the
other three languages, we use relatively small
datasets collected and annotated by third
party vendors. We perform a series of ex-
periments to evaluate the use of the alternate
representations of text, ISO-15919 and Indic-
SOUNDEX, described in Section 2.
Our Hindi training dataset consists of 6M

data. We separate a portion (1̃%) of the data
into an independent test set. We execute a
stratified split on the remainder, based on in-
tent, and choose 10% of this data for validation
and the rest as training data. For the three
smaller-scale datasets, we execute a stratified
split with 60% for training, 20% for validation,
and 20% for testing. Table 2 shows the data
partitions across different languages used for
our experiments.
Each of the four datasets contain code-

switching. The transcription was done either
in the original script of the language (for words
from that language) or in the standard Latin
(for words from other languages including En-
glish). However, the transcription was not al-
ways consistent, especially in the third party
data, so some Indic words were transcribed in
the so-called ‘colloquial’ Latin (i.e., a casual,
non-standard way of representing Indic lan-
guages in online resources) and some English
words were represented in the original script of
the Indic languages (e.g., ‘Ê�Ǡ’ for the English
word ‘list’). See Table 3 for the total counts
of tokens in each script in each of the training
and test data, which reflects the use of code-
switching in each training dataset. Note that
Hindi and Marathi both use the same script
(Devanagari) in their writing systems.

3.2 Model architecture
For our NLU models, we used a multi-task
modeling framework that predicts Intent and
Named Entities, given an input sentence. A
schematic of our model is given in Figure 1 and
Figure 2. For a given corpus, we built alter-
nate text representations using the ISO-15919
and IndicSOUNDEX approaches mentioned in

3



Table 1: Examples of conversion using ISO-15919 and IndicSOUNDEX

Script Indic Original ISO-15919 IndicSOUNDEX
Devanagari (Hindi) इɣÊदके indikē i034
Devanagari (Marathi) इɟतहासाचा itihāsācā i8hs2
Telugu పºన¿ pḍindi p303
Tamil ப¥ர�S pirvīṇ plv0

Table 2: Data partition across languages

Language Train Test Valid Total
Hindi 5.4M 600K 54K 6M
Tamil 27K 9k 9k 45K
Marathi 27K 8.5k 8.5K 42K
Telugu 27K 9K 9k 46K

Figure 1: Embedding for a token

Figure 2: Modeling architecture with tokens and al-
ternate representation (IndicSOUNDEX) as input

Section 2. We used both the original sentence
as well as the alternate representations of the
sentence to inform our models via added em-
bedding layers.

First, we built a baseline model without
using any alternate representations using the
Baseline Embedding block architecture below.
Next, we built two candidate models: the first
with an embedding layer using alternate repre-

sentations from IndicSOUNDEX, and the sec-
ond with the alternate representations from
ISO-15919. Our modeling architecture is de-
signed as follows:

Baseline Embedding Block: For our
baseline model, we designed our embedding
block with two layers and concatenated the
outputs. The first layer is a token embedding
layer of dimension 100, while the second one
is a character-based token embedding built us-
ing convolutional neural network (CNN) sub-
sequence embedding with dimension of 16.
The final embedding used in our models will
be generated by concatenating these two em-
beddings.

Embedding block with alternate repre-
sentations: For our alternate representation
models, we modified the baseline embedding
block to accommodate these representations.
All other components, including encoder and
decoder, stayed the same. The embedding
block for this setting was modified to have four
layers with final embedding used in our model
being the concatenation of these. A schematic
is shown in Figure 1 The four layers are as
follows:

1. Token embedding layer of dimension 100.

2. Token embedding layer for alternate rep-
resentations of tokens of dimension 100 .

3. Character embedding built using convolu-
tional neural network (CNN) subsequence
embedding with dimension of 16.

4. Alternate representations character em-
bedding built using convolutional neural
network (CNN) subsequence embedding
with dimension of 16.

Eventually, we concatenated the output of the
embedding layer to obtain the final word em-
bedding.

4



Table 3: The number of tokens in each script within each training and test set

Hindi Tamil Marathi Telugu
Script Train Test Train Test Train Test Train Test
Latin 13.9M 101K 22.5K 7.5K 29.1K 9.7K 40.7K 13.4K
Devanagari 15.5M 102K 0 0 110K 36K 0 0
Tamil 8 0 108K 36K 0 0 0 0
Telugu 0 0 0 0 0 0 112K 37.5K
Other 1K 0 2 0 0 0 0 0
Total 29.5M 203K 131K 43.5K 139K 46K 153K 51K

Encoder: We defined a biLSTM (bidi-
rectional Long Short Term Memory) encoder
with 5 hidden layers and a hidden dimension
of 512. A schematic is given in Figure 2. In
order to handle our multi-task prediction of
Intent and NER, we have two output layers:
1. A multi-layer perceptron (MLP) classifier

with the number of classes set to the vo-
cabulary size of Intent.

2. A conditional random fields (CRF) se-
quence labeler with the number of classes
set to the vocabulary size of Named Enti-
ties.

Decoder: We used a joint task decoder for
our purpose. The Intent-prediction task is ac-
complished by single class decoder, while the
label-prediction task is achieved by sequence
labeling decoder. For this setup, the loss func-
tion is a multi-component loss, with cross-
entropy loss for Intent and CRF-loss (Lafferty
et al., 2001) for NER.

Evaluation metric: We use Semantic Er-
ror Rate (SemER) Su et al. (2018) to evaluate
the performance of our models. The definition
of SemER is as follows:

SemER =
(D + I + S)

(C +D + S)
(1)

where D (deletion), I (insertion), S (substitu-
tion), C (correct slots).

As the Intent is treated as a slot in this met-
ric, the Intent error is considered as a substi-
tution.

Experimental Process: Our experimen-
tal setup consists of the following process. For
each language, we build three models with the
model architecture explained in model archi-
tecture section.

• Baseline model - a baseline model with
architecture explained in the model archi-
tecture section using word and character
embeddings from tokens.

• IndicSOUNDEX model - a model with In-
dicSOUNDEX alternate representations
i.e., using an embedding layer with tokens,
the IndicSOUNDEX representation of to-
kens, characters from tokens and the In-
dicSOUNDEX representations of charac-
ters.

• ISO-15919 model - a model with ISO-
15919 alternate representations i.e., using
embedding layer with tokens, the ISO-
15919 representation of tokens, characters
from tokens and the ISO-15919 represen-
tations of characters.

4 Results

To evaluate each model, we used our withheld
test dataset and measured SemER scores as-
sociated with the three different models. To
obtain confidence intervals, we bootstrapped
our test dataset by sampling ten times with
replacement, and evaluated our models on
each of these ten datasets. Final SemER
was taken as the average of all the ten iter-
ations. We used a Student’s t-test to calcu-
late the significance of the improvements of
the IndicSOUNDEX and ISO-15919 models
with respect to the baseline. Here we present
the results of our three models: the Baseline
DNN model, IndicSOUNDEX model, and ISO-
15919 model on each of the four languages.
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Table 4: Comparison of ISO-15919 and IndicSOUNDEX model performance on Hindi w.r.t baseline.
‘+’ indicates degradation, ‘-’ indicates improvement. ‘*’ denotes the results that are not statistically
significant

Language Model Topics improved Average improvement Topics degraded Average degradation Overall change

Hindi IndicSOUNDEX 3 8% 1 5% –0.07*%
ISO-15919 3 4% 4 9% +1.08%

4.1 Results for a high-resource
language - Hindi

Our Hindi data consisted of data from 22
topics including Music, Reminders, Alarms,
Weather, Search, News, and so on. See Ap-
pendix for the full list of topics. Table 4
shows the performance on Hindi. Results re-
vealed that, out of the 22 topics, the use of
IndicSOUNDEX resulted in 3 topics showing
improvement in SemER, with an average im-
provement of 8% and 1 topic showing 5.36%
degradation. The use of ISO-15919 resulted in
3 topics showing an average improvement of
4% and 4 topics showing an average degrada-
tion of 9%. Rest of the topics showed results
that are not statistically significant. We note
that two topics showed improvement across
both models: SmartHome and Global.

Our results show that there is no overall
(i.e., across all topics together) statistically
significant improvement seen for the Indic-
SOUNDEX model. However, we note that
the improvements in 3 three topics: Global,
SmartHome, and ToDoLists are significant.
The one topic that showed a degradation was
Shopping.

On the other hand, the ISO-15919 model
shows an overall 1.08% degradation that is
statistically significant. The ISO-15919 model
shows statistically significant improvements in
Global, Video, and SmartHome topics, and
degradation in Weather, Music, QuestionAn-
dAnswer, and Media.

In summary, for a high-resource language
such as Hindi, we find that neither Indic-
SOUNDEX nor ISO-15919 shows an overall
significant improvement. However, there are
certain topics that could benefit from using
these alternate representations either for IC or
NER. Note that the majority of the training
data for Hindi were transcribed by well-trained
internal human transcribers and went through
some cleaning processes for common transcrip-

tion errors. Also, given the size of the training
data, the NLU models were well trained on
the various spelling variations represented in
the original script. Owing to this relatively
high consistency in transcription and the exis-
tence of various tokens with similar meaning
and sound in the training data, we believe that
using the alternate representations of text was
not effective for improving the performance of
the NLU model.

4.2 Results for low-resource languages
- Tamil, Marathi, and Telugu

Unlike the case of Hindi, we see much more
significant overall improvements where train-
ing data are sparse. All three languages
showed significant improvement in overall per-
formance for ISO-15919 model, whereas Indic-
SOUNDEX showed significant improvement
for Tamil and Marathi. Within Tamil and
Marathi, IndicSOUNDEX showed a larger im-
provement than ISO-15919.
Our data for the low-resource languages con-

sisted of 19 different topics. Table 5 shows
the performance of each language. At topic
level for Tamil, we found that using the Indic-
SOUNDEX model improved the performance
in 15 out of 19 topics with an average SemER
drop of 11%. With the ISO-15919 represen-
tation, 13 out of 19 topics showed improve-
ment with an average SemER drop of 13%.
For Marathi, IndicSOUNDEX improved 7 top-
ics with an average drop in SemER of 18%,
whereas ISO-15919 improved 9 topics but with
a lower average drop in SemER (1̃0%). For Tel-
ugu, using IndicSOUNDEX or ISO-15919 im-
proved the performance of 4 topics each with
the same average drop in SemER of 15%.
There were two topics that showed improve-
ment across all three languages with the In-
dicSOUNDEX model: MovieTimes and Me-
dia. Furthermore, Calendar and Music top-
ics showed significant improvement across all
three languages with the ISO-15919 model.
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Table 5: Comparison of ISO-15919 and IndicSOUNDEX model performance w.r.t baseline on low resource
languages. ‘+’ indicates degradation, ‘-’ indicates improvement. ‘*’ denotes the results that are not
statistically significant

Language Model Topics improved Average improvement Topics degraded Average degradation Overall change

Tamil IndicSOUNDEX 15 11% 1 7% -7.6%
ISO-15919 13 13% 2 2% -6.2%

Marathi IndicSOUNDEX 7 18% 6 8% -2.30%
ISO-15919 9 10% 6 11% -1.50%

Telugu IndicSOUNDEX 4 15% 5 7% -0.20*%
ISO-15919 4 15% 4 8% -2.4%

Table 6: Percentage change in SemER for candidate models w.r.t baseline model across languages. ‘+’
indicates degradation, ‘-’ indicates improvement

Language % Change in IndicSOUNDEX % Change in ISO-15919
Hindi -0.07% +1.08%
Tamil -7.6% -6.2%
Marathi -2.3% -1.5%
Telugu -0.2% -2.4%

In Table 6, we provide the relative change
in performance w.r.t baseline of all the models
across high and low resource languages.

5 Conclusion
In this work, we explored the effect of using
alternate representations of text for IC and
NER models on a high-resource Indic language
(Hindi) and three low-resource Indic languages
(Tamil, Telugu, Marathi). We adopted a neu-
ral network based model architecture, where
the alternate representations are incorporated
in the embedding layers.

Based on the performance analysis over the
baseline models, we saw that the alternate rep-
resentations, while helping specific topics, do
not help as much for the high-resource lan-
guage overall. This is possibly due to the rel-
atively high consistency in transcription and
the existence of various tokens with similar
meaning and sound in the training data. How-
ever, they helped significantly boost perfor-
mance in the low-resource languages, thus cre-
ating potential applications in bootstrapping
new languages quickly and cost-effectively.

In the case of the low-resource languages we
saw significant improvements overall when us-
ing either ISO-15919 or IndicSOUNDEX. This
suggests that smaller datasets stand to bene-
fit from the use of alternative representations.
Based on Tamil and Marathi results, where
IndicSOUNDEX performed better than base-

line and ISO-15919, we can conclude that the
mitigation of the impact of multiple different
scripts and inconsistent Latin usage accom-
plished by IndicSOUNDEX seems to produce
better results for our NLU models. The lack of
impact of IndicSOUNDEX for Telugu merits
further investigation.
Our future work includes exploring differ-

ent model architectures including transformer
models, exploring these representations fur-
ther by pre-training models with a combina-
tion of original tokens and alternate represen-
tations of tokens. We also plan to explore the
use of character bigrams (of both original text
and alternate representations of text) instead
of unigram characters in the embedding layers.
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A Appendix A. Results across different topics on all languages

Table 7: Results for Hindi. Relative change in performance w.r.t baseline on the average of ten boot-
strapped test data sets. ‘+’ indicates degradation, ‘-’ indicates improvement

Topic % Change in IndicSOUNDEX Is Significant % Change in ISO-15919 Is Significant
Reservations -1.64% NO -0.65% NO
Books -0.43% NO -5.18% NO
Calendar -7.59% NO -7.05% NO
CallingAndMessaging -4.36% NO -0.08% NO
News +2.78% NO +0.92% NO
Photos -6.85% NO -12.16% NO
Media +7.79% NO +11.13% YES
Global -2.89% YES -4.09% YES
Help +6.52% NO +5.76% NO
SmartHome -5.58% YES -4.32% YES
QuestionAndAnswer +3.10% NO +4.99% YES
Search -3.98% NO +3.78% NO
Music -0.45% NO +2.18% YES
Notifications +2.74% NO -2.49% NO
OriginalContent -3.66% NO -1.63% NO
Recipes -0.44% NO -0.39% NO
Shopping +5.36% YES -0.82% NO
Sports 0% NO 0% NO
ToDoLists -16.50% YES +1.08% NO
Video -2.73% NO -4% YES
Weather -3.89% NO +16.36% YES
Overall -0.07% NO +1.08% YES

Table 8: Results for Tamil. Relative change in performance w.r.t baseline on the average of ten boot-
strapped test data sets. ‘+’ indicates degradation, ‘-’ indicates improvement

Topic % Change in IndicSOUNDEX Is Significant % Change in ISO-15919 Is Significant
Books -14.06% YES -18.28% YES
Calendar -8.52% YES -11.93% YES
MovieTimes -7.91% YES -7.24% NO
CallingAndMssaging -12.44% YES -6.38% YES
News -15.50% YES -6.14% YES
Media -12.23% YES 0% NO
Global -4.20% YES -4.41% YES
Help -20.84% YES -17.72% YES
SmartHome -7.29% YES +0.05% YES
Search +7.15% YES +3.08% NO
Music -8.03% YES -8.08% YES
Notifications -10.98% YES -6.81% YES
OriginalContent -9.92% YES -23.21% YES
Shopping -16.22% YES -13.44% YES
Sports +8.01% NO -30.10% YES
ToDoLists -2.14% NO +3.03% YES
Video -4.01% YES -14.65% YES
Weather -10.23% YES -10.91% YES
Overall -7.56% YES -6.23% YES
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Table 9: Results for Marathi. Relative change in performance w.r.t baseline on the average of ten
bootstrapped test data sets. ‘+’ indicates degradation, ‘-’ indicates improvement

Topic % Change in IndicSOUNDEX Is Significant % Change in ISO-15919 Is Significant
Books -6.95% YES -11.81% YES
Calendar +9.28% YES -0.11% YES
MovieTimes -13.74% YES -11.03% YES
CallingAndMessaging +3.09% YES 4.97% YES
News +16.76% YES +1.90% YES
Media -24.50% YES -12.84% YES
Global +0.13% NO -2.81% YES
Help -8.51% YES -0.76% NO
SmartHome -14.36% YES -5.04% YES
Search -0.63% NO -1.70% YES
Music -0.45% NO -4.66% YES
Notifications +2.49% YES +5.50% YES
OriginalContent -22.84% YES +8.10% YES
Shopping +2.97% NO +12.17% YES
Sports -38.48% YES -35.97% YES
ToDoLists +0.70% NO -0.23% NO
Video +5.25% YES +1.59% NO
Weather +12.29% YES +32.18% YES
Overall -2.29% YES -1.47% YES

Table 10: Results for Telugu. Relative change in performance w.r.t baseline on the average of ten
bootstrapped test data sets. ‘+’ indicates degradation, ‘-’ indicates improvement

Topic % Change in IndicSOUNDEX Is Significant % Change in ISO-15919 Is Significant
Books +2.42% NO +0.37% NO
Calendar +4.51% YES -10.33% YES
MovieTimes -13.57% YES -8.83% YES
CallingAndMessaging +5.41% YES +3.79% YES
News +0.97% NO +15.24% YES
Media -13.91% YES -0.61% NO
Global +2.93% YES +3.57% NO
Help +12.35% YES -0.45% NO
SmartHome -0.15% NO +0.31% NO
Search -7.41% YES +2.90% YES
Music +1.02% NO -4.55% YES
Notifications +1.33% NO -4.15% NO
OriginalContent -3.94% NO +2.10% NO
Shopping +0.55% NO +1.59% NO
Sports -4.43% NO -14.31% NO
ToDoLists +10.44% YES +10.05% YES
Video -0.72% NO -0.97% NO
Weather -25.98% YES -35.37% YES
Overall -0.21% NO -2.42% YES
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Abstract

We consider the task of generating dialogue re-
sponses from background knowledge compris-
ing of domain specific resources. Specifically,
given a conversation around a movie, the task
is to generate the next response based on back-
ground knowledge about the movie such as the
plot, review, Reddit comments etc. This re-
quires capturing structural, sequential, and se-
mantic information from the conversation con-
text and background resources. We propose a
new architecture that uses the ability of BERT
to capture deep contextualized representations
in conjunction with explicit structure and se-
quence information. More specifically, we use
(i) Graph Convolutional Networks (GCNs) to
capture structural information, (ii) LSTMs to
capture sequential information, and (iii) BERT
for the deep contextualized representations
that capture semantic information. We analyze
the proposed architecture extensively. To this
end, we propose a plug-and-play Semantics-
Sequences-Structures (SSS) framework which
allows us to effectively combine such linguis-
tic information. Through a series of experi-
ments, we make some interesting observations.
First, we observe that the popular adaptation
of the GCN model for NLP tasks where struc-
tural information (GCNs) was added on top
of sequential information (LSTMs) performs
poorly on our task. This leads us to explore
interesting ways of combining semantic and
structural information to improve performance.
Second, we observe that while BERT already
outperforms other deep contextualized repre-
sentations such as ELMo, it still benefits from
the additional structural information explicitly
added using GCNs. This is a bit surprising
given the recent claims that BERT already cap-
tures structural information. Lastly, the pro-
posed SSS framework gives an improvement
of 7.95% BLEU score over the baseline.
∗The work was done by Nikita and Priyesh at Indian In-

stitue of Technology Madras.

1 Introduction

Neural conversation systems that treat dialogue re-
sponse generation as a sequence generation task
(Vinyals and Le, 2015) often produce generic and
incoherent responses (Shao et al., 2017). The pri-
mary reason for this is that, unlike humans, such
systems do not have any access to background
knowledge about the topic of conversation. For
example, while chatting about movies, we use our
background knowledge about the movie in the form
of plot details, reviews, and comments that we
might have read. To enrich such neural conver-
sation systems, some recent works (Moghe et al.,
2018; Dinan et al., 2019; Zhou et al., 2018) incorpo-
rate external knowledge in the form of documents
which are relevant to the current conversation. For
example, Moghe et al. (2018) released a dataset
containing conversations about movies where every
alternate utterance is extracted from a background
document about the movie. This background doc-
ument contains plot details, reviews, and Reddit
comments about the movie. The focus thus shifts
from sequence generation to identifying relevant
snippets from the background document and modi-
fying them suitably to form an appropriate response
given the current conversational context.

Intuitively, any model for this task should ex-
ploit semantic, structural and sequential informa-
tion from the conversation context and the back-
ground document. For illustration, consider the
chat shown in Figure 1 from the Holl-E movie con-
versations dataset (Moghe et al., 2018). In this
example, Speaker 1 nudges Speaker 2 to talk about
how James’s wife was irritated because of his ca-
reer. The right response to this conversation comes
from the line beginning at “His wife Mae . . . ”.
However, to generate this response, it is essential
to understand that (i) His refers to James from the
previous sentence; (ii) quit boxing is a contigu-
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Source Doc: ... At this point James Brad-
dock (Russel Crowe) was a light heavyweight
boxer, who was forced to retired from the
ring after breaking his hand in his last fight.
His wife Mae had prayed for years that he
would quit boxing, before becoming perma-
nently injured. ...
Conversation:
Speaker 1(N): Yes very true, this is a real
rags to riches story. Russell Crowe was excel-
lent as usual.
Speaker 2(R): Russell Crowe owns the char-
acter of James Bradock, the unlikely hero
who makes the most of his second chance.
He’s a good fighter turned hack.
Speaker 1(N): Totally! Oh by the way do
you remember his wife ... how she wished he
would stop
Speaker 2(P): His wife Mae had prayed for
years that he would quit boxing, before be-
coming permanently injured.

Figure 1: Sample conversation from the Holl-E Dataset.
The text in bold in the first block is the background doc-
ument which is used to generate the last utterance in
this conversation. N, P, and R correspond to the type
of background knowledge used: None, Plot, and Re-
view as per the dataset definitions. For simplicity, we
show only a few of the edges for the background knowl-
edge at the bottom. The edge in blue corresponds to the
co-reference edge, the edges in green are dependency
edges and the edge in red is the entity edge.

ous phrase, and (iii) quit and he would stop mean
the same. We need to exploit (i) structural infor-
mation, such as, the co-reference edge between
His-James (ii) the sequential information in quit
boxing and (iii) the semantic similarity (or syn-
onymy relation) between quit and he would stop.

To capture such multi-faceted information from
the document and the conversation context we pro-
pose a new architecture that combines BERT with
explicit sequence and structure information. We
start with the deep contextualized word represen-
tations learnt by BERT which capture distribu-
tional semantics. We then enrich these represen-
tations with sequential information by allowing
the words to interact with each other by passing

them through a bidirectional LSTM as is the stan-
dard practice in many NLP tasks. Lastly, we add
explicit structural information in the form of de-
pendency graphs, co-reference graphs, and entity
co-occurrence graphs. To allow interactions be-
tween words related through such structures, we
use GCNs which essentially aggregate information
from the neighborhood of a word in the graph.

Of course, combining BERT with LSTMs in it-
self is not new and has been tried in the original
work (Devlin et al., 2019) for the task of Named En-
tity Recognition. Similarly, Bastings et al. (2017)
combine LSTMs with GCNs for the task of ma-
chine translation. To the best of our knowledge,
this is the first work that combines BERT with ex-
plicit structural information. We investigate several
interesting questions in the context of dialogue re-
sponse generation. For example,

1. Are BERT-based models best suited for this
task?

2. Should BERT representations be enriched
with sequential information first or structural
information?

3. Are dependency graph structures more im-
portant for this task or entity co-occurrence
graphs?

4. Given the recent claims that BERT captures
syntactic information, does it help to explic-
itly enrich it with syntactic information using
GCNs?

To systematically investigate such questions
we propose a simple plug-and-play Semantics-
Sequences-Structures (SSS) framework which al-
lows us to combine different semantic repre-
sentations (GloVe (Pennington et al., 2014),
BERT(Devlin et al., 2018), ELMo (Peters et al.,
2018a)) with different structural priors (depen-
dency graphs, co-reference graphs, etc.). It also
allows us to use different ways of combining struc-
tural and sequential information, e.g., LSTM first
followed by GCN or vice versa, or both in par-
allel. Using this framework we perform a series
of experiments on the Holl-E dataset and make
some interesting observations. First, we observe
that the conventional adaptation of GCNs for NLP
tasks, where contextualized embeddings obtained
through LSTMs are fed as input to a GCN, exhibits
poor performance. To overcome this, we propose
some simple alternatives and show that they lead to
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better performance. Second, we observe that while
BERT performs better than GloVe and ELMo, it
still benefits from explicit structural information
captured by GCNs. We find this interesting because
some recent works (Tenney et al., 2019; Jawahar
et al., 2019; Hewitt and Manning, 2019) suggest
that BERT captures syntactic information, but our
results suggest that there is still more information
to be captured by adding explicit structural priors.
Third, we observe that certain graph structures are
more useful for this task than others. Lastly, our
best model which uses a specific combination of
semantic, sequential, and structural information im-
proves over the baseline by 7.95% on the BLEU
score.

2 Related work

There is an active interest in using external knowl-
edge to improve the informativeness of responses
for goal-oriented as well as chit-chat conversations
(Lowe et al., 2015; Ghazvininejad et al., 2018;
Moghe et al., 2018; Dinan et al., 2019). Even the
teams participating in the annual Alexa Prize com-
petition (Ram et al., 2017) have benefited by using
several knowledge resources. This external knowl-
edge can be in the form of knowledge graphs or
unstructured texts such as documents.

Many NLP systems including conversation sys-
tems use RNNs as their basic building block which
typically captures n-gram or sequential informa-
tion. Adding structural information through tree-
based structures (Tai et al., 2015) or graph-based
structures (Marcheggiani and Titov, 2017) on top
of this has shown improved results on several tasks.
For example, GCNs have been used to improve neu-
ral machine translation (Marcheggiani et al., 2018)
by exploiting the semantic structure of the source
sentence. Similarly, GCNs have been used with
dependency graphs to incorporate structural infor-
mation for semantic role labelling (Marcheggiani
and Titov, 2017), neural machine translation (Bast-
ings et al., 2017) and entity relation information in
question answering (De Cao et al., 2019) and tem-
poral information for neural dating of documents
(Vashishth et al., 2018).

There have been advances in learning deep
contextualized word representations (Peters et al.,
2018b; Devlin et al., 2019) with a hope that such
representations will implicitly learn structural and
relational information with the interaction between
words at multiple layers (Jawahar et al., 2019; Pe-

ters et al., 2018c). These recent developments have
led to many interesting questions about the best
way of exploiting rich information from sentences
and documents. We try to answer some of these
questions in the context of background aware dia-
logue response generation.

3 Background

In this section, we provide a background on how
GCNs have been leveraged in NLP to incorporate
different linguistic structures.

The Syntactic-GCN proposed in (Marcheggiani
and Titov, 2017) is a GCN (Kipf and Welling, 2017)
variant which can model multiple edge types and
edge directions. It can also dynamically determine
the importance of an edge. They only work with
one graph structure at a time with the most popular
structure being the dependency graph of a sentence.
For convenience, we refer to Syntactic-GCNs as
GCNs from here on.

Let G denote a graph defined on a text sequence
(sentence, passage or document) with nodes as
words and edges representing a directed relation
between words. LetN denote a dictionary of list of
neighbors with N (v) referring to the neighbors of
a specific node v, including itself (self-loop). Let
dir(u, v) ∈ {in, out, self} denote the direction of
the edge, (u, v). Let L be the set of different edge
types and let L(u, v) ∈ L denote the label of the
edge, (u, v). The (k + 1)-hop representation of a
node v is computed as

h(k+1)
v = σ(

∑

u∈N (v)

g
(k)
(u,v)(W

(k)
dir(u,v)h

(k)
u + b

(k)
L(u,v))

(1)
where σ is the activation function, g(u,v) ∈ R is
the predicted importance of the edge (u, v) and
hv ∈ Rm is node, v’s embedding. Wdir(u,v) ∈
{Win,Wout,Wself} depending on the direction
dir(u, v) andWin, Wself andWout ∈ Rm∗m. The
importance of an edge g(u,v) is determined by an
edge gating mechanism w.r.t. the node of interest,
u as given below:

g(u,v) = sigmoid
(
hu . Wdir(u,v) + bL(u,v)

)
(2)

In summary, a GCN computes new representation
of a node u by aggregating information from it’s
neighborhood N (v). When k=0, the aggregation
happens only from immediate neighbors, i.e., 1
hop neighbors. As the value of k increases the
aggregation implicitly happens from a larger neigh-
borhood.

13



4 Proposed Model

Given a document D and a conversational con-
text Q the task is to generate the response y =
y1, y2, ...., ym. This can be modeled as the prob-
lem of finding a y that maximizes the probability
P (y|D,Q) which can be further decomposed as

y = argmax
y

m∏

t=1

P (yt|y1, ..., yt−1, Q,D)

As has become a standard practice in most NLG
tasks, we model the above probability using a neu-
ral network comprising of an encoder, a decoder, an
attention mechanism, and a copy mechanism. The
copy mechanism essentially helps to directly copy
words from the document D instead of predicting
them from the vocabulary. Our main contribution is
in improving the document encoder where we use
a plug-and-play framework to combine semantic,
structural, and sequential information from differ-
ent sources. This enriched document encoder could
be coupled with any existing model. In this work,
we couple it with the popular Get To The Point
(GTTP) model (See et al., 2017) as used by the
authors of the Holl-E dataset. In other words, we
use the same attention mechanism, decoder, and
copy mechanism as GTTP but augment it with an
enriched document encoder. Below, we first de-
scribe the document encoder and then very briefly
describe the other components of the model. We
also refer the reader to the supplementary material
for more details.

4.1 Encoder

Our encoder contains a semantics layer, a sequen-
tial layer and a structural layer to compute a rep-
resentation for the document words which is a se-
quence of wordsw1, w2, ..., wm. We refer to this as
a plug-and-play document encoder simply because
it allows us to plug in different semantic repre-
sentations, different graph structures, and different
simple but effective mechanisms for combining
structural and semantic information.
Semantics Layer: Similar to almost all NLP mod-
els, we capture semantic information using word
embeddings. In particular, we utilize the ability of
BERT to capture deep contextualized representa-
tions and later combine it with explicit structural
information. This allows us to evaluate (i) whether
BERT is better suited for this task as compared to
other embeddings such as ELMo and GloVe and

(ii) whether BERT already captures syntactic infor-
mation completely (as claimed by recent works) or
can it benefit form additional syntactic information
as described below.

Structure Layer: To capture structural informa-
tion we propose multi-graph GCN, M-GCN, a sim-
ple extension of GCN to extract relevant multi-hop
multi-relational dependencies from multiple struc-
tures/graphs efficiently. In particular, we general-
ize G to denote a labelled multi-graph, i.e., a graph
which can contain multiple (parallel) labelled edges
between the same pair of nodes. LetR denote the
set of different graphs (structures) considered and
letG = {N1,N2 . . .N|R|} be a set of dictionary of
neighbors from the |R| graphs. We extend the Syn-
tactic GCN defined in Eqn: 1 to multiple graphs
by having |R| graph convolutions at each layer as
given in Eqn: 3. Here, g conv(N ) is the graph
convolution defined in Eqn: 1 with σ as the identity
function. Further, we remove the individual node
(or word) i from the neighbourhood list N (i) and
model the node information separately using the
parameter Wself .

h
(k+1)
i = ReLU

(
(h

(k)
i W

(k)
self +

∑

N∈G
g conv(N )

)

(3)
This formulation is advantageous over having |R|
different GCNs as it can extract information from
multi-hop pathways and can use information across
different graphs with every GCN layer (hop). Note
that h0i is the embedding obtained for word v from
the semantic layer. For ease of notation, we use
the following functional form to represent the final
representation computed by M-GCN after k-hops
starting from the initial representation h0i , given G.

hi =M -GCN(h0i , G, k)

Sequence Layer: The purpose of this layer is to
capture sequential information. Once again, follow-
ing standard practice, we pass the word represen-
tations computed by the previous layer through a
bidirectional LSTM to compute a sequence contex-
tualized representation for each word. As described
in the next subsection, depending upon the manner
in which we combine these layers, the previous
layer could either be the structure layer or the se-
mantics layer.
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Figure 2: The SSS framework. The Word Embeddings include GloVe, ELMo, and BERT. Seq-GCN considers
obtaining an LSTM representation first which this then passed through an M-GCN module. In Str-LSTM, we
compute the M-GCN representation first which is then passed to an LSTM layer while Par-GCN-LSTM computes
both LSTM and M-GCN representations independently which are then combined into a final representation.

4.2 Combining structural and sequential
information

As mentioned earlier, for a given document D
containing words w1, w2, w3, . . . , wm, we first ob-
tain word representations x1, x2, x3, . . . , xm using
BERT (or ELMo or GloVe). At this point, we have
three different choices for enriching the represen-
tations using structural and sequential information:
(i) structure first followed by sequence (ii) sequence
first followed by structure or (iii) structure and se-
quence in parallel. We depict these three choices
pictorially in Figure 2 and describe them below
with appropriate names for future reference. Please
note that the choice of “Seq” denotes the sequential
nature of LSTMs while “Str” denotes the structural
nature of GCNs. Though we use a specific variant
of GCN, described as M-GCN in the previous sec-
tion, any other variant of GCN can be replaced in
the “Str” layer.

4.2.1 Sequence contextualized GCN
(Seq-GCN)

Seq-GCN is similar to the model proposed in (Bast-
ings et al., 2017; Marcheggiani and Titov, 2017)
where the word representations x1, x2, x3, . . . , xm
are first fed through a BiLSTM to obtain sequence
contextualized representations as shown below.

hseqi = BiLSTM(hseqi−1, xi)

These representations h1, h2, h3, . . . , hm are

then fed to the M-GCN along with the graph G
to compute a k-hop aggregated representation as
shown below:

hstri =M -GCN(hseqi , G, k)

This final representation hfinali = hstri for the
i-th word thus combines semantics, sequential and
structural information in that order. This is a popu-
lar way of combining GCNs with LSTMs but our
experiments suggest that this does not work well
for our task. We thus explore two other variants as
explained below.

4.2.2 Structure contextualized LSTM
(Str-LSTM)

Here, we first feed the word representations
x1, x2, x3, . . . , xm to M-GCN to obtain structure
aware representations as shown below.

hstri =M -GCN(xi, G, k)

These structure aware representations are then
passed through a BiLSTM to capture sequence in-
formation as shown below:

hseqi = BiLSTM(hseqi−1, h
str
i )

This final representation hfinali = hseqi for the i-
th word thus combines semantics, structural and
sequential information in that order.
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4.2.3 Parallel GCN-LSTM (Par-GCN-LSTM)
Here, both M-GCN and BiLSTMs are fed with
word embeddings xi as input to aggregate structural
and sequential information independently as shown
below:

hstri =M -GCN(xi, G, k)

hseqi = BiLSTM(hseqi−1, xi)

The final representation, hfinali , for each word
is computed as hfinali = hstri + hseqi and combines
structural and sequential information in parallel as
opposed to a serial combination in the previous two
variants.

4.3 Decoder, Attention, and Copy
Mechanism

Once the final representation for each word is com-
puted, an attention weighted aggregation, ct, of
these representations is fed to the decoder at each
time step t. The decoder itself is a LSTM which
computes a new state vector st at every timestep t
as

st = LSTM(st−1, ct)

The decoder then uses this st to compute a dis-
tribution over the vocabulary where the probabil-
ity of the i-th word in the vocabulary is given by
pi = softmax(V st +Wct + b)i. In addition, the
decoder also has a copy mechanism wherein, at ev-
ery timestep t, it could either choose the word with
the highest probability pi or copy that word from
the input which was assigned the highest attention
weight at timestep t. Such copying mechanism is
useful in tasks such as ours where many words in
the output are copied from the document D. We
refer the reader to the GTTP paper for more details
of the standard copy mechanism.

5 Experimental setup

In this section, we briefly describe the dataset and
task setup followed by the pre-processing steps we
carried to obtain different linguistic graph struc-
tures on this dataset. We then describe the dif-
ferent baseline models. Our code is available
at: https://github.com/nikitacs16/horovod_
gcn_pointer_generator

5.1 Dataset description
We evaluate our models using Holl-E, an English
language movie conversation dataset (Moghe et al.,

2018) which contains ∼ 9k movie chats and ∼ 90k
utterances. Every chat in this dataset is associated
with a specific background knowledge resource
from among the plot of the movie, the review of the
movie, comments about the movie, and occasion-
ally a fact table. Every even utterance in the chat is
generated by copying and or modifying sentences
from this unstructured background knowledge. The
task here is to generate/retrieve a response using
conversation history and appropriate background
resources. Here, we focus only on the oracle setup
where the correct resource from which the response
was created is provided explicitly. We use the same
train, test, and validation splits as provided by the
authors of the paper.

5.2 Construction of linguistic graphs
We consider leveraging three different graph-based
structures for this task. Specifically, we evaluate the
popular syntactic word dependency graph (Dep-G),
entity co-reference graph (Coref-G) and entity co-
occurrence graph (Ent-G). Unlike the word depen-
dency graph, the two entity-level graphs can cap-
ture dependencies that may span across sentences
in a document. We use the dependency parser pro-
vided by SpaCy (https://spacy.io/) to obtain
the dependency graph (Dep-G) for every sentence.
For the construction of the co-reference graph
(Coref-G), we use the NeuralCoref model (https:
//github.com/huggingface/neuralcoref) inte-
grated with SpaCy. For the construction of the en-
tity graph (Ent-G), we first perform named-entity
recognition using SpaCy and connect all the enti-
ties that lie in a window of k = 20.

5.3 Baselines
We categorize our baseline methods as follows:
Without Background knowledge: We consider
the simple Sequence-to-Sequence (S2S) (Vinyals
and Le, 2015) architecture that conditions the re-
sponse generation only on the previous utterance
and completely ignores the other utterances as well
as the background document. We also consider
HRED (Serban et al., 2016), a hierarchical vari-
ant of the S2S architecture which conditions the
response generation on the entire conversation his-
tory in addition to the last utterance. Of course, we
do not expect these models to perform well as they
completely ignore the background knowledge but
we include them for the sake of completeness.
With Background Knowledge: To the S2S archi-
tecture we add an LSTM encoder to encode the
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document. The output is now conditioned on this
representation in addition to the previous utterance.
We refer to this architecture as S2S-D. Next, we
use GTTP (See et al., 2017) which is a variant of
the S2S-D architecture with a copy-or-generate de-
coder; at every time-step, the decoder decides to
copy from the background knowledge or generate
from the fixed vocabulary. We also report the per-
formance of the BiRNN + GCN architecture that
uses the dependency graph only as discussed in
(Marcheggiani and Titov, 2017). Finally, we note
that in our task many words in the output need to
be copied sequentially from the input background
document which makes it very similar to the task
of span prediction as used in Question Answering.
We thus also evaluate BiDAF (Seo et al., 2017), a
popular question-answering architecture, that ex-
tracts a span from the background knowledge as a
response using complex attention mechanisms. For
a fair comparison, we evaluate the spans retrieved
by the model against the ground truth responses.

We use BLEU-4 and ROUGE (1/2/L) as the eval-
uation metrics as suggested in the dataset paper.
Using automatic metrics is more reliable in this
setting than the open domain conversational setting
as the variability in responses is limited to the infor-
mation in the background document. We provide
implementation details in Appendix A.

6 Results and Discussion

In Table 1, we compare our architecture against the
baselines as discussed above. SSS(BERT) is our
proposed architecture in terms of the SSS frame-
work. We report best results within SSS chosen
across 108 configurations comprising of four differ-
ent graph combinations, three different contextual
and structural infusion methods, three M-GCN lay-
ers, and, three embeddings. The best model was
chosen based on performance of the validation set.
From Table 1, it is clear that our improvements in
incorporating structural and sequential information
with BERT in the SSS encoder framework signifi-
cantly outperforms all other models.

6.1 Qualitative Evaluation

We conducted human evaluation for the SSS mod-
els from Table 1 against the generated responses of
GTTP. We presented 100 randomly sampled out-
puts to three different annotators. The annotators
were asked to pick from four options: A, B, both,
and none. The annotators were told these were con-

Model BLEU ROUGE
1 2 L

S2S 4.63 26.91 9.34 21.58
HRED 5.23 24.55 7.61 18.87
S2S-D 11.71 26.36 13.36 21.96
GTTP 13.97 36.17 24.84 31.07

BiRNN+GCN 14.70 36.24 24.60 31.29
BiDAF 16.79 26.73 18.82 23.58

SSS(GloVe) 18.96 38.61 26.92 33.77
SSS(ELMo) 19.32 39.65 27.37 34.86
SSS(BERT) 22.78 40.09 27.83 35.20

Table 1: Results of automatic evaluation. The
architectures within the SSS framework outperform
the baseline methods with our proposed architecture
SSS(BERT) performing the best.

versations between friends. Tallying the majority
vote, we obtain win/loss/both/none for SSS(BERT)
as 29/25/29/17, SSS(GloVe) as 24/17/47/12 and
SSS(ELMo) as 22/23/41/14. This suggests quali-
tative improvement using the SSS framework. We
also provide some generated examples in Appendix
B1. We found that the SSS framework had less con-
fusion in generating the opening responses than the
GTTP baseline. These “conversation starters” have
a unique template for every opening scenario and
thus have different syntactic structures respectively.
We hypothesize that the presence of dependency
graphs over these respective sentences helps to al-
leviate the confusion as seen in Example 1. The
second example illustrates why incorporating struc-
tural information is important for this task. We also
observed that the SSS encoder framework does not
improve on the aspects of human creativity such as
diversity, initiating a context-switch, and common-
sense reasoning as seen in Example 3.

6.2 Ablation studies on the SSS framework
We report the component-wise results for the SSS
framework in Table 2. The Sem models condition
the response generation directly on the word em-
beddings. As expected, we observe that ELMo
and BERT perform much better than GloVe embed-
dings.

The Sem+Seq models condition the decoder on
the representation obtained after passing the word
embeddings through the LSTM layer. These mod-
els outperform their respective Sem models. The
gain with ELMo is not significant because the un-
derlying architecture already has two BiLSTM lay-
ers which are already being fine-tuned for the task.
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Emb Paradigm BLEU ROUGE
1 2 L

GloVe
Sem 4.4 29.72 11.72 22.99

Sem+Seq 14.83 36.17 24.84 31.07
SSS 18.96 38.61 26.92 33.77

ELMo
Sem 14.36 32.04 18.75 26.71

Sem+Seq 14.61 35.54 24.58 30.71
SSS 19.32 39.65 27.37 34.86

BERT
Sem 11.26 33.86 16.73 26.44

Sem+Seq 18.49 37.85 25.32 32.58
SSS 22.78 40.09 27.83 35.2

Table 2: Performance of components within the SSS
framework. BERT based models outperform both
ELMo and GloVe based architectures in the respective
paradigms. Notably, adding all the three levels of infor-
mation: semantic, sequential, and structural is useful.

Hence the addition of one more LSTM layer may
not contribute to learning any new sequential word
information. It is clear from Table 2 that the SSS
models, that use structure information as well, ob-
tain a significant boost in performance, validating
the need for incorporating all three types of infor-
mation in the architecture.

6.3 Combining structural and sequential
information

The response generation task of our dataset is a
span based generation task where phrases of text
are expected to be copied or generated as they
are. The sequential information is thus crucial
to reproduce these long phrases from background
knowledge. This is strongly reflected in Table 3
where Str-LSTM which has the LSTM layer on
top of GCN layers performs the best across the
hybrid architectures discussed in Figure 2. The
Str-LSTM model can better capture sequential in-
formation with structurally and syntactically rich
representations obtained through the initial GCN
layer. The Par-GCN-LSTM model performs second
best. However, in the parallel model, the LSTM
cannot leverage the structural information directly
and relies only on the word embeddings. Seq-GCN
model performs the worst among all the three as
the GCN layer at the top is likely to modify the
sequence information from the LSTMs.

6.4 Understanding the effect of structural
priors

While a combination of intra-sentence and inter-
sentence graphs is helpful across all the models,
the best performing model with BERT embeddings

relies only on the dependency graph. In the case
of GloVe based experiments, the entity and co-
reference relations were not independently useful
with the Str-LSTM and Par-GCN-LSTM models,
but when used together gave a significant perfor-
mance boost, especially for Str-LSTM. However,
most of the BERT based and ELMo based models
achieved competitive performance with the indi-
vidual entity and co-reference graphs. There is
no clear trend across the models. Hence, probing
these embedding models is essential to identify
which structural information is captured implicitly
by the embeddings and which structural informa-
tion needs to be added explicitly. For the quantita-
tive results, please refer to Appendix B2.

6.5 Structural information in deep
contextualised representations

Earlier work has suggested that deep contextualized
representations capture syntax and co-reference re-
lations (Peters et al., 2018c; Jawahar et al., 2019;
Tenney et al., 2019; Hewitt and Manning, 2019).
We revisit Table 2 and consider the Sem+Seq mod-
els with ELMo and BERT embeddings as two ar-
chitectures that implicitly capture structural infor-
mation. We observe that the SSS model using the
simpler GloVe embedding outperforms the ELMo
Sem+Seq model and performs slightly better than
the BERT Sem+Seq model.

Given that the SSS models outperform the cor-
responding Sem+Seq model, the extent to which
the deep contextualized word representations learn
the syntax and other linguistic properties implic-
itly are questionable. Also, this calls for better loss
functions for learning deep contextualized represen-
tations that can incorporate structural information
explicitly.

More importantly, all the configurations of SSS
(GloVe) have a lesser memory footprint in com-
parison to both ELMo and BERT based models.
Validation and training of GloVe models require
one-half, sometimes even one-fourth of computing
resources. Thus, the simple addition of structural
information through the GCN layer to the estab-
lished Sequence-to-Sequence framework that can
perform comparably to stand-alone expensive mod-
els is an important step towards Green AI(Schwartz
et al., 2019).

18



Emb Seq-GCN Str-LSTM Par-GCN-LSTM
BLEU ROUGE BLEU ROUGE BLEU ROUGE

1 2 L 1 2 L 1 2 L
GloVe 15.61 36.6 24.54 31.68 18.96 38.61 26.92 33.77 17.1 37.04 25.70 32.2
ELMo 18.44 37.92 26.62 33.05 19.32 39.65 27.37 34.86 16.35 37.28 25.67 32.12
BERT 20.43 40.04 26.94 34.85 22.78 40.09 27.83 35.20 21.32 39.9 27.60 34.87

Table 3: Performance of different hybrid architectures to combine structural information with sequence informa-
tion. We observe that using structural information followed by sequential information, Str-LSTM, provides the
best results.

7 Conclusion and Future Work

We demonstrated the usefulness of incorporating
structural information for the task of background
aware dialogue response generation. We infused
the structural information explicitly in the stan-
dard semantic+sequential model and observed a
performance boost. We studied different structural
linguistic priors and different ways to combine se-
quential and structural information. We also ob-
serve that explicit incorporation of structural infor-
mation helps the richer deep contextualized rep-
resentation based architectures. The framework
provided in this work is generic and can be applied
to other background aware dialogue datasets and
several tasks such as summarization and question
answering. We believe that the analysis presented
in this work would serve as a blueprint for analyz-
ing future work on GCNs ensuring that the gains
reported are robust and evaluated across different
configurations.
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A Implementation Details

A.1 Base Model

The authors of Moghe et al. (2018) adapted the ar-
chitecture of Get to the Point (See et al., 2017) for
background aware dialogue response generation
task. In the summarization task, the input is a doc-
ument and the output is a summary whereas in our
case the input is a {resource/document, context}
pair and the output is a response. Note that the con-
text includes the previous two utterances (dialog
history) and the current utterance. Since, in both
the tasks, the output is a sequence (summary v/s
response) we don’t need to change the decoder (i.e.,
we can use the decoder from the original model as
it is). However, we need to change the input fed to
the decoder. We use an RNN to compute a repre-
sentation of the conversation history. Specifically,
we consider the previous k utterances as a single
sequence of words and feed these to an RNN. Let
M be the total length of the context (i.e., all the k
utterances taken together) then the RNN computes
representations hd1, h

d
2, ..., h

d
M for all the words in

the context. The final representation of the context
is then the attention weighted sum of these word
representations:

f ti = vT tanh(Wch
d
i + V st + bd)

mt = softmax(f t)

dt =
∑

i

mt
ih

d
i

(4)

Similar to the original model, we use an RNN to
compute the representation of the document. Let
N be the length of the document then the RNN
computes representations hr1, h

r
2, ..., h

r
N for all the

words in the resource (we use the superscript r
to indicate resource). We then compute the query
aware resource representation as follows.

eti = vT tanh(Wrh
r
i + Ust + V dt + br)

at = softmax(et)

ct =
∑

i

atih
r
i

(5)

where ct is the attended context representation.
Thus, at every decoder time-step, the attention on
the document words is also based on the currently
attended context representation.

The decoder then uses rt (document representa-
tion) and st (decoder’s internal state) to compute a
probability distribution over the vocabulary Pvocab.
In addition, the model also computes pgen which in-
dicates that there is a probability pgen that the next
word will be generated and a probability (1−pgen)
that the next word will be copied. We use the fol-
lowing modified equation to compute pgen

pgen = σ(wT
r rt + wT

s st + wT
x xt + bg) (6)

where xt is the previous word predicted by the
decoder and fed as input to the decoder at the cur-
rent time step. Similarly, st is the current state of
the decoder computed using this input xt. The final
probability of a word w is then computed using a
combination of two distributions, viz., (Pvocab) as
described above and the attention weights assigned
to the document words as shown below

P (w) = pgenPvocab(w)+(1−pgen)
∑

i:wi=w

ati (7)

where ati are the attention weights assigned to every
word in the document as computed in Equation 5.
Thus, effectively, the model could learn to copy
a word i if pgen is low and ati is high. This is
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the baseline with respect to the LSTM architecture
(Sem + Seq). For, GCN based encoders, the hri
is the final outcome after the desired GCN/LSTM
configuration.

A.2 Hyperparameters

We selected the hyper-parameters using the valida-
tion set. We used Adam optimizer with a learning
rate of 0.0004 and a batch size of 64. We used
GloVe embeddings of size 100. For the RNN-based
encoders and decoders, we used LSTMs with a hid-
den state of size 256. We used gradient clipping
with a maximum gradient norm of 2. We used a
hidden state of size 512 for Seq-GCN and 128 for
the remaining GCN-based encoders. We ran all the
experiments for 15 epochs and we used the check-
point with the least validation loss for testing. For
models using ELMo embeddings, a learning rate
of 0.004 was most effective. For the BERT-based
models, a learning rate of 0.0004 was suitable. Rest
of the hyper-parameters and other setup details re-
main the same for experiments with BERT and
ELMo. Our work follows a task specific architec-
ture as described in the previous section. Following
the definitions in (Peters et al., 2019), we use the
“feature extraction” setup for both ELMo and BERT
based models.

B Extended Results

B.1 Qualitative examples

We illustrate different scenarios from the dataset
to identify the strengths and weaknesses of our
models under the SSS framework in Table 4. We
compare the outputs from the best performing
model on the three different embeddings and use
GTTP as our baseline. The best performing com-
bination of sequential and structural information
for all the three models in the SSS framework is
Str-LSTM. The best performing SSS(GloVe) and
SSS(ELMo) architectures use all the three graphs
while SSS(BERT) uses only the dependency graph.

We find that the SSS framework improves over
the baseline for the cases of opening statements
(see Example 1). The baseline had confusion
in picking opening statements and often mixed
the responses for “Which is your favorite charac-
ter?”, “Which is your favorite scene” and “What
do you think about the movie?”. The responses
to these questions have different syntactic struc-
tures - “My favorite character is XYZ”, “I liked
the one in which XYZ”, and “ I think this movie

is XYZ” where XYZ was the respective crowd-
sourced phrase. The presence of dependency
graphs over the respective sentences may help to
alleviate the confusion.

Now consider the example under Hannibal in
Table 4. We find that the presence of a co-reference
graph between “Anthony Hopkins” in the first sen-
tence and “he” in the second sentence can help
in continuing the conversation on the actor “An-
thony Hopkins”. Moreover, connecting tokens
in “Anthony Hopkins” to refer to “he” in the sec-
ond sentence is possible because of the explicit
entity-entity connection between the two tokens.
However, this is applicable only to SSS(GloVe)
and SSS(ELMo) as their best performing versions
use these graphs along with the dependency graph
while the best performing SSS(BERT) only uses
dependency graph and may have learnt the inter-
sentence relations implicitly.

There is a limited diversity of responses gener-
ated by the SSS framework as it often resorts to the
patterns seen during training while it is not copying
from the background knowledge. We also iden-
tify that SSS framework cannot handle the cases
where Speaker2 initiates a context switch, i,e; when
Speaker2 introduces a topic that has not been dis-
cussed in the conversation so far. In the chat on The
Road Warrior in Table 4, we find that Mad Max:
Fury Road has been used to initiate a discussion
that compares the themes of both the movies. All
the models produce irrelevant responses.

B.2 Quantitative results
We explore the effect of using different graphs in
Table 5.
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Movie Rocky V (Example 1) Hannibal (Example 2) The Road Warrior (Exam-
ple 3)

Resource Rocky V, terribly under-
rated. I liked the one
in which Rocky .... .
My favorite character was
Adrian because she was
...I think it was enjoyable,
though slightly less than
th.

Anthony Hopkins gave ....
However, the material he
was given to work .... al-
most seemed like an ex-
cuse to present us

Box Office: $ 9,003,011
Similar Movies: Lethal
Weapon, Mad Max: Fury
Road ...

Chat Speaker 1: Which is
your favourite character
in this?

Speaker 1: What is your
opinion about the movie?
Speaker 2: I think it was
a fair sequel.
Speaker 1: Anthony Hop-
kins gave an impeccable
performance.

Speaker 1: Which is
your favourite character
in this?
Speaker 2: My favorite
character was Dog
Speaker 1: I liked the
feral kid even after he’s
found in the car and Max
evicts him without cere-
mony he doesn’t give up.

Ground Truth my favorite character was
adrian because she was
strong and did her best to
keep her family together
through tough times .

however , the material he
was given to work with
was not as good as silence
of the lambs .

Have you seen the new
Mad Max: Fury Road?

Baseline i liked the one in which
rocky and gunn fight in
the street .

in fairness , perhaps there
was no way it could be .

lethal weapon .

SSS(GloVe) my favorite character was
adrian because she was
strong and did her best to
keep her together through
tough times .

however , the material he
was given to work with
was not as good as silence
of the lambs .

it made $ 9,003,011

SSS(ELMo) my favorite character was
adrian because she was
strong and did her best to
keep her family together
through tough times .

the material he was given
to work with was not as
good as silence of the
lambs .

[UNK] only one man can
make the difference in the
future .

SSS(BERT) my favorite character was
adrian because she was
strong and did her best to
keep her family together
through tough times .

the material he was given
to work with was not as
good as silence of the
lambs .

yes .[UNK] only one man
can make the difference
in the future .

Table 4: Sample outputs from the SSS framework compared with baseline and ground truth responses.
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Graph GloVe ELMo BERT
BLEU ROUGE BLEU ROUGE BLEU ROUGE

1 2 L 1 2 L 1 2 L
Dep 16.79 37.77 25.89 32.88 17.00 37.56 26.14 32.77 22.78 40.09 27.83 35.2

Dep+Ent 14.44 35.14 24.61 30.43 18.34 39.55 28.00 34.76 19.33 39.37 27.52 34.33
Dep+Coref 16.58 37.60 25.72 32.63 18.56 40.08 28.42 35.06 20.99 40.10 28.66 35.11
Dep+Ent
+Coref

18.96 38.61 26.92 33.77 19.32 39.65 27.37 34.86 20.37 39.11 27.2 34.19

Table 5: Comparing performance of different structural priors across different semantic information on the Str-
LSTM architecture.
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Abstract

Contextualized word embeddings provide bet-
ter initialization for neural networks that deal
with various natural language understanding
(NLU) tasks including question answering
(QA) and more recently, question generation
(QG). Apart from providing meaningful word
representations, pre-trained transformer mod-
els, such as BERT also provide self-attentions
which encode syntactic information that can
be probed for dependency parsing and POS-
tagging. In this paper, we show that the infor-
mation from self-attentions of BERT are use-
ful for language modeling of questions con-
ditioned on paragraph and answer phrases.
To control the attention span, we use semi-
diagonal mask and utilize a shared model for
encoding and decoding, unlike sequence-to-
sequence. We further employ copy mechanism
over self-attentions to achieve state-of-the-art
results for question generation on SQuAD
dataset.

1 Introduction

Automatic question generation (QG) is the task
of generating meaningful questions from text.
With more question answering (QA) datasets like
SQuAD (Rajpurkar et al., 2016) that have been re-
leased recently (Trischler et al., 2016; Choi et al.,
2018; Reddy et al., 2019; Yang et al., 2018), there
has been an increased interest in QG, as these
datasets can not only be used for creating QA mod-
els but also for QG models.

QG, similar to QA, gives an indication of ma-
chine’s ability to comprehend natural language text.
Both QA and QG are used by conversational agents.
A QG system can be used in the creation of arti-
ficial question answering datasets which in-turn
helps QA (Duan et al., 2017). It specifically can
be used in conversational agents for starting a con-
versation or draw attention to specific information

Figure 1: CopyBERT architecture for conditional ques-
tion generation: Given a sequence of length n, with
question tokens {qi}Qi=1, paragraph tokens {pi}Pi=1

with answer phrase {ai}Ai=1 and semi-diagonal mask
M (§3.2), the model explicitly uses H multi-headed
self-attention matrices from L layers of transformers
to create A ∈ Rn×n×L×H . This matrix along with
S ∈ Rn×L×H , obtained from the BERT sequence
output H ∈ Rn×h, is used to learn copy probabil-
ity pc(qi|.) (§3.3.2). Finally, a weighted combination
p(qi|.) is obtained with simple generation probability
pg(qi|.) (§3.4).

(Mostafazadeh et al., 2016). Yao et al. (2012) and
Nouri et al. (2011) use QG to create and augment
conversational characters. In a similar approach,
Kuyten et al. (2012) creates a virtual instructor to
explain clinical documents. In this paper, we pro-
pose a QG model with following contributions:

• We introduce copy mechanism for BERT-
based models with a unified encoder-decoder
framework for question generation. We fur-
ther extend this copy mechanism using self-
attentions.

• Without losing performance, we improve the
speed of training BERT-based language mod-
els by choosing predictions on output embed-
dings that are offset by one position.
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2 Related Work

Most of the QG models that use neural networks
rely on a sequence-to-sequence architecture where
a paragraph and an answer is encoded appropriately
before decoding the question. Sun et al. (2018)
uses an answer-position aware attention to enrich
the encoded input representation. Recently, Liu
et al. (2019) showed that learning to predict clue
words based on answer words helps in creating a
better QG system. With similar motivation, gated
self-networks were used by Zhao et al. (2018) to
fuse appropriate information from paragraph before
generating question. More recently, self-attentions
of a transformer has been shown to perform answer
agnostic question generation (Scialom et al., 2019).

The pre-training task of masked language mod-
eling for BERT (Devlin et al., 2019) and other such
models (Joshi et al., 2019) make them suitable for
natural language generation tasks. Wang and Cho
(2019) argues that BERT can be used as a genera-
tive model. However, only few attempts have been
made so far to make use of these pre-trained mod-
els for conditional language modeling. Dong et al.
(2019) and Chan and Fan (2019) use a single BERT
model for both encoding and decoding and achieve
state-of-the-art results in QG. However, both of
them use the [MASK] token as the input for pre-
dicting the word in place, which makes the training
slower as it warranties recurrent generation (Chan
and Fan, 2019) or generation with random masking
(Dong et al., 2019). Both models only consider
the output representations of BERT to do language
modeling.

However, Jawahar et al. (2019) and Tenney et al.
(2019) show that BERT learns different linguis-
tic features at different layers. Also, Hewitt and
Manning (2019) successfully probed for depen-
dency trees from self-attention matrices of BERT.
With this, we hypothesize that BERT can implic-
itly encode the different aspects of input for QG
(Sun et al., 2018; Zhao et al., 2018) within the self-
attentions across layers. As self-attention can learn
soft-alignments, it can be used explicitly for copy
mechanism (§3.3.2), and can yield better results
(§4.3) than a model that only implicitly use self-
attentions for QG (§3.3.1). Similar to Dong et al.
(2019), we also employ a shared architecture for
unified encoding-decoding but make an explicit use
of self-attentions across layers, leading to similar
or better results at a fraction of their training cost.

3 Model

In sequence-to-sequence learning framework, a sep-
arate encoder and a decoder model is used. Such
an application to BERT will lead to high compu-
tational complexity. To alleviate this, we use a
shared model for encoding and decoding (Dong
et al., 2019). This not only leads to a reduced
number of parameters but also allows for cross at-
tentions between source and target words in each
layer of the transformer model. While such an ar-
chitecture can be used in any conditional natural
language generation task, here we apply it for QG.

3.1 Question Generation

For a sequence of paragraph tokens P =
[p1, p2, ..., pP ], start and end positions of an answer
phrase sa = (as, ae) in the paragraph and ques-
tion tokens Q = [q1, q2, ..., qQ] with p1 = bop,
pP = eop and qQ = eoq representing begin of
paragraph, end of paragraph and end of question
respectively, the task of question generation is to
maximize the likelihood of Q given P and sa. To
this end, with m such training examples, we maxi-
mize the following objective:

max
Θ

m∑

j=1

n∑

i=1

log p(q
(j)
i |q

(j)
<i , P

(j), s(j)
a )

where q<i represents previous question tokens
[q1, q2, ..., qi−1]. A fixed length n sequence is cre-
ated by concatenating P and Q with pad tokens
into S = [P ;Q]. Similar to Devlin et al. (2019),
each input token is accompanied by a segment id
to differentiate between the parts of the text. The
answer tokens in the paragraph and the question
tokens are given segment ids 1 and the rest 0, as
illustrated in Figure 1. We pass these as inputs to a
pre-trained BERT-based model.

3.2 Semi-diagonal Masking

To control the information flow, we employ a semi-
diagonal mask. A simple diagonal mask on the
self-attentions of the transformer decoder ensures
that each word only attends to the words that are
seen thus far (Vaswani et al., 2017). Self-attentions
of the encoder do not require such masking because
the input words should inform each other while en-
coding. Since we use a unified encoder-decoder
architecture, we ensure our masking is such that
each word in the paragraph attends to all other
words in the paragraph but not to any of the words

26



in the question and each word in the question only
attends to previous words in the question in addi-
tion to all the words in the paragraph. This results
in a semi-diagonal mask which is also proposed by
Dong et al. (2019) and shown in Figure 1.

Formally, from S in §3.1, we have Ip =
[1, 2, ..., P ] as the sequence of paragraph indices
and Iq = [P +1, P +2, .., P +Q] as the sequence
of question indices with n = P +Q (ignoring the
pad tokens). The semi-diagonal mask M ∈ Rn×n

is defined as:

Mi,j =




−∞ (i ∈ Ip ∧ j ∈ Iq)∨

(i ∈ Iq ∧ j > i)

1, else

3.3 Copy Mechanism
Pre-trained transformer models not only yield bet-
ter contextual word embeddings but also give infor-
mative self-attentions (Hewitt and Manning, 2019;
Reif et al., 2019). We explicitly make use of
these pre-trained self-attentions into our QG mod-
els. This also matches with our motivation to use
the copy mechanism (Gu et al., 2016) for BERT, as
the self-attentions can be used to obtain attention
probabilities over input paragraph text which are
necessary for copy-mechanism.

For the input sequence S with the semi-diagonal
mask M ∈ Rn×n and segment ids D, we first
encode with BERT(S,M, D) to obtain hidden rep-
resentations of the sequence H = {hi}ni=1 ∈
Rn×h. We then define copy probability pc(yi|.) :=
pc(yi|q<i, P, sa) as:

pc(yi|.) =
{∑P+i−1

k=1:yi=tk
pa(k|yi), tk ∈ Y

0, else

where pa(k|yi) ∈ R is the attention probability of
copying token tk ∈ Y = {P} ∪ {yj}i−1

j=1 (set of
all the paragraph tokens and question predictions
thus far) from input position k to question posi-
tion i. The distribution pa ∈ Rn is set to zero
for tokens not appearing in Y , whereas we add
the corresponding attention probabilities for tokens
occurring multiple times. We summarize these
per position probabilities compactly in a matrix
Pa ∈ Rn×n. Now, we define several methods to
obtain Pa with different copy mechanisms.

3.3.1 Normal Copy
First, we employ a simpler way to obtain attention
probabilities, called normal copy:

Pa = softmax(HWnH
T ) ∈ Rn×n

where Wn ∈ Rh×h is a parameter matrix.

3.3.2 Self-Copy
In a transformer architecture (Vaswani et al., 2017),
if there are L layers and H attention heads at each
layer, there will be M = L × H self-attention
matrices of size n × n. For example, in BERT-
Large model (Devlin et al., 2019), there would be
24 × 16 = 384 such matrices. Each of these self-
attention matrices carry unique information. In
this method for copy mechanism, called self-copy,
we obtain Pa as a weighted average of all these
self-attentions1.

We obtain at each time step, a probability score
for each of the M self-attention matrices in A ∈
n× n×M signifying their corresponding impor-
tance. Given a parameter matrix Wa ∈ Rh×M , we
obtain:

S = softmax(HWa) ∈ Rn×M

P̃a = [S1AT
1 ; ...;SnAT

n ] ∈ Rn×1×n

where S ∈ Rn×1×M is a 3D tensor with added di-
mension 2 to S, AT ∈ Rn×M×n is the transposed
tensor of 3D self-attention matricesA. Si ∈ R1×M

and AT
i ∈ RM×n are the i-th slices of the tensors

S and AT . The final attention probabilities Pa

are obtained by removing the dimension 2 from
P̃a. Thus, the final attention probabilities are ob-
tained as a weighted average over all self-attention
matrices.

3.3.3 Two-Hop Self-Copy
A self-attention matrix as mentioned above can be
considered as an adjacency matrix of a graph whose
nodes are words. The probability scores represent
soft edge between two words. A self-attention ma-
trix, thus, can be considered as 1-hop attention.
We would like to explore 2-hop attentions, i.e, we
look for neighbouring nodes of neighbouring nodes.
Note that if Pa is an adjacency matrix, the nodes
that are connected in two hops are given by P2

a.
Both 1-hop attentions and 2-hop attentions can be
useful for copying mechanism. Let P1-hop = Pa

and P2-hop = P′2a where P′a and Pa are defined
as mentioned in §3.3.2 with different parameters,
then we define two-hop self-copy as follows:

Pa(qi) = hiP1-hop(qi) + (1− hi)P2-hop(qi)

where hi = σ(hT
qiWh) and Wh ∈ Rh is a parame-

ter matrix.
1The semi-diagonal mask is applied to all such self-

attention matrices.
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3.4 Copy-Generate Probability
Once the copy probability pc is obtained, the com-
bined probability is obtained as weighted combina-
tion with the generation probability pg:

p(qi|.) = (1− ci)pg(qi|.) + cipc(qi|.)

where ci is the likelihood to generate a token from
the vocabulary or copy a token from the source and
predicted tokens at position i:

ci = σ(hT
qi−1

w)

with hqi−1 ∈ Rh×1 as the hidden representation for
the question token at position i− 1, w ∈ Rh×1 is
a parameter vector and σ is sigmoid non-linearity.
The generation probability is given by:

pg(qi|.) = softmax(hT
qi−1

V)

where V ∈ Rh×|V | is a parameter matrix over input
vocabulary of size |V |.

4 Experiments

We apply the different variations of CopyBERT
model as mentioned in the previous section on
SQuAD v1.1 (Rajpurkar et al., 2016). For our ex-
periments2, we follow the training, validation and
test split as used in Du et al. (2017).

4.1 Training Setup
For training, we used a batch size of 6, learning rate
of 3e−5 with early stopping. The loss reaches its
minimum between 2 to 3 epochs. We also trained
with a batch size of 24 using gradient accumulation
and found it gave similar results after the same num-
ber of optimization steps. We fixed the maximum
sequence length as 384 and chose the part (doc-
ument stride) of the paragraph that contained the
answer phrase in case of exceeded sequence length.
We decoded using beam search with a beam width
of 5 and stopping at the generated token eoq. In
our experiments we used [CLS] as bop token,
[MASK] as eop token and [SEP] as eoq token.

4.2 Evaluation Metrics and Models
For evaluating our models, we report standard met-
rics of BLEU4, METEOR and ROUGE-L. As base-
lines, we take two of the non-BERT state-of-the-art
models (Du and Cardie, 2018; Zhang and Bansal,

2The code is available at https://github.com/
StalVars/CopyBERT

Model BLEU4 METEOR ROUGE-L
CorefNQG (Du and Cardie, 2018) 15.16 19.12 -
SemdriftQG (Zhang and Bansal, 2019) 18.37 22.65 6.68
Recurrent-BERT (Chan and Fan, 2019) 20.33 23.88 48.23
UniLM (Dong et al., 2019) 22.12 25.06 51.07

BERT + No Copy 19.37 22.49 49.12
BERT + Normal Copy 20.30 23.03 49.35
BERT + Self-Copy 21.17 23.48 49.91
BERT + Two-Hop Self-Copy 20.90 23.37 49.89
SpanBERT + Self-Copy 22.71 24.48 51.60

Table 1: Question generation results on SQuAD test
split from Du et al. (2017). BERT refers to BERT-
Large(cased) model (Devlin et al., 2019)

2019) and the two BERT-based QG models (Dong
et al., 2019; Chan and Fan, 2019). We experi-
mented with 4 settings: one without using any
copy mechanism (No Copy), one using normal
copy (Normal Copy; §3.3.1), one using self-copy
(Self-Copy; §3.3.2) and finally with two-hop self-
copy (Two-Hop Self-Copy; §3.3.3).

4.3 Results
Table 1 shows our results 3. First, we note that
the baseline performance of BERT-Large (cased)
model with No Copy (19.37 BLEU4) is compa-
rable with the results reported by Chan and Fan
(2019) (20.33 BLEU4). We see a clear increase in
performance when Normal Copy is used (20.30
BLEU4). Further, we see considerable gain in
BLEU4 by using Self-Copy (+1.8 over No Copy
and +0.87 over Normal Copy), supporting the hy-
pothesis of using multi-layered, multi-headed self-
attentions for copy mechanism. UniLM, which
is a pre-trained model from BERT-Large check-
point with three sequence generation pre-training
tasks (Dong et al., 2019) and further fine-tuned
on SQuAD dataset for 10 epochs achieves 22.12
BLUE4 score. We achieve comparable perfor-
mance by only using self-copy mechanism. Figure
2 shows attention patterns of self-copy in question
generation.

To further validate the self-copy mechanism, we
also experimented by initializing with a variant
of BERT4 called SpanBERT (Joshi et al., 2019),
which is pre-trained to predict longer masked spans
to encourage better entity masking and has already
shown to improve QA results when compared to
BERT (Joshi et al., 2019). Although, Two-Hop
Self-Copy did not improve upon the Self-Copy,

3We used the evaluation script from https://github.
com/microsoft/unilm/tree/master/unilm-v1

4Note that Self-Copy mechanism can be applied with any
BERT-like pre-trained model
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Figure 2: CopyBERT attention visualizations of copy probability on SQuAD examples. Top: Attention focused
paragraph tokens on y-axis and generated question tokens on x-axis, where we see that the learnt copy probabilities
consistently extract words from the paragraph context. Bottom: Long-span attention pattern over the paragraph
words (x-axis), where the copy probability looks for question words (y-axis) even when most of the question
words are present in the local context around the answer phrase.

these attentions can serve as explainability of QG,
a good intuition behind copying different words,
which we plan to explore in our future work.

4.4 Training Speed

CopyBERT trains significantly faster than UniLM.
For UniLM, to fine-tune further on QG task it
takes around 10 epochs to obtain its best perfor-
mance. This is because the model uses input token
[MASK] to predict a target question word and as
a result can only train with some percentage of
randomly chosen words to ensure that the proba-
bility is conditioned on previous question words.
CopyBERT, in contrast, takes only 2 to 3 epochs to
achieve its best performance. It took CopyBERT
around 14 hours on a single GPU with 12GB main
memory to train for 3 epochs, whereas UniLM took
around 45 hours on the same hardware to train for
10 epochs to achieve similar results as reported in
Dong et al. (2019). We expect Recurrent-BERT
(Chan and Fan, 2019) to take even longer time to
train due to its sequential nature.

5 Conclusion

We showed that having a unified encoder-decoder
transformer model initialized with contextualized
word embeddings and further extended with copy
mechanism can already give state-of-the-art, with-
out additional pre-training on generation tasks
(Dong et al., 2019). We also sped up the training of
QG models that use BERT by choosing predictions
on output embeddings that are offset by one posi-
tion (§3.3). This work shows the significance of
explicitly using self-attentions of BERT like mod-
els. These models can further be used in other
tasks such as abstractive summarization and ma-
chine translation to see qualitative improvements.
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Abstract
Dialog State Tracking (DST) is a problem
space in which the effective vocabulary is prac-
tically limitless. For example, the domain of
possible movie titles or restaurant names is
bound only by the limits of language. As
such, DST systems often encounter out-of-
vocabulary words at inference time that were
never encountered during training. To combat
this issue, we present a targeted data augmenta-
tion process, by which a practitioner observes
the types of errors made on held-out evalua-
tion data, and then modifies the training data
with additional corpora to increase the vocab-
ulary size at training time. Using this with a
RoBERTa-based Transformer architecture, we
achieve state-of-the-art results in comparison
to systems that only mask trouble slots with
special tokens. Additionally, we present a data-
representation scheme for seamlessly retarget-
ing DST architectures to new domains.

1 Introduction

Dialog State Tracking (DST) is a common problem
for modern task-oriented dialog systems that need
to be capable of tracking user requests. Commonly,
there is an ontology that defines slots that must
be filled according to a user’s utterances – e.g., a
restaurant slot that is filled in with a restaurant
name given by the user. A key problem for DSTs is
that the values that fill a slot at inference may have
never been encountered at training time (consider
that the set of all possible restaurant names is bound
only by the limits of language).

In this work, we address the problems of training
on a domain with effectively limitless possible vo-
cabulary, and aim to create a DST system capable
of scaling to unseen vocabulary at inference. We
do this by first utilizing a language model (LM)
based Transformer that is capable of handling any
possible input and output in a textual manner, let-
ting the same exact architecture scale to new intents,

slots, and slot values, with no modifications needed.
Additionally, we present a practical data augmenta-
tion procedure for analyzing and addressing issues
in the development of a DST system, leading to
state-of-the-art performance.

2 Related Work

Work in DST has taken a number of different ap-
proaches. The annual DST Challenge (DSTC)
has undergone eight iterations (although from the
sixth competition on, it has been the more broad
Dialog System Technology Challenge) (Williams
et al., 2013; Henderson et al., 2014a,b). The
M2M:Simulated Dialogue (Shah et al., 2018)
dataset for dialog state tracking has been addressed
by a number of different approaches. Rastogi et al.
(2017) used a bi-directional GRU (Chung et al.,
2014) along with an oracle delexicalizer to gener-
ate a candidate list for slot filling. Rastogi et al.
(2018) later used a bi-directional LSTM (Hochre-
iter and Schmidhuber, 1997) without the oracle
delexicalization to generate candidate lists for slot
filling. Liu et al. (2018) use two bi-directional
LSTMs – one at the utterance level, the other at the
dialog level – to perform the dialog state tracking.
However, this work is only tested on the simulated
dataset Sim-GEN, meaning there is no comparison
with the more challenging human crafted utterances
contained in Sim-R and Sim-M.

The closest approach to the one detailed in this
paper is that of Chao and Lane (2019). They used
a system based off of BERT (Devlin et al., 2019),
but removed the language-model head and instead
used two specialized heads: one that does per-slot
utterance level classification to determine whether
a given slot is active in the utterance or is the spe-
cial dontcare token, and another per-slot head
that predicts whether a token represents the begin-
ning or end of the span for that type of slot. Our
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Figure 1: A depiction of the language model based Transformer architecture used in this work. For each token
in the user utterance (light blue), the model predicts what slot it belongs to (green or purple), if any, else other
(white). A token for each of the slots is concatenated to the end of the user utterance (orange) and the model predicts
whether that slot is active in the utterance (pink), not active (white), or should be set to the special dontcare
token (not in this example).

model differs in that we do not need to alter the
architecture of the model with specialized heads,
and instead fine-tune the existing language model
head. In their experimentation, they adjusted the
level of slot-specific dropout using targeted fea-
ture dropout, first used by Xu and Sarikaya (2014),
where slots are replaced with a special [UNK] to-
ken. Our approach also differs in that instead of
simply dropping out slots, we use the more nuanced
method of targeted data augmentation.

Finally, data augmentation has been widely
used for improving the robustness of dia-
log systems. Hou et al. (2018) used a
LSTM-based sequence-to-sequence network to
map from generic utterances (e.g., “show me
the <distance> <poitype>”) to a variety
of different utterances (e.g., “where is the
<distance> <poitype>” and “can you find
the <distance> <poitype> to me”). This
approach requires delexicalization and only alters
grammatical structure, which is quite different from
our approach which leaves grammatical structure
alone, instead altering the non-delexicalized slot
values. Quan and Xiong (2019) perform data aug-
mentation via four different approaches: (1) replace
words (excluding proper nouns, qualifiers, personal
pronouns, and modal verbs) with their synonyms,
(2) remove all stop words, (3) use existing neural
machine-translation technology to translate from
the source language to another and back again (sim-
ilar to that of Hou et al. (2018), except they do not
train their own seq2seq network), and (4) use an
existing paraphraser to paraphrase the utterance.

3 Method

Our goal in this work is to to create a robust, read-
ily extensible Dialog State Tracking system that
requires minimal to no alteration of network ar-
chitecture if the schema and/or domain of the dia-

log task changes. For instance, imagine a system
that is being developed for the restaurant domain
under a schema in which a set of slots are spec-
ified: cuisine, price, location. Now imagine that
later it becomes necessary to add a new slot: kid-
friendliness. Instead of changing the architecture
and retraining from scratch, we would prefer to
be able to fine-tune the existing model with the
new slot now present. Additionally, we incorporate
targeted data augmentation to combat over-fitting
when a domain has limited vocabulary.

3.1 Language Model Based Transformer

To produce such a versatile DST system, we re-
formulate our data such that the problem is fully
encoded textually, with no reliance on specialized
output heads. Specifically, we carry out:

1. Utterance-level slot activation. Is the slot ac-
tive in the current utterance? If it is, does
the slot map to the special dontcare token?
That is, for each slot we predict one of slot,
none, or dontcare.

2. Token-level slot filling. For each token in the
input, is it used in a slot or is it other?

To achieve (1), we modify the input utterance
with an additional sequence. The additional se-
quence contains all of the slots present in the dia-
log schema. For instance, the sentence “5 tickets
to Transformers: Age of Extinction please.” is con-
catenated with “movie time theater date number”.
Adding a new slot(s) is handled by simply concate-
nating to the list – e.g., if the above movie domain
was extended to add restaurants “cuisine restaurant
location” could be concatenated to the list of slots.

For (2), at the output level a slot is predicted
for every token in the original utterance and
a slot intent is predicted for every schema

33



token that is concatenated to that utterance:
“5[number] tickets to Transformers:[movie]
Age[movie] of [movie] Extinction[movie]
please. <s>movie[slot] time[none] theater[
none] date[none] number[slot]’ See Figure
1 for a more detailed illustration. Despite the
two objectives, the loss is simply the Categorical
Cross-Entropy loss over the entire (combined)
sequence.

The model aims to track the joint goal at each
turn in the dialog, represented as all the slot values
accumulated to that point. Rather than estimating
the entire joint goal each turn, we predict changes
to it – additions of slots, modifications to slot values
– and maintain the joint goal by applying these
changes.

4 Data Augmentation

There are a number of common issues in the
datasets for these dialog tasks, including:

1. Small datasets. It is tedious and time-
consuming to annotate, gather, or hand-
modify believable dialogs.

2. Open classes. Given the open-ended nature of
many of these tasks, training data cannot pro-
vide coverage of open classes (e.g., restaurant
names or movie titles).

To counteract these issues, researchers have pro-
posed a number of different data augmentation
schemes (see Section 2). At the outset of our study,
we tried the 10% slot-specific dropout used by
Chao and Lane (2019), but our model still over-
fit to the training set. To combat this, we devised
the following procedure:

1. Determine problem slots. Examine the in-
correct predictions on the held-out evaluation
set to determine whether there is a certain slot
or intent that is not being predicted well.

2. Augment for problem slots. Find a corpus
of values for that slot, and randomly insert a
value from that corpus at training time.

In our work, we were using the Sim-R and Sim-
M datasets (Shah et al., 2018), which are concerned
with restaurant reservations and movie tickets re-
spectively. We noticed that our system was nearly
perfectly able to handle requests related to time,
date, and number of people – slots whose values

come from small structured sets – but was having
difficulty with movie titles, restaurant names, and
locations, even with the targeted 10% dropout.

We found corpora for movie names (42,306
movie titles found on Wikipedia as of 2013 (Bam-
man et al., 2013)), restaurant names (1445 humor-
ous restaurant names (Samuel et al., 2016)), and
locations (2067 US settlement names from 1880
to 2010 (Samuel et al., 2016)) which we then used
to randomly replace the respective slots at training
time at a rate of 50%.

We note that our replacement has two major ef-
fects. (1) By randomly replacing with real values
instead of simply masking, the model is capable
of learning a wider variety of slot values and value
structures, instead of simply relying on syntactic in-
formation surrounding the names. (2) By randomly
replacing values, the dialog becomes more difficult
to follow – akin to a user who is prone to changing
their mind – and this forces the system to learn to
track a user’s (fickle) goals better.

5 Experiments

As previously mentioned, we used the Sim-R and
Sim-M datasets (Shah et al., 2018). This is because
we found them to be of high quality (but with room
for improvement), and there was a recent state-of-
the-art approach that used a similar Transformer-
based architecture to compare against (Chao and
Lane, 2019). To assess the performance of the
models, we use joint goal accuracy (Henderson
et al., 2014a), the standard metric for assessing
DST systems. At each turn of dialog, the ground
truth must be perfectly matched.

For this specific work, we fine-tuned the
RoBERTa masked language model of Liu et al.
(2019); specifically, we used the Huggingface
Transformers library (Wolf et al., 2019). All mod-
els were trained with the ADAM optimizer with an
initial learning rate of 5e− 5, epsilon of 1e− 8, a
linear learning rate schedule over 20 epochs, and
an attention mask rate of 15%.

We compare three approaches in the experiment.
(1) RoBERTa-LM, the RoBERTa LM architec-
ture with 10% slot-specific dropout; (2) RoBERTa-
Separate, the RoBERTa LM architecture with 50%
slot-specific replacement, with separate models
trained on the Sim-M and Sim-R datasets; and (3)
RoBERTa-Combined, the RoBERTa LM archi-
tecture with 50% slot-specific replacement, with a
single model trained on the combined Sim-M and
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DST Model Sim-M Sim-R Sim-M + Sim-R
DST+Oracle 96.8% 94.4% 95.2%
DST+LU 50.4% 87.1% 76.7%
BERT-DST 80.1% 89.6% 86.9%
RoBERTa-LM 71.1% 84.5% 80.8%
RoBERTa-Separate 84.2% * 92.5% * 90.2% *
RoBERTa-Combined 86.5% * 93.1% * 91.2% *

Table 1: Comparison of our approaches with prior work. * indicates that the approach is statistically significantly
better than BERT-DST (Fisher’s exact test with p < 0.01).

Sim-R datasets.

5.1 Baselines

To assess our model, we compare against three
previous systems. The first work by Rastogi et al.
(2017) uses a bi-directional GRU along with an
oracle delexicalizer to generate a candidate list for
slot filling (DST+Oracle). The follow-on work of
Rastogi et al. (2018) uses a bi-directional LSTM to
build a set of candidates without delexicalization
(DST+LU). Finally, the most recent approach, by
Chao and Lane (2019), builds off of the BERT
Transformer architecture which achieved state-of-
the-art results (BERT-DST).

5.2 Evaluation Results

A summary of the results can be seen in Table 1.
We draw attention to the following results. (1) The
language model based version of RoBERTa with-
out data augmentation performs relatively poorly:
it beats the non-Transformer based DST+LU at
Sim-M but is worse at Sim-R, and is worse at both
than BERT-DST. We did not perform a compre-
hensive hyperparameter search, so we are unable
to discern if it is a critical failing of the model, or
whether it was a result of our chosen hyperparame-
ters. (2) The RoBERTa language model with data
augmentation performed much better than the pre-
vious state-of-the-art – with 4.1% and 3.1% point
gains respectively on Sim-M and Sim-R. (3) Fi-
nally, we note that the language model that was
trained jointly on both the movie and restaurant
data is significantly better than the models trained
separately. In part, we believe that this is because
the datasets have a lot of overlap – e.g., request-
ing dates, times, etc. We also believe that due to
the relatively small sizes of the datasets, the in-
crease in the size helps combat overfitting in the
model – the Sim-M is a smaller dataset than Sim-R
(1364 turns vs. 3416) and commensurately, while

there is a small gain in Sim-R performance, Sim-M
performance is drastically improved (significant at
p < 0.00001 with Fisher’s exact test).

5.3 Discussion
We note that while we have achieved state-of-the-
art performance on the Sim-M and Sim-R datasets,
there is certainly a possibility that a better choice of
augmenting corpora could help the generality of the
final model. For instance, the corpus of restaurant
names was focused mostly on humorous names,
such as “A Brisket a Tasket” and “Et Tu New Brew.”
It will take further experimentation to determine if
these names are more of a help (the model must
be capable of handling a variety of names) or a
hindrance (these names are not representative of
most restaurant names).

Furthermore, we note the US-centric bias found
in the training and evaluation datasets for the lo-
cation names, and the corresponding bias in our
chosen corpus. Similarly, it is an open question as
to whether a wider – less US-focused – corpus of
location names would help. Certainly, for a sys-
tem deployed in the world, a wider corpus would
likely be of use, but for the purpose of achieving
state-of-the-art test accuracy, it is unknown.

6 Conclusions and Future Work

In this paper, we make two contributions. First, we
introduce a process for a) examining the source of
errors in Dialog State Tracking on held-out eval-
uation data, and b) correspondingly augmenting
the dataset with corpora to vastly increase the vo-
cabulary at training time. Like earlier work that
selectively masked slot values, this prevents the
system from overfitting to specific values found in
the training data. Furthermore, however, it forces
the system to learn a wider range of values, rather
than syntactic features only, vastly improving the
performance. Second, we do this in the context of a
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language model based Transformer, that due to the
language-based nature of its representation – slots
are simply represented as tokens concatenated to
user utterances – is capable of transferring seam-
lessly between and working jointly on different
datasets without the need to change the underly-
ing architecture. In the future, we would like to
address other forms of targeted data augmentation,
addressing grammatical differences in addition to
vocabulary modifications.
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PolyAI Limited

London, United Kingdom
{inigo,dan,matt,ivan}@poly-ai.com

Abstract
Building conversational systems in new do-
mains and with added functionality requires
resource-efficient models that work under low-
data regimes (i.e., in few-shot setups). Moti-
vated by these requirements, we introduce in-
tent detection methods backed by pretrained
dual sentence encoders such as USE and Con-
veRT. We demonstrate the usefulness and wide
applicability of the proposed intent detectors,
showing that: 1) they outperform intent detec-
tors based on fine-tuning the full BERT-Large
model or using BERT as a fixed black-box
encoder on three diverse intent detection data
sets; 2) the gains are especially pronounced in
few-shot setups (i.e., with only 10 or 30 anno-
tated examples per intent); 3) our intent detec-
tors can be trained in a matter of minutes on a
single CPU; and 4) they are stable across dif-
ferent hyperparameter settings. In hope of fa-
cilitating and democratizing research focused
on intention detection, we release our code, as
well as a new challenging single-domain intent
detection dataset comprising 13,083 annotated
examples over 77 intents.

1 Introduction

Task-oriented conversational systems allow users
to interact with computer applications through con-
versation in order to solve a particular task with
well-defined semantics, such as booking restau-
rants, hotels and flights (Hemphill et al., 1990;
Williams, 2012; El Asri et al., 2017), providing
tourist information (Budzianowski et al., 2018), or
automating customer support (Xu et al., 2017).

Intent detection is a vital component of any task-
oriented conversational system (Hemphill et al.,
1990; Coucke et al., 2018). In order to understand
the user’s current goal, the system must leverage its
intent detector to classify the user’s utterance (pro-
vided in varied natural language) into one of several

∗Equal contribution. TT is now at the Oxford University.

predefined classes, that is, intents.1 Scaling intent
detectors (as well as conversational systems in gen-
eral) to support new target domains and tasks is
a very challenging and resource-intensive process
(Wen et al., 2017; Rastogi et al., 2019). The need
for expert domain knowledge and domain-specific
labeled data still impedes quick and wide deploy-
ment of intent detectors. In other words, one crucial
challenge is enabling effective intent detection in
low-data scenarios typically met in commercial
systems, with only several examples available per
intent (i.e., the so-called few-shot learning setups).

Transfer learning on top of pretrained sentence
encoders (Devlin et al., 2019; Liu et al., 2019b,
inter alia) has now established as the mainstay
paradigm aiming to mitigate the bottleneck with
scarce in-domain data. However, directly applying
the omnipresent sentence encoders such as BERT
to intent detection may be sub-optimal. 1) As
shown by Henderson et al. (2019b), pretraining
on a general language-modeling (LM) objective
for conversational tasks is less effective than con-
versational pretraining based on the response se-
lection task and conversational data (Henderson
et al., 2019c; Mehri et al., 2019). 2) Fine-tuning
BERT and its variants is very resource-intensive as
it assumes the adaptation of the full large model.
Moreover, in few-shot setups fine-tuning may re-
sult in overfitting. From a commercial perspective,
these properties lead to extremely slow, cumber-
some, and expensive development cycles.

Therefore, in this work we propose to use ef-
ficient dual sentence encoders such as Universal
Sentence Encoder (USE) (Cer et al., 2018) and
ConveRT (Henderson et al., 2019b) to support in-
tent detection. These models are in fact neural

1For instance, in the e-banking domain intents can be lost
card or failed top-up (see Table 2). The importance of intent
detection is also illustrated by the fact that getting the intent
wrong is the first point of failure of any conversational agent.
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architectures tailored for modeling sentence pairs
(Henderson et al., 2019c; Humeau et al., 2020), and
are trained on a conversational response selection
task. As such, they inherently encapsulate conver-
sational knowledge needed for (few-shot) intent de-
tection. We discuss their advantage over LM-based
encoders, and empirically validate the usefulness
of conversational pretraining for intent detection.
We show that intent detectors based on fixed USE
and ConveRT encodings outperform BERT-backed
intent detectors across the board on three diverse
intent detection datasets, with prominent gains es-
pecially in few-shot scenarios. Another advantage
of dual models is their compactness:2 we demon-
strate that our state-of-the-art USE+ConveRT intent
detectors can be trained even on a regular laptop’s
CPU in only several minutes.

We also show that intent classifiers based on
dual sentence encoders are largely invariant to hy-
perparameter changes. This finding is extremely
important for real-life low-data regimes: due to the
invariance, the expensive hyperparameter tuning
step can be bypassed, and a limited number of an-
notated examples can be used directly as additional
training data (instead of held-out validation data).

Another contribution of this work is a new and
challenging intent detection dataset in the banking
domain, dubbed BANKING77. It follows the very
recent endeavor of procuring high-quality intent de-
tection data (Liu et al., 2019a; Larson et al., 2019),
but is very different in nature than the other datasets.
Unlike prior work which scatters a set of coarse-
grained intents across a multitude of domains (i.e.,
10+ domains, see Table 1 later), we present a chal-
lenging single-domain dataset comprising 13,083
examples over 77 fine-grained intents. We release
the code as part of the growing PolyAI’s repos-
itory: github.com/PolyAI-LDN/polyai-models.
The BANKING77 dataset is available at: github.

com/PolyAI-LDN/task-specific-datasets.

2 Methodology: Intent Detection with
Dual Sentence Encoders

Pretrained Sentence Encoders. Large-scale pre-
trained models have benefited a wide spectrum of
NLP applications immensely (Devlin et al., 2019;
Liu et al., 2019b; Radford et al., 2019). Their core
strength lies in the fact that, through consuming
large general-purpose corpora during pretraining,

2For instance, ConveRT is only 59MB in size, pretrained
in less than a day on 12 GPUs (Henderson et al., 2019b).

they require smaller amounts of domain-specific
training data to adapt to a particular task and/or
domain (Ruder et al., 2019). The adaptation is
typically achieved by adding a task-specific out-
put layer to a large pretrained sentence encoder,
and then fine-tuning the entire model (Devlin et al.,
2019). However, the fine-tuning process is com-
putationally intensive (Zafrir et al., 2019; Hender-
son et al., 2019b), and still requires sufficient task-
specific data (Arase and Tsujii, 2019; Sanh et al.,
2019). As such, the standard full fine-tuning ap-
proach is both unsustainable in terms of resource
consumption (Strubell et al., 2019), as well as sub-
optimal for few-shot scenarios.

Dual Sentence Encoders and Conversational
Pretraining. A recent branch of sentence encoders
moves beyond the standard LM-based pretrain-
ing objective, and proposes an alternative objec-
tive: conversational response selection, typically
on Reddit data (Al-Rfou et al., 2016; Henderson
et al., 2019a). As empirically validated by Hen-
derson et al. (2019c); Mehri et al. (2019), conver-
sational (instead of LM-based) pretraining aligns
better with conversational tasks such as dialog act
prediction or next utterance generation.

Pretraining on response selection also allows
for the use of efficient dual models: the neural
response selection architectures are instantiated as
dual-encoder networks that learn the interaction
between inputs/contexts and their relevant (follow-
up) responses. Through such response selection
pretraining regimes they organically encode useful
conversational cues in their representations.

In this work, we propose to use such efficient
conversational dual models as the main source of
(general-purpose) conversational knowledge to in-
form domain-specific intent detectors. We empiri-
cally demonstrate their benefits over other standard
sentence encoders such as BERT in terms of 1) per-
formance, 2) efficiency, and 3) applicability in few-
shot scenarios. We focus on two prominent dual
models trained on the response selection task: Uni-
versal Sentence Encoder (USE) (Cer et al., 2018),
and Conversational Representations from Trans-
formers (ConveRT) (Henderson et al., 2019b). For
further technical details regarding the two models,
we refer the interested reader to the original work.

Intent Detection with dual Encoders. We imple-
ment a simple yet effective model (see §5 later)
for intent detection which is based on the two dual
models. Unlike with BERT, we do not fine-tune
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the entire model, but use fixed sentence represen-
tations encoded by USE and ConveRT. We simply
stack a Multi-Layer Perceptron (MLP) with a sin-
gle hidden layer with ReLU non-linear activations
(Maas et al., 2013) on top of the fixed representa-
tions, followed by a softmax layer for multi-class
classification. This simple formulation also allows
us to experiment with the combination of USE and
ConveRT representations: we can feed the concate-
nated vectors to the same classification architecture
without any further adjustment.

3 New Dataset: BANKING77

In spite of the crucial role of intent detection in any
task-oriented conversational system, publicly avail-
able intent detection datasets are still few and far
between, even for English. The previous standard
datasets such as Web Apps, Ask Ubuntu, the Chat-
bot Corpus (Braun et al., 2017) or SNIPS (Coucke
et al., 2018) are limited to only a small number
of classes (< 10), which oversimplifies the intent
detection task and does not emulate the true envi-
ronment of commercial systems. Therefore, more
recent work has recognized the need for improved
and more challenging intent detection datasets. 1)
The dataset of Liu et al. (2019a), dubbed HWU64,
contains 25,716 examples for 64 intents in 21 do-
mains. 2) The dataset of Larson et al. (2019),
dubbed CLINC150, spans 150 intents and 23,700
examples across 10 domains.

However, the two recent English datasets are
multi-domain, and the examples per each domain
may not sufficiently capture the full complexity of
each domain as encountered “in the wild”. There-
fore, to complement the recent effort on data collec-
tion for intent detection, we propose a new single-
domain dataset: it provides a very fine-grained
set of intents in a banking domain, not present in
HWU64 and CLINC150. The new BANKING77
dataset comprises 13,083 customer service queries
labeled with 77 intents. Its focus on fine-grained
single-domain intent detection makes it comple-
mentary to the two other datasets: we believe
that any comprehensive intent detection evaluation
should involve both coarser-grained multi-domain
datasets such as HWU64 and CLINC150, and a fine-
grained single-domain dataset such as BANKING77.
The data statistics are summarized in Table 1.

The single-domain focus of BANKING77 with a
large number of intents makes it more challenging.
Some intent categories partially overlap with others,

Dataset Intents Examples Domains

HWU64 64 25,716 21
CLINC150 150 23,700 10

BANKING77 (ours) 77 13,083 1

Table 1: Intent detection datasets: key statistics.

which requires fine-grained decisions, see Table 2
(e.g., reverted top-up vs. failed top-up). Further-
more, as other examples from Table 2 suggest, it
is not always possible to rely on the semantics of
individual words to capture the correct intent.3

4 Experimental Setup

Few-Shot Setups. We conduct all experiments
on the three intent detection datasets described in
§3. We are interested in wide-scale few-shot intent
classification in particular: we argue that this setup
most closely resembles the development process of
a commercial conversational system, which typi-
cally starts with only a small number of data points
when expanding to a new domain or task. We sim-
ulate such low-data settings by sampling smaller
subsets from the full data. We experiment with
setups where only 10 or 30 examples are available
for each intent, while we use the same standard test
sets for each experimental run.4

MLP Design. Unless stated otherwise (e.g., in
experiments where we explicitly vary hyperparam-
eters), for the MLP classifier, we use a single 512-
dimensional hidden layer. We train with stochastic
gradient descent (SGD), with the learning rate of
0.7 and linear decay. We rely on very aggressive
dropout (0.75) and train for 500 iterations to reach
convergence. We show how this training regime
can improve the model’s generalization capabil-
ity, and we also probe its (in)susceptibility to di-
verse hyperparameter setups later in §5. Low-data
settings are balanced, which is especially easy to
guarantee in few-shot scenarios.

Models in Comparison. We compare intent detec-
tors supported by the following pretrained sentence
encoders. First, in the BERT-FIXED model we use
pretrained BERT in the same way as dual encoders,
in the so-called feature mode: we treat BERT as a
black-box fixed encoder and use it to compute en-
codings/features for training the classifier.5 We use

3The examples in BANKING77 are also longer on average
(12 words) than in HWU64 (7 words) or CLINC150 (8).

4For reproducibility, we release all training subsets.
5We have also experimented with ELMo embeddings (Pe-
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Intent Class Example Utterance

Card Lost Could you assist me in finding my lost card?
Link to Existing Card I found my lost card. Am I still able to use it?
Reverted Top-up Hey, I thought my topup was all done but now the money is gone again – what’s up with that?
Failed Top-up Tell me why my topup wouldn’t go through?

Table 2: Intent classes and example utterances from BANKING77.

BANKING77 CLINC150 HWU64

Model 10 30 Full 10 30 Full 10 30 Full

BERT-FIXED 67.55 80.07 87.19 80.16 87.99 91.79 72.61 79.78 85.77
BERT-TUNED 83.42 90.03 93.66 91.93 95.49 96.93 84.86 88.27 92.10
USE 84.23 89.74 92.81 90.85 93.98 95.06 83.75 89.03 91.25
CONVERT 83.32 89.37 93.01 92.62 95.78 97.16 82.65 87.88 91.24
USE+CONVERT 85.19 90.57 93.36 93.26 96.13 97.16 85.83 90.16 92.62

Table 3: Accuracy scores (×100%) on all three intent detection data sets with varying number of training examples
(10 examples per intent; 30 examples per intent; Full training data). The peak scores per column are in bold.

the mean-pooled “sequence ouput” (i.e., the pooled
mean of the sub-word embeddings) as the sen-
tence representation.6 In the BERT-TUNED model,
we rely on the standard BERT-based fine-tuning
regime for classification tasks (Devlin et al., 2019)
which adapts the full model. We train a softmax
layer on top of the [CLS] token output. We use the
Adam optimizer with weight decay and a learning
rate of 4 × 10−4. For low-data (10 examples per
intent), mid-data (30 examples) and full-data set-
tings we train for 50, 18, and 5 epochs, respectively,
which is sufficient for the model to converge, while
avoiding overfitting or catastrophic forgetting.

We use the two publicly available pretrained dual
encoders: 1) the multilingual large variant of USE

(Yang et al., 2019),7 and 2) the single-context CON-
VERT model trained on the full 2015-2019 Reddit
data comprising 654M (context, response) training
pairs (Henderson et al., 2019b).8 In all experimen-
tal runs, we compare against the pretrained cased
BERT-large model: 24 Transformer layers, em-
bedding dimensionality 1024, and a total of 340M
parameters. Note that e.g. ConveRT is much lighter
in its design and is also pretrained more quickly
than BERT (Henderson et al., 2019b): it relies on 6
Transfomer layers with embedding dimensionality
of 512. We report accuracy as the main evaluation
measure for all experimental runs.

ters et al., 2018) in the same feature mode, but they are consis-
tently outperformed by all other models in comparison.

6This performed slightly better than using the [CLS] token
embedding as sentence representation.

7https://tfhub.dev/google/universal-sentence-encoder-
multilingual-large/1

8https://github.com/PolyAI-LDN/polyai-models

5 Results and Discussion

Table 3 summarizes the main results; we show the
accuracy scores of all models on all three datasets,
and for different training data setups. As one cru-
cial finding, we report competitive performance of
intent detectors based on the two dual models, and
their relative performance seems to also depend on
the dataset at hand: USE has a slight edge over
CONVERT on HWU64, but the opposite holds on
CLINC150. The design based on fixed sentence
representations, however, allows for the straight-
forward combination of USE and CONVERT. The
results suggest that the two dual models in fact cap-
ture complementary information, as the combined
USE+CONVERT-based intent detectors result in
peak performance across the board. As discussed
later, due to its pretraining objective, BERT is com-
petitive only in its fine-tuning mode of usage, and
cannot match other two sentence encoders in the
feature-based (i.e., fixed) usage mode.

Few-Shot Scenarios. The focus of this work is on
low-data few-shot scenarios often met in produc-
tion, where only a handful of annotated examples
per intent are available. The usefulness of dual
sentence encoders comes to the fore especially in
this setup: 1) the results indicate gains over the
fine-tuned BERT model especially for few-shot
scenarios, and the gains are more pronounced in
our “fewest-shot” setup (with only 10 annotated
examples per intent). The respective improvements
of USE+CONVERT over BERT-TUNED are +1.77,
+1.33, and +0.97 for BANKING77, CLINC150, and
HWU64 (10 examples per intent), and we also see
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BANKING77 CLINC150 HWU64

Model 10 Full 10 Full 10 Full

BERT-FIXED 64.9 (67.8) [57.0] 86.2 (88.4) [74.9] 78.1 (80.6) [70.2] 91.2 (92.6) [84.7] 71.5 (72.8) [68.0] 85.9 (86.8) [81.5]
USE 83.9 (84.4) [83.0] 92.6 (92.9) [91.4] 90.6 (91.0) [89.9] 95.0 (95.3) [93.9] 83.6 (83.9) [83.0] 91.6 (92.1) [90.7]
CONVERT 83.1 (83.4) [82.4] 92.6 (93.0) [91.6] 92.4 (92.8) [92.0] 97.1 (97.2) [96.3] 82.5 (83.1) [82.0] 91.3 (91.6) [90.8]
USE+CONVERT 85.2 (85.5) [84.8] 93.3 (93.5) [92.8] 93.2 (93.5) [92.8] 97.0 (97.2) [96.5] 85.9 (86.2) [85.7] 92.5 (92.8) [91.6]

Table 4: Variation in accuracy scores (×100%) with different hyperparameter regimes for all the models in com-
parison and on all three datasets. 10 again means 10 training examples per intent as opposed to Full training data.
The scores are provided as avg (max) [min]: avg is the average over all runs with different hyperparameter settings
for each encoder model and each setup, max and min are the respective maximum and minimum scores.

Encoder CPU GPU

BERT (Large) 2.4 235.9
USE 53.5 785.4
CONVERT 58.3 866.7

Table 5: Average number of sentences encoded per sec-
ond with the three sentence encoders. The data is fed
to each encoder in batches of 15 sentences.

Classifer CPU GPU TPU

BERT-TUNED n/a n/a 567s
USE 65s 57s n/a
CONVERT 73s 53s n/a

Table 6: Time to train and evaluate an intent classifica-
tion model based on two dual models and fine-tuning
BERT on BANKING77 in a few-shot scenario with 10
examples per intent. The CPU is a 2.3 GHz Dual-Core
Intel Core i5. The GPU is a GeForce RTX 2080 Ti, 11
GB. The TPU is a v2-8, 8 cores, 64 GB.

better results with the combined model when 30 ex-
amples per intent are available on all three datasets.
Overall, this proves the suitability of dual sentence
encoders for the few-shot intent classification task.

Invariance to Hyperparameters. A prominent
risk in few-shot setups concerns overfitting to small
data sets (Srivastava et al., 2014; Olson et al., 2018).
Another issue concerns the sheer lack of training
data, which gets even more pronounced if a sub-
set of the (already scarce) data must be reserved
for validation and hyper-parameter tuning. There-
fore, a desirable property of any few-shot intent
detector is its invariance to hyperparameters and,
consequently, its off-the-shelf usage without fur-
ther tuning on the validation set. This effectively
means that one could use all available annotated ex-
amples directly for training. In order to increase the
reliability of the intent detectors and prevent over-
fitting in few-shot scenarios, we suggest to use the
aggressive dropout regularization (i.e., the dropout
rate is 0.75), and a very large number of iterations

(500), see §4.
We now demonstrate that the intent detectors

based on dual encoders are very robust with re-
spect to different hyper-parameter choices, start-
ing from this basic assumption that a high number
of iterations and high dropout rates r are needed.
For each classifier, we fix the base/pivot config-
uration from §4: the number of hidden layers is
H = 1, its dimensionality is h = 512, the SGD op-
timizer is used with the learning rate of 0.75. Start-
ing from the pivot configuration, we create other
configurations by altering one hyper-parameter at
the time from the pivot. We probe the follow-
ing values: r = {0.75, 0.5, 0.25}, H = {0, 1, 2},
h = {128, 256, 512, 1024}, and we also try out all
the configurations with another optimizer: Adam
with the linearly decaying learning rate of 4×10−4.

The results with all hyperparameter configs are
summarized in Table 4. They suggest that intent
detectors based on dual models are indeed very
robust. Importantly, we do not observe any experi-
mental run which results in substantially lower per-
formance with these models. In general, the peak
scores with dual-based models are reported with
higher r rates (0.75), and with larger hidden layer
sizes h (1,024). On the other side of the spectrum
are variants with lower r rates (0.25) and smaller
h-s (128). However, the fluctuation in scores is not
large, as illustrated by the results in Table 4. This
finding does not hold for BERT-FIXED where in
Table 4 we do observe “outlier” runs with substan-
tially lower performance compared to its peak and
average scores. Finally, it is also important to note
BERT-TUNED does not converge to a good solution
for 2% of the runs with different seeds, and such
runs are not included in the final reported numbers
with that baseline in Table 3.

Resource Efficiency. Besides strong performance
established in Table 3 and increased stability (see
Table 4), another advantage of the two dual models
is their encoding efficiency. In Table 5 we report
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the average times needed by each fixed encoder
to encode sentences fed in the batches of size 15
on both CPU (2.3 GHz Dual-Core Intel Core i5)
and GPU (GeForce RTX 2080 Ti, 11 GB). The
encoding times reveal that BERT, when used as a
sentence encoder, is around 20 times slower on the
CPU and roughly 3 times slower on the GPU.9

Furthermore, in Table 6 we present the time re-
quired to train and evaluate an intent classification
model for BANKING77 in the lowest-data regime
(10 instances per intent).10 Note that the time reduc-
tion on GPU over CPU for the few-shot scenario is
mostly due to the reduced encoding time on GPU
(see Table 5 again). However, when operating in
the Full data regime, the benefits of GPU training
vanish: using a neural net with a single hidden layer
the overhead of the GPU usage is higher than the
speed-up achieved due to faster encoding and net-
work computations. Crucially, the reported training
and execution times clearly indicate that effective
intent detectors based on pretrained dual models
can be constructed even without large resource de-
mands and can run even on CPUs, without huge
models that require GPUs or TPUs. In sum, we
hope that our findings related to improved resource
efficiency of dual models, as well as the shared
code will facilitate further and wider research fo-
cused on the intent classification task.

Further Discussion. The results from Tables 3
and 4 show that transferring representations from
conversational pretraining based on the response
selection task (and conversational data) is useful for
conversational tasks such as intent detection. This
corroborates the main findings from prior work
(Humeau et al., 2020; Henderson et al., 2019b).
The results also suggest that using the current pre-
trained BERT as an off-the-shelf sentence encoder
is sub-optimal for an application such as intent
detection: BERT is much more powerful when
used in the fine-tuning mode instead of the less ex-
pensive “feature-based” mode (Peters et al., 2019).
This might be due to its pretraining LM objective:
while both USE and ConveRT are forced to rea-
son at the level of full sentences during the re-

9We provide a colab script to reproduce these experiments.
10Note that we cannot evaluate BERT-TUNED

on GPU as it runs out of memory. Similar prob-
lems were reported in prior work; see https:
//github.com/google-research/bert/blob/
master/README.md#squad-11 for a reference. USE
and CONVERT cannot be evaluated on TPUs as they currently
lack TPU-specific code.

sponse selection pretraining, BERT is primarily
a (local) language model. It seems that the next
sentence prediction objective is not sufficient to
learn a universal sentence encoder which can be ap-
plied off-the-shelf to unseen sentences in conversa-
tional tasks (Mehri et al., 2019). However, BERT’s
competitive performance in the fine-tuning mode,
at least in the Full data scenarios, suggests that it
still captures knowledge which is useful for intent
detection. Given strong performance of both fine-
tuned BERT and dual models in the intent detection
task, in future work we plan to investigate hybrid
strategies that combine dual sentence encoders and
LM-based encoders. Note that it is also possible to
combine BERT-FIXED with the two dual encoders,
but such ensembles, besides yielding reduced per-
formance, also substantially increase training times
(see again Table 5).

We also believe that further gains can be
achieved by increasing the overall size and depth
of dual models such as ConveRT, but this comes
at the expense of its efficiency and training speed:
note that the current architecture of ConveRT re-
lies on only 6 Transformer layers and embedding
dimensionality of 512 (cf., BERT-Large with 24
layers and 1024-dim embeddings).

6 Conclusion

We have presented intent classification models that
rely on sentence encoders which were pretrained
on a conversational response selection task. We
have demonstrated that using dual encoder models
such as USE and ConveRT yield state-of-the-art
intent classification results on three diverse intent
classification data sets in English. One of these
data sets is another contribution of this work: we
have proposed a fine-grained single-domain data
set spanning 13,083 annotated examples across 77
intents in the banking domain.

The gains with the proposed models over fully
fine-tuned BERT-based classifiers are especially
pronounced in few-shot scenarios, typically en-
countered in commercial systems, where only a
small set of annotated examples per intent can be
guaranteed. Crucially, we have shown that the pro-
posed intent classifiers are extremely lightweight
in terms of resources, which makes them widely
usable: they can be trained on a standard lap-
top’s CPU in several minutes. This property holds
promise to facilitate the development of intent clas-
sifiers even without access to large computational
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resources, which in turn also increases equality and
fairness in research (Strubell et al., 2019).

In future work we will port the efficient intent de-
tectors based on dual encoders to other languages,
leveraging multilingual pretrained representations
(Chidambaram et al., 2019). This work has also
empirically validated that there is still ample room
for improvement in the intent detection task espe-
cially in low-data regimes. Therefore, similar to
recent work (Upadhyay et al., 2018; Khalil et al.,
2019; Liu et al., 2019c), we will also investigate
how to transfer intent detectors to low-resource
target languages in few-shot and zero-shot scenar-
ios. We also plan to extend the models to handle
out-of-scope prediction (Larson et al., 2019).

We have released the code and the data
sets online at: github.com/PolyAI-LDN/

polyai-models.
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Pei-Hao Su, Ivan Vulić, et al. 2019b. Con-
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Casanueva, Paweł Budzianowski, Sam Coope,
Georgios Spithourakis, Tsung-Hsien Wen, Nikola
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Abstract

Task-oriented dialog models typically leverage
complex neural architectures and large-scale,
pre-trained Transformers to achieve state-of-
the-art performance on popular natural lan-
guage understanding benchmarks. However,
these models frequently have in excess of tens
of millions of parameters, making them im-
possible to deploy on-device where resource-
efficiency is a major concern. In this work,
we show that a simple convolutional model
compressed with structured pruning achieves
largely comparable results to BERT (Devlin
et al., 2019) on ATIS and Snips, with under
100K parameters. Moreover, we perform ac-
celeration experiments on CPUs, where we ob-
serve our multi-task model predicts intents and
slots nearly 63× faster than even DistilBERT
(Sanh et al., 2019).

1 Introduction

The advent of smart devices like Amazon Alexa,
Facebook Portal, and Google Assistant has in-
creased the necessity of resource-efficient task-
oriented systems (Coucke et al., 2018; Zhang et al.,
2020; Desai et al., 2020). These systems chiefly
perform two natural language understanding tasks,
intent detection and slot filling, where the goals
are to understand what the user is trying to ac-
complish and the metadata associated with the re-
quest, respectively (Gupta et al., 2018). However,
there remains a disconnect between state-of-the-
art task-oriented systems and their deployment in
real-world applications. Recent top performing sys-
tems have largely saturated performance on ATIS
(Hemphill et al., 1990) and Snips (Coucke et al.,
2018) by leveraging complex neural architectures
and large-scale, pre-trained language models (De-
vlin et al., 2019), but their usability in on-device
settings remains suspect (Qin et al., 2019; Cheng
et al., 2017). Mobile phones, for example, have

sharp hardware constraints and limited memory ca-
pacities, implying systems must optimize for both
accuracy and resource-efficiency as possible to be
able to run in these types of environments (Lin
et al., 2010; McIntosh et al., 2018).

In this work, we present a vastly simplified,
single-layer convolutional model (Kim, 2014; Bai
et al., 2018) that is highly compressible but nonethe-
less achieves competitive results on task-oriented
natural language understanding benchmarks. In
order to compress the model, we use structured
magnitude-based pruning (Anwar et al., 2017; Li
et al., 2017), a two-step approach where (1) entire
convolutional filters are deleted according to their
`2 norms; and (2) remaining portions of the under-
lying weight matrix are spliced together. The suc-
cessive reduction in the number of convolutional
output connections permits downstream weight ma-
trices to reduce their number of input connections
as well, collectively resulting in a smaller model.
Structured pruning and re-training steps are then in-
terleaved to ensure the model is able to reconstruct
lost filters that may contribute valuable informa-
tion. During test-time, however, we use the pruned
model as-is without further fine-tuning.

Our simple convolutional model with structured
pruning obtains strong results despite having less
than 100K parameters. On ATIS, our multi-task
model achieves 95% intent accuracy and 94% slot
F1, only about 2% lower than BERT (Devlin et al.,
2019). Structured pruning also admits significantly
faster inference: on CPUs, we show our model
is 63× faster than DistilBERT. Unlike compres-
sion methods based on unstructured pruning (Fran-
kle and Carbin, 2019), our model enjoys speedups
without having to rely on a sparse tensor library at
test-time (Han et al., 2016), thus we demonstrate
the potential for usage in resource-constrained, on-
device settings. Our code is publicly available at
https://github.com/oja/pruned-nlu.
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2 Related Work

Task-Oriented Dialog. Dialog systems perform
a range of tasks, including language understanding,
dialog state tracking, content planning, and text
generation (Bobrow et al., 1977; Henderson, 2015;
Yu et al., 2016; Yan et al., 2017; Gao et al., 2018).
For smart devices, specifically, intent detection and
slot filling form the backbone of natural language
understanding (NLU) modules, which can either
be used in single-turn or multi-turn conversations
(Coucke et al., 2018; Rastogi et al., 2020). We
contribute a single-turn, multi-task NLU system es-
pecially tailored for on-device settings, as demon-
strated through acceleration experiments.

Model Compression. In natural language pro-
cessing, numerous works have used compression
techniques like quantization (Wróbel et al., 2018;
Zafrir et al., 2019), distillation (Sanh et al., 2019;
Tang et al., 2019; Jiao et al., 2020), pruning (Yoon
et al., 2018; Gordon et al., 2020), and smaller repre-
sentations (Ravi and Kozareva, 2018; Kozareva and
Ravi, 2018; Desai et al., 2020). Concurrently, Desai
et al. (2020) develop lightweight convolutional rep-
resentations for on-device task-oriented systems,
related to our goals, but they do not compare with
other compression methods and solely evaluate on
a proprietary dataset. In contrast, we compare
the efficacy of structured pruning against strong
baselines—including BERT (Devlin et al., 2019)—
on the open-source ATIS and Snips datasets.

3 Convolutional Model

Convolutions for On-Device Modeling. State-
of-the-art task-oriented models are largely based
on recurrent neural networks (RNNs) (Wang et al.,
2018) or Transformers (Qin et al., 2019). However,
these models are often impractical to deploy in low-
resource settings. Recurrent models must sequen-
tially unroll sequences during inference, and self-
attention mechanisms in Transformers process se-
quences with quadratic complexity (Vaswani et al.,
2017). High-performing, pre-trained Transformers,
in particular, also have upwards of tens of millions
of parameters, even when distilled (Tang et al.,
2019; Sanh et al., 2019).

Convolutional neural networks (CNNs), in con-
trast, are highly parallelizable and can be signif-
icantly compressed with structured pruning (Li
et al., 2017), while still achieving competitive per-
formance on a variety of NLP tasks (Kim, 2014;

Gehring et al., 2017). Furthermore, the core con-
volution operation has enjoyed speedups with ded-
icated digital signal processors (DSPs) and field
programmable gate arrays (FPGAs) (Ahmad and
Pasha, 2020). Model compatibility with on-device
hardware is one of the most important consider-
ations for practitioners as, even if a model works
well on high throughput GPUs, its components may
saturate valuable resources like memory and power
(Lin et al., 2010).

Model Description. Model inputs are encoded
as a sequence of integers w = (w1, · · · , wn) and
right-padded up to a maximum sequence length.
The embedding layer replaces each token wi with
a corresponding d-dimensional vector ei ∈ Rd

sourced from pre-trained GloVe embeddings (Pen-
nington et al., 2014). A feature map c ∈ Rn−h+1

is then calculated by applying a convolutional filter
of height h over the embedded input sequence. We
apply max-over-time pooling ĉ = max(c) (Col-
lobert et al., 2011) to simultaneously reduce the
dimensionality and extract the most salient fea-
tures. The pooled features are then concatenated
and fed through a linear layer with dropout (Sri-
vastava et al., 2014). The objective is to maximize
the log likelihood of intents, slots, or both (under
a multi-task setup), and is optimized with Adam
(Kingma and Ba, 2015).

To ensure broad applicability, our model em-
phasizes simplicity, and therefore minimizes the
number of extraneous architectural decisions: there
is only a single convolutional block, no residual
connections, and no normalization layers.

Temporal Padding. The model described above
is capable of predicting an intent that encompasses
the entire input sequence, but cannot be used for se-
quence labeling tasks, namely slot filling. To create
a one-to-one correspondence between input tokens
and output slots, Bai et al. (2018) left-pad the input
sequence by k − 1, where k is the kernel size. We
modify this by loosening the causality constraint
and instead padding each side by k−1

2 . Visually,
this results in a “centered” convolution that incul-
cates bidirectional context when computing a fea-
ture map. Note that this padding is unnecessary for
intent detection, therefore we skip it when training
a single-task intent model.

Multi-Task Training. Intent detection and slot
filling can either be disjointly learned with dedi-
cated single-task models or jointly learned with a
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unified multi-task model (Liu and Lane, 2016). In
the latter model, we introduce task-specific heads
on top of the common representation layer and si-
multaneously optimize both objectives:

Ljoint = αLintent + (1− α)Lslot

for α where 0 ≤ α ≤ 1. Empirically, we observe
that weighting Lslot more than Lintent results in
higher performance (α ≈ 0.2). Our hypothesis
is that, because of the comparative difficulty of
the slot filling task, the model is required to learn a
more robust representation of each utterance, which
is nonetheless useful for intent detection.

4 Structured Pruning

Structured vs. Unstructured Pruning. Prun-
ing is one compression technique that removes
weights from an over-parameterized model (Le-
Cun et al., 1990), often relying on a heuristic func-
tion that ranks weights (or groups of weights) by
their importance. Methods for pruning are broadly
categorized as unstructured and structured: unstruc-
tured pruning allows weights to be removed haphaz-
ardly without geometric constraints, but structured
pruning induces well-defined sparsity patterns, for
example, dropping entire filters in a convolutional
layer according to their norm (Molchanov et al.,
2016; Li et al., 2017; Anwar et al., 2017). Crit-
ically, the model’s true size is not diminished
with unstructured pruning, as without a sparse
tensor library, weight matrices with scattered zero
elements must still be stored (Han et al., 2016). In
contrast, structurally pruned models do not rely on
such libraries at test-time since non-zero units can
simply be spliced together.

Pruning Methodology. The structured pruning
process is depicted in Figure 1. In each pruning it-
eration, we rank each filter by its `2 norm, greedily
remove filters with the smallest magnitudes, and
splice together non-zero filters in the underlying
weight matrix. The deletion of a single filter re-
sults in one less output channel, implying we can
also remove the corresponding input channel of
the subsequent linear layer with a similar splicing
operation. Repetitions of this process result in an
objectively smaller model because of reductions in
the convolutional and linear layer weight matrices.
Furthermore, this process does not lead to irregular
sparsity patterns, resulting in a general speedup on
all hardware platforms.

Figure 1: Structured pruning of convolutional models
by (1) ranking filters by their `2 norm, then (2) splicing
out the lowest norm filter, resulting in a successively
smaller weight matrix. Because each filter convolves
input filters cin into one output filter cout, removing a
single filter results in cout − 1 output channels.

The heuristic function for ranking filters and
whether to re-train the model after a pruning step
are important hyperparameters. We experimented
with both `1 and `2 norms for selecting filters, and
found that `2 slightly outperforms `1. More com-
plicated heuristic functions, such as deriving filter
importance according to gradient saliency (Persand
et al., 2020), can also be dropped into our pipeline
without modification.

One-Shot vs. Iterative Pruning. Furthermore,
when deciding to re-train the model, we experiment
with one-shot and iterative pruning (Frankle and
Carbin, 2019). One-shot pruning involves repeat-
edly deleting filters until reaching a desired sparsity
level without re-training, whereas iterative pruning
interleaves pruning and re-training, such that the
model is re-trained to convergence after each prun-
ing step. These re-training steps increase overall
training time, but implicitly help the model “recon-
struct” deleted filter(s), resulting in significantly
better performance. During test-time, however, the
pruned model uses significantly fewer resources,
as we demonstrate in our acceleration experiments.

5 Tasks and Datasets

We build convolutional models for intent detec-
tion and slot filling, two popular natural language
understanding tasks in the task-oriented dialog
stack. Intent detection is a multi-class classifica-
tion problem, whereas slot filling is a sequence
labeling problem. Formally, given utterance tokens
w = (w1, · · · , wn), models induce a joint distribu-
tion P (y∗intent,y

∗
slot|w) over an intent label y∗intent
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Models ATIS Snips

Intent Slot Intent Slot

Baselines

Slot-Gated RNN 94.10 95.20 97.00 88.80
Stack Propagation 96.90 95.90 98.00 94.20
DistilBERT (66M) 96.98 95.44 97.94 94.59
BERT (110M) 97.16 96.02 98.26 95.05

Method: No Compression

Single-Task 94.94 94.01 96.54 85.06
Multi-Task (195K/174K) 94.98 94.30 96.97 84.38

Method: Structured Pruning

Single-Task 95.45 94.61 96.94 85.11
Multi-Task (97K/87K) 95.39 94.42 97.17 83.81

Table 1: Intent accuracy and slot F1 of baseline mod-
els (Goo et al., 2018; Qin et al., 2019; Sanh et al., 2019;
Devlin et al., 2019) and our systems on ATIS and Snips.
We experiment with single-task and multi-task models.
Number of model parameters are shown in parenthe-
ses where applicable; multi-task models use the format
(ATIS/Snips).

and slot labels y∗
slot = (y

∗(1)
slot , · · · ,y

∗(n)
slot ). These

models are typically multi-task: intent and slots
predictions are derived with task-specific heads
but share a common representation (Liu and Lane,
2016). However, since the intent and slots of
an utterance are independent, we can also learn
single-task models, where an intent model opti-
mizes P (y∗intent|w) and a slot model optimizes
P (y∗

slot|w). We experiment with both approaches,
although our ultimate compressed model is multi-
tasked as aligned with on-device use cases.

Following previous work, we evaluate on ATIS
(Hemphill et al., 1990) and Snips (Coucke et al.,
2018), both of which are single-turn dialog bench-
marks with intent detection and slot filling. ATIS
has 4,478/500/893 train/validation/test samples, re-
spectively, with 21 intents and 120 slots. Snips has
13,084/700/700 samples with 7 intents and 72 slots.
Our setup follows the same preparation as Zhang
et al. (2019).

6 Experiments and Results

We evaluate the performance, compression, and
acceleration of our structured pruning approach
against several baselines. Note that we do not em-
ploy post-hoc compression methods like quantiza-
tion (Guo, 2018), as they are orthogonal to our core
method, and can be utilized at no additional cost to
further improve performance on-device.

Params CR (%) Pruning Distillation

Intent Slot Intent Slot

195K 0% 94.98 94.30 93.84 94.12
156K 20% 95.39 94.19 94.85 94.22
117K 40% 95.03 94.14 94.51 94.13
78K 60% 95.10 94.12 92.27 94.32
39K 80% 94.40 93.91 90.48 94.05
19K 90% 92.23 93.20 78.28 92.46

9K 95% 88.35 92.19 70.89 89.54
2K 99% 79.49 87.17 70.89 64.75

Table 2: ATIS performance of multi-task models com-
pressed with structured pruning (ours) and knowledge
distillation (Hinton et al., 2015) as the compression rate
(CR; %) increases. We report intent accuracy and slot
F1. Darker shades of red indicate higher absolute per-
formance drops with respect to 100%.

6.1 Benchmark Results

We experiment with both single-task and multi-task
models, with and without structured pruning, on
ATIS and Snips. The results are displayed in Table
1. Our multi-task model with structured pruning,
even with over a 50% reduction in parameters, per-
forms on par with our NO COMPRESSION baselines.
On ATIS, our model is comparable to SLOT-GATED

RNN (Goo et al., 2018) and is only about 2% worse
in accuracy/F1 than BERT. However, we note that
our model’s slot F1 severely drops off on Snips,
possibly because it is a much larger dataset span-
ning a myriad of domains. Whether our pre-trained
embeddings have sufficient explanatory power to
scale past common utterances is an open question.

Furthermore, to approximate what information is
lost after compression, we analyze which samples’
predictions flip from correct to incorrect after struc-
tured pruning. We observe that sparser models tend
to prefer larger classes; for example, in slot filing,
tags are often mislabeled as “outside” in IOB label-
ing (Tjong and Sang, 2000). This demonstrates a
trade-off between preserving non-salient features
that work on average for all classes or salient fea-
tures that accurately discriminate between the most
prominent classes. Our model falls on the right end
of this spectrum, in that it greedily de-prioritizes
representations for inputs that do not contribute as
much to aggregate dataset log likelihood.

6.2 Comparison with Distillation

In addition, we compare structured pruning with
knowledge distillation, a popular compression tech-
nique where a small, student model learns from a
large, teacher model by minimizing the KL diver-
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Figure 2: Performance-compression tradeoff curves on
ATIS and Snips, comparing multi-task models com-
pressed with structured pruning (ours) and knowledge
distillation (Hinton et al., 2015). Pruning curves denote
the mean of five compression runs with random restarts.
Note that the y-axis ticks are not uniform across graphs.

gence between their output distributions (Hinton
et al., 2015). Using a multi-task model on ATIS,
we compress it with structured pruning and distilla-
tion, then examine its performance at varying levels
of compression. The results are shown in Table 2.
Distillation achieves similar results as structured
pruning with 0-50% sparsity, but its performance
largely drops off after 80%. Surprisingly, even with
extreme compression (99%), structured pruning is
about 10% and 20% better on intents and slots,
respectively.

Our results show that, in this setting, the iterative
refinement of a sparse topology admits an easier
optimization problem; learning a smaller model
directly is not advantageous, even when it is su-
pervised with a larger model. Furthermore, the
iterative nature of structured pruning means it is
possible to select a model that optimizes a particu-
lar performance-compression trade off along a spar-
sity curve, as shown in Figure 2. To do the same
with distillation requires re-training for a target
compression level each time, which is intractable
with a large set of hyperparameters.

6.3 Acceleration Experiments

Lastly, to understand how our multi-task model
with structured pruning performs without signifi-
cant computational resources, we benchmark its
test-time performance on a CPU and GPU. Specifi-
cally, we measure several models’ inference times
on ATIS and Snips (normalized by the total num-
ber of test samples) using an Intel Xeon E3-1270

System ATIS Snips

CPU ↓ GPU ↓ CPU ↓ GPU ↓
DistilBERT 22.15 ms 1.87 ms 21.81 ms 1.76 ms
BERT 43.19 ms 2.80 ms 43.04 ms 2.72 ms

Pruning 0.35 ms 0.37 ms 0.33 ms 0.36 ms
Distillation 0.40 ms 0.37 ms 0.38 ms 0.37 ms

Table 3: Average CPU and GPU inference time (in mil-
liseconds) of baselines (Sanh et al., 2019; Devlin et al.,
2019) and our multi-task models on ATIS and Snips.

v3 CPU and NVIDIA GTX 1080-TI GPU. Results
are shown in Table 3. Empirically, we see that our
pruned model results in significant speedups with-
out a GPU compared to both a distilled model and
BERT. DistilBERT, which is a strong approxima-
tion of BERT, is still 63× slower than our model.
We expect that latency disparities on weaker CPUs
will be even more extreme, therefore selecting a
model that maximizes both task performance and
resource-efficiency will be an important considera-
tion for practitioners.

7 Conclusion

In this work, we show that structurally pruned
convolutional models achieve competitive perfor-
mance on intent detection and slot filling at only a
fraction of the size of state-of-the-art models. Our
method outperforms popular compression methods,
such as knowledge distillation, and results in large
CPU speedups compared to BERT and DistilBERT.
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Abstract

Neural dialogue models, despite their suc-
cesses, still suffer from lack of relevance,
diversity, and in many cases coherence in
their generated responses. On the other hand,
transformer-based models such as GPT-2 have
demonstrated an excellent ability to capture
long-range structures in language modeling
tasks. In this paper, we present DLGNet, a
transformer-based model for dialogue model-
ing. We specifically examine the use of DL-
GNet for multi-turn dialogue response genera-
tion. In our experiments, we evaluate DLGNet
on the open-domain Movie Triples dataset and
the closed-domain Ubuntu Dialogue dataset.
DLGNet models, although trained with only
the maximum likelihood objective, achieve
significant improvements over state-of-the-art
multi-turn dialogue models. They also pro-
duce best performance to date on the two
datasets based on several metrics, including
BLEU, ROUGE, and distinct n-gram. Our
analysis shows that the performance improve-
ment is mostly due to the combination of
(1) the long-range transformer architecture
with (2) the injection of random informative
paddings. Other contributing factors include
the joint modeling of dialogue context and re-
sponse, and the 100% tokenization coverage
from the byte pair encoding (BPE).

1 Introduction

Recent successes of pretrained transformer-based
language models, such as BERT (Devlin et al.,
2019), GPT(-2) (Radford and Salimans, 2018; Rad-
ford et al., 2019), Transformer-XL (Dai et al.,
2019), XLNet (Yang et al., 2019), and ERNIE(2.0)
(Sun et al., 2019a,b), have led to state-of-the-art
performance on many natural language understand-
ing (NLU) tasks including sentence classification,
named entity recognition, sentence similarity, and
question answering. The exceptional performance

Figure 1: Positional Entropy for Movie and Ubuntu
datasets - Applying a greedy training objective to the
original and BPE datasets can achieve low overall en-
tropy just by overfitting to low entropy regions, result-
ing in short and generic responses. Injecting random
paddings into the data does not suffer from this prob-
lem and can be used to train transformer architectures
due to their lack of recurrent propagations.

of transformer-based language models is due to
their ability to capture long-term temporal depen-
dencies in the input sequence. This attribute should
be very beneficial to dialogue modeling, especially
in multi-turn scenarios. Most of the existing neural
dialogue response generation models are based on
recurrent neural networks (Sutskever et al., 2014;
Vinyals and Le, 2015; Li et al., 2016a; Serban et al.,
2016; Xing et al., 2017; Serban et al., 2017b,a; Li
et al., 2016b; Zhang et al., 2018a; Olabiyi et al.,
2018, 2019a).

These models have yielded promising results by
generating mostly coherent responses given the di-
alogue context. However, most of them, including
the state-of-the-art models trained with naturalis-
tic dialogue data, still perform well below the hu-
man level. Generated responses tend to be either
generic, out-of-context, or disproportionately short.
Previous work points to some causes of these limi-
tations:
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i) Training data: The presence of high frequency
generic utterances (utterance-level semantic redun-
dancy), such as “I don’t know”, “I’m not sure”,
and high frequency generic n-gram tokens (word-
level syntactic redundancy), such as “I”, “I am”,
leading to the concave positional entropy profile
of dialogue datasets, see Fig. 1), which makes
learning difficult, resulting in short and generic
responses. ii) Short-range Model Architecture:
Short-range model architectures that capture lim-
ited temporal dependencies. iii) Out-of-vocabulary
Problem: Less frequent (usually more informa-
tive) words mapped to the out-of-vocabulary token
<UNK>, leading to generation of a large number
of <UNK> tokens. iv) Exposure Bias: The dis-
crepancy in model behavior between training and
inference, which limits the informativeness of the
responses iv) Training Objective: The limitations
of the maximum likelihood training objective.

In this paper, we propose DLGNet, a
transformer-based model for multi-turn dialogue
modeling that addresses some of the highlighted
problems above. The use of a transformer architec-
ture allows DLGNet to capture long-term temporal
dependencies in the dialogue data better than the
existing RNN-based architectures (Vaswani et al.,
2017). However, applying a vanilla Seq2Seq trans-
former (Vaswani et al., 2017) and its multi-turn
variants, such as ReCoSa (Zhang et al., 2019), for
dialogue modeling does not work well because
of the semantic redundancy in dialogue data. To
overcome this, DLGNet models the joint distri-
bution of the context and response instead of the
conditional distribution of the response given the
context, usually employed in Seq2Seq frameworks
(Vinyals and Le, 2015; Serban et al., 2016; Olabiyi
et al., 2018; Vaswani et al., 2017). DLGNet also
addresses the syntactic redundancy in dialogue data
by appending random paddings before and after the
input data. This helps to break down the learning
barrier from the concave entropy profile of human
conversation data, as shown in Fig. 1. The flatten-
ing of the entropy profile also provides regulariza-
tion during training, and reduces even the extent
of the exposure bias problem. Finally, to avoid the
out-of-vocabulary problem, DLGNet uses byte pair
encoding (BPE) similar to GPT-2 (Radford et al.,
2019) to provide 100% coverage for any Unicode
input and output texts. Given all these proposed
changes, we train DLGNet models using only the
maximum likelihood objective. DLGNet models,

Table 1: Example of generated responses from DL-
GNet models

Item Utterance

Movie
Context 0 says he wanted food . <person> . he wanted the gold .
Context 1 how ’ s he going to want the gold ? he couldn ’ t even know

we had it .
Groundtruth he . he could have been watching us .
DLGNet-117M 1 he knew we did .
DLGNet-345M <person> ’ s just say he doesn ’ t have enough to buy a

trailer and seeds . i ’ ll write him up as a decorated veteran of
the united states army .

DLGNet-117M Random 2 <person> , you know the break-in , i might not be able to
afford it .

DLGNet-345M Random are you going to preach now ?

Context 0 what are you thinking ?
Context 1 that i want you to take me home .
Groundtruth now ? we just –
DLGNet-117M now ? we ’ re going now ? what about tomorrow ?
DLGNet-345M now ? we ’ re on the run !
DLGNet-117M Random now ?
DLGNet-345M Random no . keep me company . <person> offers its rewards .

<person> appetit .

Ubuntu
Context 0 The netboot one is suppose to download packages from the

net.
Context 1 like the ones to be installed? or the installed to be run?
Groundtruth Installed. The netbook also features the non-graphical in-

staller.
DLGNet-117M the installed to be run.
DLGNet-345M the ones to be installed.
DLGNet-117M Random I think the netboot one is the one that is installed to the net.
DLGNet-345M Random the ones to be installed to.

Context 0 DJones: update manager won’t detect 12.04.1 as a new ver-
sion if you are already running 12.04, because 12.04.1 = 12.04
+ lots of package updates

Groundtruth DJones I am running 10.04.
DLGNet-117M I’m not sure what you mean by ”update manager won’t de-

tect”
DLGNet-345M I see. I guess I’ll just do a fresh install.
DLGNet-117M Random I’m running 12.04.1, and I’m not running 12.04.1.
DLGNet-345M Random I’m not sure what you mean by ”update manager”

despite being trained with only the maximum like-
lihood objective, demonstrate state-of-the-art per-
formance on the Movie and Ubuntu datasets, as
measured in terms of BLEU, ROUGE, and distinct
n-gram scores.

2 Task Description

Consider a dialogue sample consisting of a se-
quence of N utterances, x =

(
x1, x2, · · · , xN

)
,

where each utterance xi =
(
x1i , x

2
i , · · · , xMi

i

)
con-

tains a variable-length sequence of Mi word to-
kens such that xij ∈ V for vocabulary V . At
any time step i, the dialogue history is given by
xi =

(
x1, x2, · · · , xi

)
. The dialogue response

generation task can be defined as follows: Given
a dialogue history xi, generate a response yi =(
y1i , y

2
i , · · · , yTii

)
, where Ti is the number of gen-

erated tokens such that the distribution of the gener-
ated response P (yi) is indistinguishable from that
of the ground truth P (xi+1). The distribution of
the model output sequence can be factored by the

1Model with pretraining
2Model with random initialization (without pretraining)
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Figure 2: An example of DLGNet input and output consisting of a 3-turn conversation sample separated by
[TSEP] tokens, combined with random informative paddings, before and after. Paddings and conversations are
separated by [CSEP] tokens.

product rule:

P (yi|xi) =
Ti∏

j=2

P
(
yji |y

1:j−1
i ,xi

)
(1)

where y1:j−1
i = (y1i , · · · , yj−1

i ).
The MLE objective based on the conditional

distribution of (1) can be expressed as

LCond = − logPθ(yi|xi) (2)

where θ are the model parameters.
This formulation, known as Seq2Seq, originated

from machine translation (Sutskever et al., 2014)
and assumes that the context-response pair in the
training examples are fairly unique. Seq2Seq is
the basis of most of the previous work on dialogue
modeling. The framework, however, does not ac-
count for the semantic and syntactic redundancy
in human conversations as pointed out by Li et al.
(2016a).

3 DLGNet Model Description

In order to address the semantic redundancy, we
propose to jointly model both the context and the
response as an alternative to the mutual information
objective (Li et al., 2016a; Zhang et al., 2018b).
The resulting distribution and the objective function
can then be respectively expressed as

P (yi,xi) = P (yi|xi)P (xi) (3)

LJoint = − logPθ(yi|xi)− logPθ(xi) (4)

While (3) addresses the semantic redundancy, it
does not address the syntactic redundancy coming
from the concave positional entropy profile of dia-
logue data. To circumvent this, we append random
informative paddings (sampled from the dataset)
before (xbi ) and after (xai ), the dialogue example of
interest, leading to

P (xai , yi,xi,x
b
i) = P (xai )P (yi|xi)P (xi)P (xbi)

(5)

and

LDLGNet =− logPθ(x
a
i )− logPθ(yi|xi)

− logPθ(xi)− logPθ(x
b
i) (6)

since xbi and xai are independent of (yi,xi). As
we see from the resulting entropy profile in Fig. 1,
appending random paddings circumvents the ad-
verse effect of syntactic redundancy in dialogue
data on model training. The conditional distribu-
tion P (yi|xi) in (1) is then just an inference on the
joint distribution of (5).

DLGNet adopts GPT-2’s autoregressive trans-
former architecture (Radford et al., 2019) using
only the decoder part of the original transformer
architecture (Vaswani et al., 2017) since there is
no need for a separate encoder network (see Fig.
2). Autoregressive transformer models use multi-
ple layers of masked multi-head self-attention to
map a sequence of input tokens to a sequence of
output tokens (i.e., the input sequence token shifted
one position to the right). During inference, at
each step, the model is autoregressive, consuming
the previously generated token as additional input
when generating the next. There are some basic
conceptual differences between autoregressive ar-
chitectures based on transformers and those based
on recurrent neural networks (RNNs). For instance,
while the output of an RNN layer depends on only
the immediate previous output, a transformer layer
output consists of attention over all previous out-
puts. Due to this lack of ordering in transformer
architectures, the position representation is usually
passed along with the input tokens into the model
(Vaswani et al., 2017).

In order to take advantage and evaluate the im-
pact of pretrained parameters, we use two model
configurations i.e., (i) DLGNet-117M - with 117M
parameters, 12 attention layers, and a hidden state
size of 767, and (ii) DLGNet-345M - with 345M
parameters, 24 attention layers, and a hidden state
size of 1024; similar to the publicly available GPT-
2 models (Radford et al., 2019).
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Table 2: Automatic Evaluation of Model Performance

Model
Movie Ubuntu

Relevance Diversity Relevance Diversity
BLEU ROUGE DIST-1/2 NASL BLEU ROUGE DIST-1/2 NASL

HRED 0.0474 0.0384 0.0026/0.0056 0.535 0.0177 0.0483 0.0203/0.0466 0.892
VHRED 0.0606 0.1181 0.0048/0.0163 0.831 0.0171 0.0855 0.0297/0.0890 0.873
hredGAN u 0.0493 0.2416 0.0167/0.1306 0.884 0.0137 0.0716 0.0260/0.0847 1.379
hredGAN w 0.0613 0.3244 0.0179/0.1720 1.540 0.0216 0.1168 0.0516/0.1821 1.098
DAIM 0.0155 0.0077 0.0005/0.0006 0.721 0.0015 0.0131 0.0013/0.0048 1.626
aBoots u cat 0.0880 0.4063 0.0624/0.3417 0.918 0.0210 0.1491 0.0523/0.1795 1.040
aBoots w cat 0.0940 0.3973 0.0613/0.3476 1.016 0.0233 0.2292 0.1288/0.5190 1.208

DLGNet-117M Random 0.1796 0.4338 0.1198/0.4578 1.011 0.0215 0.1978 0.1827/0.4074 0.829
DLGNet-345M Random 0.2682 0.4881 0.1286/0.4612 0.907 0.0315 0.2041 0.1927/0.4468 0.794

DLGNet-117M 0.1872 0.4346 0.1232/0.4506 0.982 0.0279 0.2191 0.2228/0.4953 0.746
DLGNet-345M 0.2742 0.4945 0.1282/0.4736 0.895 0.0309 0.2409 0.2436/0.5632 0.759

4 Model Training

We trained the small DLGNet-117M and the
medium DLGNet-345M models on multi-turn dia-
logue datasets initialized with either random noise
or pretrained language model parameters. The mod-
els are trained end-to-end using the Adaptive Mo-
ment Estimation (Adam) stochastic gradient de-
scent algorithm with a learning rate of 0.001. The
maximum sequence length is 1024. Due to GPU
memory limitations, we use a batch size of 2 and
accumulate gradients over 5 iterations, making the
effective batch size 10. Both models are trained un-
til the training perplexity on the dialogue datasets
reaches a steady state. Finally, the models are im-
plemented, trained, and evaluated using Python and
the TensorFlow deep learning framework.

5 Experiments

5.1 Setup

We evaluated DLGNet models on the Movie Triples
and Ubuntu Dialogue corpora randomly split into
training, validation, and test sets, using 90%, 5%,
and 5% proportions. Since we use BPE with 100%
tokenization coverage, we performed no prepro-
cessing of the datasets whatsoever. For each train-
ing example, however, we randomly sample a target
conversation and two independent padding chunks
from the dataset to fill up the maximum input se-
quence length. We append the paddings to the
target conversation, one before, and one after, sepa-
rated by token [C SEP]. The target conversation in
each training example in turn consists of utterances
that are separated by token [T SEP] as shown in
Fig. 2.

The Movie dataset (Serban et al., 2016) spans
a wide range of topics with few spelling mis-

takes and contains about 240,000 dialogue triples,
which makes it suitable for studying the relevance-
diversity tradeoff in multi-turn conversations
(Zhang et al., 2018b). The Ubuntu dialog dataset
extracted from the Ubuntu Relay Chat Channel
(Serban et al., 2017b) contains about 1.85 million
conversations with an average of 5 utterances per
conversation. This dataset is ideal for training
dialogue models that can provide expert knowl-
edge/recommendation in domain-specific conver-
sations.

We compare DLGNet multi-turn dialogue per-
formance with existing state-of-the-art dialogue
models including (V)HRED3 (Serban et al., 2016,
2017b), DAIM4 (Zhang et al., 2018b), hredGAN
(Olabiyi et al., 2018), and aBoots (Olabiyi et al.,
2019b). Note that DAIM is single turn and does not
use a multi-turn dialogue context, but we have in-
cluded it here for completeness. We compare how
the models perform based on informativeness (a
combination of relevance and diversity metrics) of
generated responses. For relevance, we adopted
BLEU-2 (Papineni et al., 2002) and ROUGE-2
(Lin, 2014) scores. For diversity, we adopted dis-
tinct unigram (DIST-1) and bigram (DIST-2) (Li
et al., 2016a) scores as well as normalized average
sequence length (NASL), similar to Olabiyi et al.
(2018).

All models are evaluated in autoregressive mode,
i.e., we pass a multi-turn dialogue context to the
model inputs and the models generate a sequence
of response tokens using the context and all the pre-
viously generated tokens until the end-of-sequence

3implementation obtained from https://github.
com/julianser/hed-dlg-truncated

4implementation obtained from https://github.
com/dreasysnail/converse_GAN
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token is reached. All models are greedily sam-
pled to generate the model outputs. It is worth
noting that, for DLGNet models, we search for the
optimum top k between 0 and 20 inclusive that
maximizes the overall BLEU-2 (relevance) score
of the validation set using the top k sampling strat-
egy (Radford et al., 2019). It turns out that for all
DLGNet models, the optimum top k is 1 across
datasets, which is equivalent to greedy sampling.

6 Results and Discussion

6.1 Quantitative Evaluation

We report the quantitative measures in Table 2.
The transformer-based DLGNet provides a signif-
icant improvement in response generation perfor-
mance over existing methods such as (V)HRED,
hredGAN, DAIM, and adversarial bootstrapping
(aBoots), all of which are based on recurrent neural
networks. In fact, DLGNet achieves the best per-
formance to date on the Movie triples and Ubuntu
dialogue datasets in terms of BLEU, ROUGE, and
distinct n-gram scores. This indicates that, despite
being trained only with the maximum likelihood
objective, the autoregressive transformer architec-
ture in conjunction with the random padding in-
jection, is able to overcome some of the problems
that have plagued existing dialogue models such as
semantic and syntactic redundancy, and exposure
bias. Also contributing to the models’ performance
improvement is the 100% input coverage from the
BPE encoding, which eliminates the generation
of <UNK> tokens (this is especially helpful for
the Ubuntu dataset with a large number of out-of-
vocabulary tokens) as well as the joint modeling
of the context and response. Also, in contrast to
existing work reporting a trade-off between rele-
vance and diversity (Zhang et al., 2018b; Li et al.,
2016a,b), we observe that relevance performance
improves with diversity performance in DLGNet
models. It is worth pointing out, however, that DL-
GNet models tend to generate shorter responses
than adversarially trained models (hredGAN and
aBoots). This indicates that the models still suf-
fer from the impact of using only the maximum
likelihood training objective. Alleviating this prob-
lem with an adversarial training objective similar
to aBoots and or hredGAN should further improve
performance and will be considered in our future
work.

6.2 Qualitative Evaluation

Random samples of the model outputs are shown
in Tables 1 and 4. One striking observation is the
high level of coherence in the generated responses
from DLGNet models. The models are able to cap-
ture both short- and long-term temporal dependen-
cies in their responses. The models give responses
that are relevant to the topic of the discussion, and
are able to answer posed questions with answer
choices. Also, they don’t simply generate the all-
too-common phrase “I’m not sure” like existing
models; they are able to point to areas of the context
they are uncertain about (see the Ubuntu section of
Table 1).

Figure 3: Relevance vs. diversity tradeoff with top k
sampling for DLGNet-345M models.

Figure 4: Relevance vs. diversity tradeoff with top p
sampling for DLGNet-345M models.
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7 Ablation Studies on DLGNet Models
with Random Informative Padding

In this section, we carry out a more detailed analy-
sis and discussion of different configurations of DL-
GNet models as well as their performance across
datasets, using the evaluation results in Table 2.

7.1 Open vs. Closed Domain Dataset

From Table 2, we observe that the performance
improvement achieved by DLGNet models over
existing models is higher for the open-domain
Movie Triples dataset than for the closed-domain
Ubuntu Dialogue dataset with or without pretrain-
ing. While the performance difference could be due
to the size of the dataset, it could also indicate that
closed-domain dialogue responses are inherently
more difficult to learn, even for large and expres-
sive models such as the DLGNet transformer.

7.2 Effect of Model Pretraining

Although models with pretraining generally per-
form better than ones trained with random initial-
ization, we observe that the performance difference
is not significant. This shows that the performance
of the DLGNet is mostly due to the multi-layer self
attention model architecture rather than the scaf-
folding achieved from language model pretraining.
We observe similar behavior across datasets. How-
ever, pretraining seems to be consistently more
helpful for open-domain datasets versus closed-
domain datasets. This might be because the dis-
tribution of the language data used for pretraining
is similar to the open-domain dataset but different
from the closed-domain dataset. Also, models with-
out pretraining tend to generate longer responses
on average compare to those with pretraining. This
indicates that model pretraining also plays a role in
the relevance-diversity tradeoff.

7.3 Effect of Model Size

We also compare the small (DLGNet-117M) and
large (DLGNet-345M) models. We observe that
there is a significant performance improvement of
the larger over the smaller model on the Movie
dataset (about 50%), but a smaller performance
improvement on the Ubuntu dataset. It’s also sur-
prising that the larger model doesn’t overfit to the
Movie dataset. Overfitting might have been pre-
vented by the injection of random padding into the
input data, which regularizes the model training by
artificially inducing high entropy into the data.

7.4 Relevance vs. Diversity Tradeoff

The results in Table 2 show state-of-the-art rele-
vance performance with some compromise on the
response length. Here, we explore the possibility of
generating longer and more diverse responses with
the trained models and estimate the effect on the
relevance scores. For this experiment, we chose the
larger DLGNet-345M models of both datasets and
tried two sampling techniques, i.e., top k (Radford
et al., 2019) and top p nucleus (Holtzman et al.,
2019; Zellers et al., 2019) sampling strategies on
the validation sets. The trajectory of the evalua-
tion metrics with increasing top k and top p values
are shown Figs. 3 and 4 respectively. With top k
sampling, increasing the top k value increases the
response length at the expense of relevance metrics
like BLEU for both datasets, as expected. However,
the response length increase is more significant on
the Ubuntu dataset than the Movie dataset. It is
also surprising that the ROGUE-2 score for Ubuntu
increases with increasing top k value, which is the
reverse of the case for the Movie dataset. Also,
Fig. 3 shows that it is more advantageous to trade
off relevance for diversity on the Ubuntu dataset
compare to the Movie dataset. This is probably due
to the size and closed-domain nature of the Ubuntu
dataset, which makes it more difficult to learn with
the maximum likelihood estimation only.

We observe a similar pattern with the top p nu-
cleus sampling in Fig. 4. This reinforces the fact
that greedy sampling may be sufficient for open-
domain datasets such as Movie.

8 Further Ablation Studies on DLGNet
Models

We also set out to analyze the features of DLGNet
that make it suitable for multi-turn dialogue mod-
eling. We train both DLGNet-117M and DLGNet-
345M models on both datasets, but replace the
random informative paddings with static paddings
using a pad token. Below are the definitions of the
model configuration factors considered:

1.) Multi-turn Data (M): Training data is
variable-length multi-turn data padded to a fixed
length. This helps to evaluate the effect of using
random informative padding.

2.) Single-turn Data (S): Training data is
variable-length single-turn data padded to a fixed
length. This helps to evaluate the effect of number
of turns.

3.) Joint model (Joint): DLGNet models are
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Table 3: Ablation Performance of DLGNet Models with Static Padding

Model
Movie Ubuntu

Relevance Diversity Relevance Diversity
BLEU ROUGE DIST-1/2 NASL BLEU ROUGE DIST-1/2 NASL

DLGNet-117M
S-Joint with BPE ∼0.0 ∼0.0 0.0400/0.1502 0.072 ∼0.0 0.0004 0.1946/0.4636 0.064
S-Cond with BPE 0.0013 0.0296 0.0134/0.0482 3.582 ∼0.0 0.0083 0.0723/0.1470 0.890
M-Joint with BPE 0.1825 0.1321 0.0346/0.0838 0.610 0.0012 0.1172 0.1719/0.3482 0.2937
M-Cond with BPE 0.0096 0.0628 0.0088/0.0394 3.425 0.0048 0.0766 0.0500/0.1454 2.372
M-Joint with Basic Tokenizer 0.0518 0.0630 0.0176/0.0540 1.101 0.0030 0.0384 0.0465/0.0949 0.566
M-Cond with Basic Tokenizer 0.0149 0.1628 0.0394/0.1770 1.472 ∼0.0 0.0136 0.2211/0.4192 0.281

DLGNet-345M
S-Joint with BPE ∼0.0 ∼0.0 ∼0.0/∼0.0 0.072 ∼0.0 0.0006 0.4741/0.9760 0.061
S-Cond with BPE 0.0006 0.0212 0.0010/0.0419 3.582 0.0004 0.0158 0.0721/0.1671 3.437
M-Joint with BPE 0.0449 0.1931 0.0460/0.1273 0.531 ∼0.0 0.0121 0.3323/0.4406 0.227
M-Cond with BPE 0.0010 0.0125 0.0091/0.0422 3.918 0.0004 0.0158 0.0721/0.1671 4.108
M-Joint with Basic Tokenizer 0.0376 0.1389 0.0232/0.0654 0.543 0.0042 0.0341 0.0568/0.1299 0.552
M-Cond with Basic Tokenizer 0.0057 0.0970 0.1568/0.3785 0.331 0.0015 0.0345 0.1555/0.3990 0.470

trained by jointly modeling the dialogue context
and response.

4.) Conditional model (Cond): DLGNet models
are trained in the traditional sequence-to-sequence
mode with a bidirectional encoder and an autore-
gressive decoder for a conditional modeling of the
dialogue response given the context (Vaswani et al.,
2017; Zhang et al., 2019).

5.) Basic Tokenizer: We use a basic tokeniza-
tion traditionally used in dialogue modeling instead
of BPE tokenization to evaluate the effect of tok-
enization coverage. It also provides an apples-to-
apples comparison between the transformer-based
and RNN-based architectures.

8.1 Effect of Random Padding Injection

The results in Table 3 are from models trained with
static paddings. The models perform significantly
worse than those of Table 2. Without random
padding injection, the models quickly overfit to
the low entropy regions of the training data, which
leads generic and/or short responses.

8.2 Single Turn vs. Multi-turn

We also observe that the multi-turn models perform
better than single-turn models on BPE tokenized
data. This is expected because the multi-turn mod-
els capture longer temporal dependencies in the
input data. It is also worth mentioning that the
single-turn performance is further hurt by BPE to-
kenization since it tends to work better with long
input sequences.

8.3 Joint vs. Conditional Models

For multi-turn models, the joint modeling archi-
tecture yields better performance than the condi-
tional Seq2Seq architecture. This trend is how-
ever reversed for single-turn models. This is be-
cause a model that focuses on jointly modeling
both the context and the response performs better
with longer contextual information compared to
a model that focuses on modeling only the condi-
tional distribution of the response given the context.
Therefore, multi-turn dialogue model should rather
employ the joint structure instead of the conditional
Seq2Seq structure.

8.4 Effect of Tokenization Coverage

For a more fair comparison with previous work on
multi-turn dialogue not using random padding in-
jection and 100% BPE tokenization, we trained the
DLGNet models on multi-turn data with basic tok-
enization. The tokenization coverages of the basic
tokenizer used are 83.9% and 4.19% for Movie and
Ubuntu datasets respectively. Basically, most of the
Ubuntu tokens are mapped to the <UNK> token.
In comparison with previous work on HRED, the
results in Table 3 show that the transformer-based
DLGNet models under the same conditions per-
form better than the basic HRED model but worse
than the improved HRED models (such as VHRED,
hredGAN, and aBoots). In comparison with other
transformer-based configurations, the smaller size
multi-turn models perform better than their BPE
counterparts but the larger size models perform
worse. This is probably due to the overfitting of the
larger models.
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9 Conclusion

In this paper, we have proposed DLGNet, an ex-
tension of autoregressive transformer models such
as GPT-2 for multi-turn dialogue modeling. Our
experiments show that DLGNet models perform
better than existing state-of-the-art multi-turn dia-
logue models. They also achieve the best perfor-
mance to date on open-domain Movie and closed-
domain Ubuntu datasets based on BLEU, ROUGE
and distinct n-gram scores. Our experiments reveal
that the combination of (i) the transformer archi-
tecture with (ii) the injection of random paddings
exploiting the large maximum input sequence is
responsible for the performance improvement over
existing methods. Other contributing factors in-
clude joint modeling of dialogue context and re-
sponse, and the 100% tokenization coverage from
the byte pair encoding (BPE). Our analysis also
reveals some tradeoffs between response relevance
and response length, and we showed how differ-
ent sampling strategies can be used to make an
informed decision about such response relevance-
diversity compromises. In our future work, we plan
to investigate how to improve on the length of the
generated responses without necessarily sacrificing
their coherence and their relevance to the dialogue
context.
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DLGNet-345M Random yes, that’s what I did
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Abstract
Speech-based virtual assistants, such as Ama-
zon Alexa, Google assistant, and Apple Siri,
typically convert users’ audio signals to text
data through automatic speech recognition
(ASR) and feed the text to downstream dia-
log models for natural language understand-
ing and response generation. The ASR out-
put is error-prone; however, the downstream
dialog models are often trained on error-free
text data, making them sensitive to ASR errors
during inference time. To bridge the gap and
make dialog models more robust to ASR er-
rors, we leverage an ASR error simulator to in-
ject noise into the error-free text data, and sub-
sequently train the dialog models with the aug-
mented data. Compared to other approaches
for handling ASR errors, such as using ASR
lattice or end-to-end methods, our data aug-
mentation approach does not require any modi-
fication to the ASR or downstream dialog mod-
els; our approach also does not introduce any
additional latency during inference time. We
perform extensive experiments on benchmark
data and show that our approach improves the
performance of downstream dialog models in
the presence of ASR errors, and it is partic-
ularly effective in the low-resource situations
where there are constraints on model size or
the training data is scarce.

1 Introduction

Speech-based virtual assistants, such as Amazon
Alexa, Google Assistant, and Apple Siri, have be-
come increasingly powerful and popular in our ev-
eryday lives, offering a wide range of functionality
including controlling smart home devices, book-
ing movie tickets, and even chit-chatting. These
speech-based virtual assistants typically contain the
following components: an automatic speech recog-
nition (ASR) module that converts audio signals
from a user to a sequence of words, a natural lan-
guage understanding (NLU) module that extracts

semantic meaning from the user utterance, a dialog
management (DM) module that controls the dialog
flow and communicates with external applications
if necessary, a natural language generation (NLG)
module that converts the system response to natu-
ral language, and a text-to-speech (TTS) module
that converts the text response to an audio response
(Jurafsky and Martin, 2009). The errors made by
the ASR module can propagate to the downstream
dialog models in NLU and DM and degrade their
performances (Serdyuk et al., 2018; Shivakumar
et al., 2019).

One straightforward approach to improve the
downstream dialog models’ robustness to ASR er-
rors is to train them with ASR hypotheses with
potential ASR errors in addition to the error-free
reference texts. However, the training data might
not always have corresponding ASR hypotheses
available, for example, when the training data are
created in written forms from the beginning. Such
training data include online reviews, forums, and
data collected in a Wizard-of-Oz (WOZ) setting
(Rieser and Lemon, 2011). Additionally, even
when there are ASR hypotheses available, tran-
scribing and annotating the ASR hypotheses to
create the training data is a slow and expensive pro-
cess due to human involvement, limiting the size
of available training data.

To address these challenges, we propose a simple
data augmentation method leveraging a confusion-
matrix-based ASR error simulator (Fazel-Zarandi
et al., 2019; Schatzmann et al., 2007). Our method
can be used on training data with or without exist-
ing ASR hypotheses, does not require modifying
the ASR model or downstream dialog models, and
consequently does not introduce additional latency
during inference time. We assess the method’s ef-
fectiveness on a multi-label classification task on
a public dataset from DSTC2 (Henderson et al.,
2014). We show that our method can improve the
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dialog models’ performances in the presence of
ASR errors, particularly in the low resource situ-
ations where there are model size or latency con-
straints, or the training data is scarce.

2 Related Work

Existing approaches for handling ASR errors gen-
erally fall into four categories: 1) pre-training word
embeddings such that acoustically similar words
are close to each other in the embedding space
(Shivakumar et al., 2019; Shivakumar and Geor-
giou, 2018; Ghannay et al., 2016); 2) using multi-
task training to jointly correct ASR errors in addi-
tion to performing the original NLU tasks (Schu-
mann and Angkititrakul, 2018; Weng et al., 2020);
3) using n-best ASR hypotheses, word confusion
networks, or ASR lattice produced by the ASR
system as the input for the downstream dialog mod-
els, allowing the models to consider all the alter-
natives instead of only the 1-best ASR hypothesis
(Weng et al., 2020; Ladhak et al., 2016; Hakkani-
Tür et al., 2006); and 4) using an end-to-end ap-
proach that combines ASR and NLU systems into
one, extracting semantics directly from audio sig-
nals (Serdyuk et al., 2018; Haghani et al., 2018).
These approaches often either require significant
modifications to ASR model and/or downstream
dialog models, or require access to additional infor-
mation from the ASR model, such as ASR n-best
or ASR lattice, during inference time. In compar-
ison, data augmentation is much simpler because
it does not modify the existing model architecture
or introduce additional latency during inference
time. Data augmentation has a long history in im-
age processing (Shorten and Khoshgoftaar, 2019).
In language processing, researchers have proposed
back-translation (Einolghozati et al., 2019) and sim-
ple operations such as synonym replacement and
random swap (Wei and Zou, 2019) to increase the
variations of training data. These data augmen-
tation approaches aim to improve dialog models’
robustness to surface form variations in general,
whereas our approach focuses on robustness to
ASR errors in particular. Note that our data aug-
mentation approach can be complimentary to us-
ing acoustic embeddings (first category), multi-task
training (second category), and the other mentioned
data augmentation approaches, and it is possible to
combine them for further performance gains.

3 Method

We propose to use simulated ASR hypotheses to
augment the training data of dialog models. To this
end, we adopt the confusion-matrix-based ASR
error simulator initially proposed by Schatzmann
et al. (2007) and improved by Fazel-Zarandi et al.
(2019). Here we describe the error simulator at
a high level, while leaving the details to the men-
tioned references. The main component of the
error simulator is an n-gram confusion matrix con-
structed from a corpus of ASR hypotheses and cor-
responding reference texts: Each ASR hypothesis
and its reference text are aligned at the word level
by minimizing the Levenshtein distance between
them, then the frequencies of n-gram confusions
are added to the confusion matrix for n ∈ [1,M ],
where M is a pre-specified constant. During in-
ference time, the error simulator first partitions a
reference text into n-grams where n can vary, then
for each n-gram it samples a replacement from the
confusion matrix with sampling probabilities pro-
portional to the frequencies of confusions. Note
that the sampled “confusion” can be the original
n-gram itself, which means correct recognition for
this n-gram in the simulated hypothesis.

We refer to the corpus used to construct the n-
gram confusion matrix as the ASR corpus to dis-
tinguish it from the training data for the dialog
models that we want to apply the error simulator
to. By design, if the reference texts that the error
simulator is applied to have the same distribution
as the reference texts in the ASR corpus, then the
simulated ASR hypotheses will have the same er-
ror distribution as the ASR hypotheses in the ASR
corpus (Schatzmann et al., 2007), where the error
distribution includes word-error-rate (WER) and
proportions of insertion, deletion, and substitution
errors. However, in practice it can be useful to sim-
ulate ASR hypotheses with a pre-specified WER
different from that of the ASR corpus. Adjusting
the WER is non-trivial, because each word’s in-
dividual WER is often different from the overall
WER of the ASR corpus; i.e., some words are
more easily confusable than others. We introduce
a heuristic to adjust each word’s individual WER
during inference time of the error simulator so that
the overall WER in the simulated ASR hypothe-
ses is close to the pre-specified target overall WER
based on the following formula (see Appendix A):

1− target individual WER
1− original individual WER

=
1− target overall WER
1− original overall WER

.

64



This heuristic has the following desired properties:
1) If w1 has a higher original individual WER than
that of w2 before the adjustment, then w1 will have
a higher target individual WER than that of w2

from this adjustment, for arbitrary words w1 and
w2 under certain simplifying conditions (Appendix
A); i.e., we mostly preserve the property that some
words are more easily confusable than others. 2)
In the trivial case where all words have the same
individual WER as the overall WER, this heuristic
is equivalent to setting all individual WER to the
target overall WER.

We apply data augmentation to the training data
of dialog models in two different cases: S1) The
training data only have reference texts and no cor-
responding ASR hypotheses. In this case, we con-
struct the confusion matrix used by the ASR error
simulator with an ASR corpus ideally close to the
training data of dialog models in terms of vocabu-
lary overlap, or a large generic ASR corpus such
as Fisher English Training Speech Corpora (Cieri
et al., 2004; Shivakumar and Georgiou, 2018). We
simulate multiple ASR hypotheses for each refer-
ence sentence with different WER, and combine all
the simulated ASR hypotheses with the reference
text as the augmented training data – the motiva-
tion behind this is to create more variations, make
dialog models robust to different levels of WER,
and avoid degradation on error-free data. S2) The
training data have both reference texts and corre-
sponding ASR hypotheses. In this case, we can
directly use the training data as the ASR corpus to
construct the confusion matrix, then simulate ASR
hypotheses with different WER and combine them
with the original ASR hypotheses and reference
texts as the augmented training data. Note that dur-
ing inference time of the ASR error simulator, it
partitions a sentence and samples n-gram replace-
ments probabilistically, so even though we use the
training data of dialog models as the ASR corpus,
the error simulator can still create new variations
in the simulated ASR hypotheses.

4 Experiments

We experiment our proposed data augmentation
method on the dialog act classification task.

4.1 Data

We use the public dataset from DSTC2 (Hender-
son et al., 2014), which has reference texts, ASR
hypotheses, and dialog act annotations. We choose

DSTC2 because the other commonly used NLU
datasets often don’t have ASR hypotheses available.
This dataset consists of human-computer dialogs
in a restaurant domain collected using Amazon
Mechanical Turk. We follow the same data prepro-
cessing steps as in Weng et al.’s (2020) work. After
preprocessing, the dataset has 10,876/3,553/9,153
training/validation/test samples and 25 unique dia-
log act labels. Each user utterance may have multi-
ple dialog act labels, thus we treat this problem as
a multi-label classification problem. More specif-
ically, in the training set, 7,516 utterances have
1 dialog act label each, 3,254 utterances have 2
dialog act labels each, and 106 utterances have 3
dialog act labels each. The ASR hypotheses for
the user utterances have a WER of 27.89%, where
the errors consist of 58.96% substitutions, 15.66%
insertions, and 25.38% deletions. Additionally, in
45% of the test cases, the ASR hypothesis has per-
fect recognition.

4.2 Setup
We measure the effectiveness of data augmentation
in both cases mentioned in Section 3. In the first
use case, we assume that the training and validation
sets have no ASR hypotheses, and we need to con-
struct the n-gram confusion matrix with a separate
ASR corpus. The ASR corpus used for construct-
ing the confusion matrix for the error simulator is
a separate dataset of 10,000 transcribed utterances
from different domains such as movie recommen-
dation, ticket booking, and restaurant booking. As
a measure of similarity, this ASR corpus contains
43.3% of unique words, 12.6% of unique bigrams,
and 4.4% of unique trigrams from DSTC2. In ad-
dition to experimenting with data augmentation
with the confusion-matrix-based ASR error simu-
lator, we consider data augmentation with a much
simpler error simulator which we call the uniform
error simulator, to see whether a simpler error sim-
ulator would suffice. The uniform error simulator
samples word replacements from the training data
vocabulary uniformly with a pre-specified WER.
The training and validation data in each setting are
as follows:

S1-1 Reference utterances only (baseline);

S1-2 Reference utterances + simulated ASR hy-
potheses by the uniform error simulator with
27.9% WER;

S1-3 Reference utterances + simulated ASR hy-
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Table 1: Accuracy (%) and F1-score results on ASR hypotheses and reference texts from the DSTC2 test set for
different settings described in Section 4.2. “Uniform” refers to the uniform error simulator, and “Conf. Mat.”
refers to the confusion-matrix-based error simulator.

Training Setup Validation Setup Hypothesis Reference
Accuracy F1-Score Accuracy F1-Score

S1-1 ref ref 80.76 0.8935 96.98 0.9847
S1-2 ref + sim hyp (Uniform, 27.9% WER) ref + sim hyp (Uniform, 27.9% WER) 80.80 0.8938 96.36 0.9814
S1-3 ref + sim hyp (Conf. Mat., 27.9% WER) ref + sim hyp (Conf. Mat., 27.9% WER) 80.98 0.8950 96.95 0.9845
S1-4 ref + sim hyp (Conf. Mat., mixed WER) ref + sim hyp (Conf. Mat., mixed WER) 81.05 0.8953 97.19 0.9857

S2-1 ref + hyp ref + hyp 83.03 0.9073 96.88 0.9841
S2-2 ref + hyp + sim hyp (Uniform, 27.9% WER) ref + hyp 82.73 0.9054 96.49 0.9821
S2-3 ref + hyp + sim hyp (Conf. Mat., 27.9% WER) ref + hyp 83.16 0.9080 96.59 0.9827
S2-4 ref + hyp + sim hyp (Conf. Mat., mixed WER) ref + hyp 83.19 0.9082 96.80 0.9837

potheses by the confusion-matrix-based er-
ror simulator with 27.9% WER1;

S1-4 Reference utterances + three sets of sim-
ulated ASR hypotheses by the confusion-
matrix-based error simulator with 27.9%,
20%, 15% WER, respectively.

Note that the ratios between reference utterances
and simulated hypotheses are 1:1 for S1-2 and S1-3
and 1:3 for S1-4.

In the second use case, the training and val-
idation sets have both reference utterances and
ASR hypotheses. We use the training set itself
as the ASR corpus to construct the confusion ma-
trix. Compared to the first case, we include the
original ASR hypotheses in the training and vali-
dation sets for each setting, but we do not include
the simulated ASR hypotheses in the validation set
to keep this set as close to the test set as possible.
We refer to the settings for the second case as S2-1,
S2-2, S2-3 and S2-4.

We use the FLAIR package (Akbik et al., 2018)
to build the multi-label classifier, tune the hyper-
parameters on the validation set with hyperopt
(Bergstra et al., 2015) under the baseline setting
S1-1, and keep the same model architecture across
all settings. The final model architecture selected
by hyperopt is BERT embeddings (Devlin et al.,
2019) + embedding re-projection + 1 layer bidirec-
tional LSTM with 256 hidden size. In each setting,
we use the validation set for learning rate decay
and early stopping, and test the trained model on
the ASR hypotheses and reference utterances in
the test set separately. We measure the model per-

1 We use 27.9% WER to match the WER of DSTC2. Note
that in this case even though we assume that we don’t have
ASR hypotheses in the training data, we may still know the
overall WER of the ASR system. If the overall WER is un-
known, we can always use a combination of different WER
similar to S1-4.

formance with micro-averaged accuracy and F1-
score. Because each sample only has one or a few
class labels out of the 25 possible labels, we follow
FLAIR’s convention in calculating the accuracy
for multi-label classification by excluding the num-
ber of true negatives from both the numerator and
denominator:

Accuracy =
(# true pos.)

(# true pos.) + (# false pos.) + (# false neg.)
.

4.3 Results
The results are shown in Table 1. We see that in
both cases, the proposed data augmentation set-
tings (S1-4 and S2-4) yield the best performance
when tested on ASR hypotheses. However, the
improvements over the baselines (S1-1 and S2-1)
are very marginal (0.29% absolute improvement
for S1 and 0.16% for S2), which could be due to
the baseline performances already being close to
optimal, or data augmentation being less effective
for models with powerful pre-trained embeddings
like BERT, which Shleifer (2019) also observed in
his work. For S1-4, we also experiment with using
the DSTC2 ASR hypotheses as the ASR corpus as
an oracle/upper bound setting for S1, where we as-
sume that the training data have no ASR hypotheses
but the ASR corpus is perfectly in-domain, which
yields an accuracy of 82.90% testing on hypotheses
and 96.87% on references.

Examining the errors made by S1-1, S1-4, S2-
1, and S2-4 settings on the ASR hypotheses, we
see that more than 90% of the errors are common
among the four settings. Furthermore, in about
54% of the cases there is no overlap between the
words in the references and the corresponding ASR
hypotheses. For example, the user utterance “Dan-
ish” is recognized as “the address”, and “seafood”
is recognized as “is serve”. This indicates that these
ASR hypotheses are distorted to the extent that it
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Table 2: Accuracy (%) and F1-score results for reduced
model architectures. Except for model architecture, the
settings are exactly the same as those of Table 1. “with-
out BERT” refers to the model architecture from Table
1 with BERT replaced with GloVe embeddings; “Sim-
ple NN” refers to the GloVe embeddings + 1 layer uni-
directional LSTM with 128 hidden size architecture.

Training Model Hypothesis Reference
Setup Architecture Acc. F1 Acc. F1

S1-1 without BERT 80.34 0.8910 94.09 0.9695
S1-2 without BERT 81.12 0.8958 94.55 0.9720
S1-3 without BERT 80.81 0.8939 94.33 0.9709
S1-4 without BERT 81.19 0.8962 95.36 0.9762

S2-1 without BERT 80.40 0.8913 92.18 0.9593
S2-2 without BERT 81.47 0.8979 93.88 0.9685
S2-3 without BERT 81.32 0.8969 93.24 0.9650
S2-4 without BERT 82.63 0.9049 95.14 0.9751

S1-1 Simple NN 76.92 0.8695 87.74 0.9347
S1-2 Simple NN 77.01 0.8701 87.11 0.9311
S1-3 Simple NN 79.66 0.8868 91.82 0.9573
S1-4 Simple NN 80.81 0.8939 94.28 0.9706

S2-1 Simple NN 79.35 0.8848 89.65 0.9454
S2-2 Simple NN 79.65 0.8867 90.63 0.9508
S2-3 Simple NN 81.76 0.8996 93.87 0.9684
S2-4 Simple NN 81.69 0.8992 94.16 0.9699

would be very unlikely to correctly predict the label,
even for a human annotator. In an additional 32%
of the common errors, the ASR hypotheses have
changed the semantics of the reference texts. For
example, “Spanish food” is recognized as “which
food”, “no Thai” is recognized as “no hi”, and “no
Italian food” is recognized as “would like Italian

food”. In these cases, it would also be almost im-
possible to predict the ground-truth labels.

4.4 Follow-up Experiments

To investigate whether data augmentation is more
effective for models without large pre-trained em-
beddings like BERT, we run one set of follow-up
experiments where we replace BERT with GloVe
embeddings (Pennington et al., 2014) from the pre-
vious model architecture (a 99.79% reduction in
number of parameters), and another set where we
further reduce the model architecture to a much
simpler one: GloVe embeddings + 1 layer unidi-
rectional LSTM with 128 hidden size (a further
83.05% reduction in number of parameters). The
results are shown in Table 2. We see that for the re-
duced model architectures, the improvements from
data augmentation are much larger (e.g., 3.89% ab-
solute improvement in S1 and 2.34% in S2 for Sim-
ple NN). The promising results on simpler model
architectures have practical implications, because
in certain use cases we may not be able to use large
model architectures due to constraints on model
size, computing power, or latency.

Lastly, hypothesizing that data augmentation
could be particularly effective for limited training
data even with the best model architecture found by
hyperopt, we randomly subsample 1%, 5%, 10%,
25%, 50%, and 75% of the training and validation
sets (without changing the test sets) and apply the

Table 3: Accuracy (%) results for training on different sub-samples of the data with different model architecture
on the hypothesis test set. We compare the baselines (S1-1 and S2-1) with the proposed data augmentation settings
(S1-4 and S2-4) and show the absolute improvements in accuracy.

Model Subsample S1 Setting S2 Setting
Architecture Proportion S1-1 S1-4 Gain S2-1 S2-4 Gain

With BERT 1% 43.67 64.94 +21.27 61.81 62.32 +0.51
5% 71.79 77.65 +5.86 74.51 78.62 +4.11
10% 78.29 79.41 +1.12 79.90 80.23 +0.33
25% 79.37 80.15 +0.78 80.88 81.56 +0.68
50% 80.54 80.8 +0.26 82.00 82.40 +0.40
75% 81.05 81.27 +0.22 82.58 83.16 +0.58

Without BERT 1% 5.72 4.48 −1.24 6.17 0.81 −5.36
5% 0.88 73.01 +72.13 0.02 70.33 +70.31
10% 0.12 76.16 +76.04 69.91 76.65 +6.74
25% 70.75 78.47 +7.72 76.71 80.55 +3.84
50% 78.73 80.59 +1.86 80.15 82.10 +1.95
75% 78.04 81.38 +3.34 80.92 82.11 +1.19

Simple NN 1% 15.90 16.68 +0.78 16.55 15.59 −0.96
5% 11.11 41.10 +29.99 8.28 41.47 +33.19
10% 8.55 74.10 +65.55 0.07 72.61 +72.54
25% 12.11 77.37 +65.26 75.84 77.70 +1.90
50% 75.72 80.08 +4.36 76.99 79.54 +2.55
75% 76.69 80.54 +3.85 78.32 81.53 +3.21
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Table 4: Accuracy (%) results for training on different sub-samples of the data with different model architecture
on the reference test set. Except for testing on reference utterances instead of ASR hypotheses, the settings are
exactly the same as in Table 3.

Model Subsample S1 Setting S2 Setting
Architecture Proportion S1-1 S1-4 Gain S2-1 S2-4 Gain

With BERT 1% 53.57 73.75 +20.18 70.30 71.90 +1.60
5% 83.58 90.12 +6.54 85.11 90.47 +5.36
10% 91.62 92.80 +1.18 91.93 92.99 +1.06
25% 93.34 95.49 +2.15 93.84 94.99 +1.15
50% 96.01 96.68 +0.67 95.82 95.96 +0.14
75% 96.54 96.90 +0.36 96.12 96.49 +0.37

Without BERT 1% 5.66 4.38 −1.28 4.35 0.81 −3.54
5% 0.75 83.56 +82.81 0.04 79.14 +79.10
10% 0.21 87.03 +86.82 79.08 86.67 +7.59
25% 81.9 90.25 +8.35 86.85 91.37 +4.52
50% 90.45 93.77 +3.32 91.27 94.52 +3.25
75% 89.7 94.97 +5.27 92.87 94.66 +1.79

Simple NN 1% 17.44 18.61 +1.17 18.37 16.96 −1.41
5% 12.32 45.19 +32.87 10.01 45.21 +35.20
10% 8.82 84.83 +76.01 0.07 82.91 +82.84
25% 17.55 87.76 +70.21 85.05 87.4 +2.35
50% 86.17 92.66 +6.49 86.17 90.17 +4.00
75% 88.46 93.88 +5.42 88.16 94.00 +5.84

proposed data augmentation with different model
architectures. The comparisons between the base-
lines (S1-1 and S2-1) and proposed settings (S1-4
and S2-4) on the reduced data are shown in Ta-
bles 3 and 4. As expected, the improvements from
data augmentation are generally larger for smaller
datasets and simpler model architectures, except for
most cases on the smallest subset (1% of training
data).

5 Conclusion

In this paper, we proposed a method for data aug-
mentation in order to make downstream dialog
models more robust to ASR errors. We leveraged
a confusion-matrix-based ASR error simulator to
inject noise into the error-free text data, and sub-
sequently trained dialog act classification models
with the augmented data. Compared to other ap-
proaches of handling ASR errors, our data augmen-
tation approach does not require any modification
to the ASR models or downstream dialog mod-
els, thus our approach also does not introduce any
additional latency during inference time of the dia-
log models. We performed extensive experiments
on benchmark data and showed that our approach
improves the performance of downstream dialog
models in the presence of ASR errors, and it is
particularly effective in the low-resource situations
where the model size needs to be small or the train-
ing data is scarce.

For future work, we plan to investigate the effect
of our proposed method on additional tasks such
as dialog state tracking and response generation.
Additionally, we believe that our data augmenta-
tion approach is complimentary to using acoustic
embeddings, multi-task training, and other men-
tioned data augmentation approaches, and we plan
to combine them for further performance gains.
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the ASR error simulator is applied during infer-
ence time, which include how out-of-vocabulary
words are handled. Here we focus on the newly
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introduced heuristic of adjusting word-error-rate
(WER).

Note that a single word can be contained in mul-
tiple n-grams in the confusion matrix, and when
an n-gram is confused with an m-gram for arbi-
trary n, and m, the actual number of word errors
introduced could be greater than, equal to, or less
than n. Thus, making a precise adjustment of a
single word’s individual WER can be difficult. In-
stead, for simplicity, we treat each n-gram in the
confusion matrix as a single word for all n when
applying this heuristic. Under the simplifying con-
dition, the individual WER of a word w can be
computed with

1− frequency of correct recognition for w
sum of frequencies of confusions for w

,

where the correct recognition is the same as “con-
fusing” with the original word itself.

Now, assume that we sample from the confusion
matrix without any adjustment on the test set when
applying the error simulator, and the resulting over-
all WER is R1. The target overall WER we want to
have is R2. We adjust each word’s individual WER
by changing its frequency of correction recognition
based on the following formula:

1− target individual WER
1− original individual WER

=
1− target overall WER
1− original overall WER

.

Then we can derive how many additional correct
recognitions, denoted as X , to add for a word w as
follows:

1− target individual WER

= (1− original individual WER) · 1−R2

1−R1
.

In practice, the right-hand-side of the above equa-
tion can be greater than 1, so we add an upper
bound constant U < 1:

1− target individual WER

= min

[
(1− original individual WER) · 1−R2

1−R1
, U

]
.

Expanding the original and target individual WER:

(freq. of correct recognition for w) +X

(sum of freq. of confusions for w) +X

= min

[
freq. of correct recognition for w
sum of freq. of confusions for w

· 1−R2

1−R1
, U

]
.

R1 and R2 are known, and the frequencies are
stored in the confusion matrix, hence we can solve

for X . Denoting the right-hand-side of the above
equation as H, we have:

X = [H · (sum of freq. of confusions for w)

−(freq. of correct recognition for w)]/(1−H).

Note that X can be negative, which corresponds to
having a lower target WER.

During the inference time of the error simulator,
for each word w we sample replacement for, we
adjust its individual WER by computing X using
the last equation and adding it to the frequency of
correct recognition for w before sampling.
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Abstract

Dialogue response generation models that use
template ranking rather than direct sequence
generation allow model developers to limit
generated responses to pre-approved messages.
However, manually creating templates is time-
consuming and requires domain expertise. To
alleviate this problem, we explore automating
the process of creating dialogue templates by
using unsupervised methods to cluster histori-
cal utterances and selecting representative ut-
terances from each cluster. Specifically, we
propose an end-to-end model called Deep Sen-
tence Encoder Clustering (DSEC) that uses an
auto-encoder structure to jointly learn the ut-
terance representation and construct template
clusters. We compare this method to a ran-
dom baseline that randomly assigns templates
to clusters as well as a strong baseline that per-
forms the sentence encoding and the utterance
clustering sequentially.

To evaluate the performance of the proposed
method, we perform an automatic evalua-
tion with two annotated customer service
datasets to assess clustering effectiveness, and
a human-in-the-loop experiment using a live
customer service application to measure the
acceptance rate of the generated templates.
DSEC performs best in the automatic evalu-
ation, beats both the sequential and random
baselines on most metrics in the human-in-the-
loop experiment, and shows promising results
when compared to gold/manually created tem-
plates.

1 Introduction

Dialogue response generation has been an active
area of research in recent years. Response gener-
ation can be used in human-to-bot conversational
systems (Qiu et al., 2017) or to generate quick
replies in human-to-human conversational systems
(Kannan et al., 2016; Pasternack et al., 2017).

Response generation approaches fall under two
broad categories: (1) direct sequence generation
using an encoder-decoder architecture (Vinyals and
Le, 2015; Serban et al., 2016) or (2) response rank-
ing, in which the model developer specifies a pre-
defined template pool and an encoder model is used
to score pairs of conversation history and candidate
template response (Liu et al., 2018; Zhou et al.,
2018; Kannan et al., 2016). Using template rank-
ing rather than direct sequence generation allows
model developers to limit generated responses to
pre-approved messages, preventing the model from
producing impolite or ungrammatical responses. In
addition, sequence generation models have a ten-
dency to favor safe, generic responses (Baheti et al.,
2018; Shao et al., 2017; Zhang et al., 2018; Li et al.,
2016), and template ranking models can be used to
ensure that the system generates information-rich
responses that drive the conversation towards an
end goal. However, manually creating templates
is time-consuming and requires domain expertise.
For certain use cases such as customer service, tem-
plates need to be continually updated to reflect pol-
icy changes, further adding to this cost. In addition,
manually created templates may differ subtly from
actual agent utterances in model training data and
thus may not be selected by the ranking model.

In this paper, we explore automating the creation
of a template pool for a customer service chat appli-
cation through clustering historical agent utterances
and choosing representative utterances from each
cluster. To the best of our knowledge, research on
automatic template creation using utterance clus-
tering has been limited.

The structure of this paper is as follows. In sec-
tion 2, we describe the data and text preprocessing
methods we used to extract template candidates
from historical chat transcripts. In section 3, we
describe our proposed approach for template gen-
eration: an end-to-end approach that uses an auto-
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encoder structure to jointly learn the utterance rep-
resentation and construct template clusters. In addi-
tion, we describe a strong baseline that we propose
for comparison: a sequential approach in which we
first learn the utterance representation and then con-
struct template clusters. In section 4, we describe
the automatic and human-in-the-loop evaluations
that we conducted and our findings, and in section
5 we draw conclusions and propose future research
directions.

2 Data

We select template responses from a dataset of
agent utterances extracted from historical chat
transcripts. To construct this dataset, we collect
anonymized transcripts of conversations between
customers and customer service agents (CSAs) in
two domains: (1) Cancel Membership (CM), and
(2) Tracking shows delivered but order not received
(DNR). In the anonymized transcripts, all unique
customer identifiers (UCI) are replaced with a spe-
cial token: “GENERIC SLOT”. We further extract
all agent utterances1 in these transcripts and ex-
clude those occurring only once in the data. The
intuition behind this is that if an utterance only
occurred once, it is not likely to be useful as a tem-
plate. We end up with approximately 550K agent
utterances in each domain. The DNR domain con-
tains longer utterances than the CM domain (an
average of 12 words per sentence vs. 11 for CM)
and a larger vocabulary size (22.9K for DNR vs.
19.2K for CM).

2.1 Annotation Guidelines
To create our evaluation data, we select a random
sample of approximately 1,000 utterances from
each domain and have it annotated for “Cluster
ID”. For the annotation task, we ask the annotators
to come up with cluster IDs as they are annotating
the utterances and then consolidate these clusters
after they are done assigning all utterances to clus-
ters. We have one annotator per domain and a gold
annotator that further refines the clusters for both
domains. For each domain we ask the annotator to
do the following:

1. Starting with the first utterance, define the first
cluster to convey the semantic meaning of this
utterance and give a descriptive name for the
cluster.

1“Utterance” is defined as all that is typed before sending
the message to the customer.

2. For each utterance in the list, either assign it
to an existing cluster (if appropriate) or define
a new cluster.

3. When assigning utterances to clusters, ignore
the tense and utterance type (statement versus
question).
E.g., “I canceled your membership”, “I will
cancel your membership”, and “Should I can-
cel your membership?” will all belong to the
same cluster.

4. All noisy/unneeded utterances that are not re-
lated to the current domain or that do not con-
tain information that can be useful for resolv-
ing the customer’s issue should be excluded.

5. After finishing all of the utterances, go
through the list of clusters to merge redun-
dant ones and map the utterances to the new
list of cluster IDs.

The annotation process resulted in 44 and 43 clus-
ters for the CM and DNR domains respectively.
Table 1 shows sample utterances from some clus-
ters.

3 Approach

We cluster agent utterances using a novel end-to-
end approach, Deep Sentence Encoder Clustering
(DSEC), in which the utterance representation and
the clustering model are jointly learned. We com-
pare this against two baselines: (1) a weak baseline
in which templates are sampled randomly from the
dataset, and (2) a sequential baseline in which the
utterance representation and the clustering model
are learned sequentially. For the baseline system,
we use dense features to represent each utterance
and explore the use of different embedding types—
GloVe (Pennington et al., 2014), ELMo (Peters
et al., 2018b,a), and BERT (Devlin et al., 2018)—
as well as the effect of using in-domain data on the
performance of the system.

For both DSEC and the sequential baseline, af-
ter the clusters have been obtained, we create the
template pool by selecting the highest-confidence
utterance in each cluster. The confidence is either
the probability that the utterance falls in the cluster
(for DSEC), or the distance between the utterance
and its cluster centroid (for the sequential baseline).
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Domain Cluster Description Utterances
CM Informing the customer

of confirmation e-mail
Your refund of GENERIC SLOT will be credited to your original
payment method within 7 to 10 business days.

CM Confirming refund re-
quest

I see that you have used the membership benefits, and because
of that I can offer GENERIC SLOT refund. Sounds good?

CM Greeting Good afternoon.
CM Asking for confirmation Can you please confirm the last four digits and the expiration

date of the payment method that has been charged?
DNR Confirming refund op-

tions
Would you like the refund to be back on your gift or credit card?

DNR Apology I do apologize for the inconvenience if it was tagged as delivered
but nowhere to be found.

DNR Confirming order status It seems that the package was already lost and mismarked as
delivered.

Table 1: Sample agent utterances for our two domains: Cancel membership (CM) and Tracking shows delivered
but item not received (DNR)

Figure 1: DSEC: An LSTM auto-encoder representing the sentence encoder and a clustering layer

3.1 Deep Sentence Encoder Clustering
(DSEC)

We propose an end-to-end auto-encoder structure
(Figure 1) that learns a sentence encoding layer
that aims to achieve two goals simultaneously: (1)
generate a feature representation from which the
input utterance can be reconstructed as accurately
as possible, and (2) construct template clusters by
introducing a clustering-oriented loss. To achieve
these two goals, we minimize a weighted (w) sum
of reconstruction loss (Lr) and clustering loss (Lc).

L = Lr + ω ∗ Lc

To build the auto-encoder structure, we utilize
a deep bi-directional Long Short-Term Memory
(LSTM) network (Hochreiter and Schmidhuber,
1997). We first use a word embedding layer, and
then train a multi-layer bi-directional LSTM as
the encoder. We choose a bi-directional network

since subsequent words can sometimes facilitate
the prediction of previous words. For example,
it is easy to infer that the previous word has a
high probability of being “I” if we know that
the current word is “am”. The final output of
the hidden layer is then used as the input to the
decoder. Padding is used to normalize sentence
length, and a softmax function is added on top of
the decoder to reconstruct the input. It is intuitive
that the vectors generated by the encoder are good
representations of the sentences they encode if
they contain enough information to reconstruct
these sentences.

For clustering, we define the loss using a soft
assignment between the sentence embedding and
the cluster centroids, similar to Xie et al. (2016). In
particular, we first use the Student’s t-distribution
as a kernel to measure the similarity between the
sentence encoder zi and each of the centroid points

73



µj :

qij =
(1 + ‖zi − µj‖2/α)−(α+1)/2

∑
j′(1 + ‖zi − µj′‖2/α)−(α+1)/2

where qij indicates the probability of assigning
sentence i to cluster j. The degree of freedom α is
set to be 1. The sentence clustering loss is defined
as:

L = KL(P‖Q) =
∑

i

∑

j

pij log
pij
qij

in which the soft target distribution P is defined as:

pij =
q2ij/

∑
i qij∑

j(q
2
ij/

∑
i qij)

One potential deficiency of using the target dis-
tribution, as Guo et al. (2017) pointed out, is that
such a loss emphasizes data points with large pij
(i.e. high confidence) hence is less impacted by
mistakes for the points farther away from the cen-
troid or ones that are close to the decision boundary
hence can lead to underfitting if many such points
exist. This problem can be more severe in sentence
clustering than image clustering since image clus-
tering usually has a more well defined objective
whereas sentence clustering can be ambiguous and
subjective. We find that different annotators often
suggest different cluster labels for many of the sen-
tences. To alleviate this issue, we suggest setting
a threshold on the probability qij to filter out ut-
terances with weak cluster signals when tuning or
evaluating the model. Note that our goal is to select
representative utterances from each cluster to form
a reliable template pool. In this way it is most im-
portant to maximize the quality of utterances with
high estimated confidences.

In practice, we initialize the reconstruction coef-
ficients by first training the auto-encoder separately,
i.e. setting ω = 0. This “warm-start” approach
helps accelerate the convergence rate.

Our proposed method borrows the loss from
Xie et al. (2016) but addresses a different prob-
lem. First, Xie et al. (2016) use a convolutional
network to learn an image representation. We tar-
get sentence reconstruction along with clustering,
and thus propose an LSTM structure to capture the
time series aspect of the sequence. Second, we
use a pre-trained model fit on our own customer
service data to initialize the parameters, and thus
our model does not have to be very deep, which
makes it less computationally intensive to train.

3.2 Sequential Baseline

Since there is no prior research targeting the task
of automating template creation for ranking-based
dialogue models, we propose a strong baseline
that embeds the utterances and clusters them
sequentially. To ensure that the baseline we are
comparing against is effective, we explore the
use of publicly available/pretrained embedding
models versus models that are trained on in-
domain customer service data. Additionally, we
experiment with a traditional word embedding
model, GloVe, in which the representation of each
word in the vocabulary is the same regardless of
the context it is appearing in, as well as contextual
embeddings in which the representation depends
on the entire context in which a word is used,
namely ELMo and BERT. For in-domain data,
we use approximately 118 million utterances to
train a customer service (CS) GloVe model and an
attention-based ELMo model. Once we obtain the
representation for each utterance using a specific
embedding model, we then use a pooling layer
to obtain the utterance representation. For the
pooling layer, we use weighted-mean pooling,
in which each word is weighted by the “Term
Frequency Inverse Document Frequency” (tf-idf)
score (Aizawa, 2003), with documents defined as
utterances in this case.2

Finally, we cluster the utterance representations.
We experiment with K-means (MacQueen et al.,
1967), AffinityPropagation (Frey and Dueck, 2007),
spectral (Shi and Malik, 2000), Ward’s (Murtagh
and Legendre, 2014), Agglomerative (Müllner,
2011) and Birch (Zhang et al., 1997) clustering.
For K-means, we use the centroid as the represen-
tation of the cluster, while for other algorithms, we
take the mean pooling for all templates in the clus-
ter as the centroid, compute the distance from each
template to the centroid, and choose the template
that is the shortest distance from the centroid. In
the experiments described in Section 4, we select
the clustering method with the best normalized mu-
tual information score (NMI) as our baseline. We
find that this is always achieved by either Ward’s
or Birch.

2We also experimented with max and unweighted-mean
pooling but achieved better results using weighted-mean pool-
ing.
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4 Experiments & Results

We evaluate clustering performance using both au-
tomatic and human-in-the-loop evaluations. For all
experiments, we fix the cluster number at 50 for all
models to ensure that the template pool has good
coverage of common situations.

4.1 Automatic Evaluation

To evaluate the quality of the generated clusters, we
compare the ground truth—from our gold labeled
data—with predicted labels using normalized mu-
tual information score (NMI), unsupervised clus-
tering accuracy (ACC; Xie et al. (2016)), and Rand
index adjusted for chance (ARI; Hubert and Arabie
(1985)). We evaluate the performance of DSEC
when compared to (1) the sequential baseline and
(2) a weak baseline that randomly assigns each
utterance to one of the clusters.

Tables 2 and 3 show the results of the auto-
matic evaluation on the labeled CM and DNR
datasets. For DSEC, the validation accuracy of
reconstruction is approximately 93% for both
datasets, indicating that the auto-encoder vector
extracts the sentence information well. On CM,
DSEC achieves the best NMI and ACC, while the
sequential method, with the ELMo-CS embedding
and weighted mean pooling of tf-idf features, has
the best ARI results overall. The models using
in-domain embeddings outperform others with pre-
trained embeddings. Note that the metrics NMI,
ACC, and ARI are not always consistent when
compared across different methods. For example,
Glove-CS has a high ARI score but under-performs
with all the other automatic metrics.

In addition, clustering performs better on DNR
dataset than on CM. This is potentially because the
CM domain contains a broader range of customer
issues corresponding to different membership types
and hence is more challenging to represent using
utterance clustering. For example, the templates
can be quite different for canceling a free trial, a
regular subscription, and certain memberships with
an additional subscription attached.

Overall, none of the proposed methods achieve
the accuracy of some image clustering work, such
as Guo et al. (2017). As discussed before, im-
age clustering and text clustering are very different
tasks, and sentence clustering can be quite subjec-
tive. Rephrasing or adding content to sentences can
make such clustering challenging even for humans.
For example, it is non-trivial to decide whether the

following sentences should be clustered together:
“I will cancel your membership”, “I’ll cancel your
membership and issue a refund”, and “The mem-
bership will be canceled starting today and you will
not be able to use the free subscription”. Note that
the second and third sentences both contain addi-
tional information as opposed to the first sentence.
In practice, we encourage annotators to define each
cluster as precisely as possible, even if it results in a
large number of clusters. This can increase the cov-
erage of the generated template pool but decrease
the performance of clustering in the automatic eval-
uation. To determine the true impact of clustering
on our downstream task, response generation, we
conduct a human-in-the-loop evaluation in which
we use the generated template pool along with a
neural response ranking model to recommend re-
sponses to CSAs handling customer service con-
tacts.

4.2 Human-in-the-Loop Evaluation

To evaluate the effectiveness of clustering for the
downstream task of response generation, we use
a human-in-the-loop research platform through
which CSAs handle live customer contacts. Specifi-
cally, we train template-based neural response rank-
ing models for CM and DNR similar to the model
proposed by Lu et al. (2019), and then use them
to select responses from the template pools gener-
ated using the methods proposed above. Note that
training the response ranking model is independent
of template creation. We then test the resulting
model and template pool using this platform. In-
stead of showing CSAs the standard chat box, the
platform presents ten suggested responses chosen
by the trained model from the pool generated by
one of the clustering approaches. These 10 sugges-
tions come from different clusters since we only
send one template per cluster to the ranking model.
They are based on the complete conversation his-
tory up to this point and are updated each time
the customer or the agent sends a response. The
CSA can pick any of the suggested templates as
a response, or type their own text if none of the
templates appears appropriate. An ideal template
pool should minimize the chance that CSAs need
to type their own text, and also have no overlapping
templates in it.

We choose the following metrics for the human-
in-the-loop evaluation, reported in Table 43:

3For the human-in-the-loop experiment, we only include
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Rand-BL Glove GloVe-CS BERT ELMo ELMo-CS DSEC
NMI 0.22 0.43 0.54 0.31 0.30 0.54 0.60
ACC 0.10 0.24 0.33 0.16 0.16 0.31 0.39
ARI 0.00 0.11 0.20 0.04 0.03 0.18 0.12

Table 2: Results of Automatic Evaluation on CM Data

Rand-BL Glove GloVe-CS BERT ELMo ELMo-CS DSEC
NMI 0.23 0.49 0.62 0.39 0.40 0.61 0.63
ACC 0.10 0.31 0.47 0.2 0.24 0.41 0.51
ARI 0.00 0.15 0.32 0.12 0.09 0.26 0.34

Table 3: Results of Automatic Evaluation on DNR Data

1. Top-10 acceptance rate: The percentage of
utterances for which the CSA selects one of
the suggested responses.

2. Top-1 acceptance rate: The percentage of ut-
terances for which the CSA selects the first
suggested response.

3. All suggestions accepted: The percentage of
contacts that are handled using only suggested
utterances.

4. Average depth of first rejection: The percent-
age of utterances in the conversation that oc-
cur before the agent rejects all suggestions
and types their own text.

5. Unique rate: This measures the variation of
the template pool, calculated as one minus the
percentage of templates that can be removed
without reducing the coverage. Ideally, this
number would be 1.0.

6. Number of missing templates: The number
of utterances that are reported missing from
agents. Ideally, this number would be 0.

In this experiment, we compare the performance
of (1) the end-to-end approach (DSEC), (2) the
sequential setup that performs best in the automatic
evaluation (GloVe-CS with weighted-mean pooling
and Ward’s clustering), and (3) a random baseline
in which we randomly select 50 utterances from
the dataset to be used as templates. Additionally,
we include a human/gold baseline for which the
template pool is manually created and refined by
collecting feedback from agents over the course of
one month.

The utterance acceptance rate indicates that
DSEC outperforms both the random and the se-
quential baseline and performs only slightly worse
than the human template pool. As expected, the
“all suggestions accepted” rate is much lower for

the CM dataset due to limited agent resources.

DSEC than for the gold/human pool, but better
than for the other automated methods. We find that
the sequential approach manages to minimize the
length of the conversation (i.e. the number of CSA
utterances). One possibility is that it results in a
better coverage rate so that it can guide the agents
to solve contacts more efficiently than the other
methods.

We measure coverage by asking agents to report
missing templates. Agents reported a few missing
templates for all of the automatically generated
pools. The variance in this metric is high because
the experiment is only run for about 200 contacts
for each experimental configuration. In this way,
corner examples may not show up for all of the
configurations, and a larger experiment is needed to
determine exactly how many templates are missing.

Lastly, the sequential baseline results in a higher
depth of first rejection than the manual approach. A
possible cause is that this approach leads to a larger
proportion of shorter contacts: The sequential ap-
proach has 4% more contacts that have less than 10
CSA utterances than the manual one. This could
indicate that automatically generated templates can
increase the efficiency of contact handling by steer-
ing CSAs away from utterances that could lead to
longer conversations.

5 Conclusion & Future Work

We present DSEC, an end-to-end sentence encod-
ing and clustering approach that can help auto-
mate template creation for template-based conver-
sational models. The purpose is to avoid the human
effort required to manually create a template pool
when training a response generation model for a
conversational system. We evaluate the proposed
approach on two customer service datasets and find
that it outperforms both a strong sequential baseline
and a random baseline in most cases. In addition,
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Metric Rand Gold Seq DSEC
Total contacts 187 250 211 209
Average number of CSA turns per contact 12.0 12.5 10.1 12.0
Top-10 acceptance rate (% utterances) 48.8 56.4 50.5 52.0
Top-1 acceptance rate (% utterances) 20.9 26.7 22 23.8
All suggestions accepted (% contacts) 2.7 10.3 4.2 6.3
All but 1 accepted (% contacts) 7.8 13.1 10.3 12.4
Average depth of 1st rejection (% contacts) 30.7 31.7 32.3 31.2
Unique rate 0.67 1.0 0.77 0.71
Number of missing templates 4 0 2 2

Table 4: Results of Human-in-the-Loop Experiment on CM Data

we use the resulting template pools in a human-in-
the-loop experiment and observe that the template
pool created using DSEC performs only slightly
worse than a manually created template pool that
takes over a month of human effort to develop.
In future work, we plan on exploring building a
pipeline that can automatically polish and update
the generated template pool using feedback from
agents.

Acknowledgements

We thank the three anonymous reviewers for their
feedback and insights in improving the work.

References
Akiko Aizawa. 2003. An information-theoretic per-

spective of tf–idf measures. Information Processing
& Management, 39(1):45–65.

Ashutosh Baheti, Alan Ritter, Jiwei Li, and Bill Dolan.
2018. Generating more interesting responses in
neural conversation models with distributional con-
straints. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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Abstract

Dialogue state tracking (DST) is at the heart
of task-oriented dialogue systems. However,
the scarcity of labeled data is an obstacle to
building accurate and robust state tracking sys-
tems that work across a variety of domains.
Existing approaches generally require some di-
alogue data with state information and their
ability to generalize to unknown domains is
limited. In this paper, we propose using ma-
chine reading comprehension (RC) in state
tracking from two perspectives: model archi-
tectures and datasets. We divide the slot types
in dialogue state into categorical or extractive
to borrow the advantages from both multiple-
choice and span-based reading comprehension
models. Our method achieves near the current
state-of-the-art in joint goal accuracy on Mul-
tiWOZ 2.1 given full training data. More im-
portantly, by leveraging machine reading com-
prehension datasets, our method outperforms
the existing approaches by many a large mar-
gin in few-shot scenarios when the availability
of in-domain data is limited. Lastly, even with-
out any state tracking data, i.e., zero-shot sce-
nario, our proposed approach achieves greater
than 90% average slot accuracy in 12 out of 30
slots in MultiWOZ 2.1.

1 Introduction

Building a task-oriented dialogue system that can
comprehend users’ requests and complete tasks on
their behalf is a challenging but fascinating prob-
lem. Dialogue state tracking (DST) is at the heart
of task-oriented dialogue systems. It tracks the
state of a dialogue during the conversation between
a user and a system. The state is typically defined
as the (slot name, slot value) pair that represents,
given a slot, the value that the user provides or
system-provided value that the user accepts.

*Authors contributed equally.

Despite the importance of DST in task-oriented
dialogues systems, few large datasets are available.
To address this issue, several methods have been
proposed for data collection and bootstrapping
the DST system. These approaches either utilize
Wizard-of-Oz setup via crowd sourcing (Wen et al.,
2017; Budzianowski et al., 2018) or Machines Talk-
ing To Machines (M2M) framework (Shah et al.,
2018). Currently the most comprehensive dataset
with state annotation is MultiWOZ (Budzianowski
et al., 2018), which contains seven domains with
around 10, 000 dialogues. However, compared to
other NLP datasets, MultiWOZ is still relatively
small, especially for training data-intensive neural
models. In addition, it is also a non-trivial to get a
large amount of clean labeled data given the nature
of task-oriented dialogues (Eric et al., 2019).

Another thread of approaches have tried to uti-
lize data in a more efficient manner. These ap-
proaches (Wu et al., 2019; Zhou and Small, 2019)
usually train the models on several domains and
perform zero-shot or few-shot learning on unseen
domains. However, these methods require slot defi-
nitions to be similar between the training data and
the unseen test data. If such systems are given a
completely new slot type, the performance would
degrade significantly. Therefore, these approaches
still rely on considerable amount of DST data to
cover a broad range of slot categories.

We find machine reading comprehension task
(RC) (Rajpurkar et al., 2016; Chen, 2018) as a
source of inspiration to tackle these challenges.
The RC task aims to evaluate how well machine
models can understand human language, whose
goals are actually similar to DST. Ultimately, DST
focuses on the contextual understanding of users’
request and inferring the state from the conversa-
tion, whereas RC focuses on the general under-
standing of the text regardless of its format, which
can be either passages or conversations. In addition,
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recent advances have shown tremendous success
in RC tasks. Thus, if we could formulate the DST
task as a RC task, it could benefit DST in two
aspects: first, we could take advantage of the fast-
growing RC research advances; second, we could
make use of the abundant RC data to overcome the
data scarcity issue in DST task.

Building upon this motivation, we formulate the
DST task into an RC task by specially designing a
question for each slot in the dialogue state, similar
to Gao et al. (2019). Then, we divide the slots into
two types: categorical and extractive, based on the
number of slot values in the ontology. For instance,
in MultiWOZ, slots such as parking take values of
{Yes, No, Don’t Care} and can thus be treated as
categorical. In contrast, slots such as hotel-name
may accept an unlimited number of possible values
and these are treated as extractive. Accordingly,
we propose two machine reading comprehension
models for dialogue state tracking. For categorical
slots, we use multiple-choice reading comprehen-
sion models where an answer has to be chosen from
a limited number of options. And for the extractive
dialogue state tracking, span-based reading com-
prehension are applied where the answer can be
found in the form of a span in the conversation.

To summarize our approach and contributions:

• We divide the dialogue state slots into cate-
gorical and extractive types and use RC tech-
niques for state tracking. Our approach can
leverage the recent advances in the field of
machine reading comprehension, including
both multiple-choice and span-based reading
comprehension models.

• We propose a two-stage training strategy. We
first coarse-train the state tracking models on
reading comprehension datasets, then fine-
tune them on the target state tracking dataset.

• We show the effectiveness of our method un-
der three scenarios: First, in full data setting,
we show our method achieves close to the
current state-of-the-art on MultiWoz 2.1 in
terms of joint goal accuracy. Second, in few-
shot setting, when only 1–10% of the training
data is available, we show our methods sig-
nificantly outperform the previous methods
for 5 test domains in MultiWoz 2.0. In par-
ticular, we achieve 45.91% joint goal accu-
racy with just 1% (around 20–30 dialogues)
of hotel domain data as compared to previ-
ous best result of 19.73% (Wu et al., 2019).

Thirdly, in zero-shot setting where no state
tracking data is used for training, our models
still achieve considerable average slot accu-
racy. More concretely, we show that 13 out of
30 slots in MultiWOZ 2.1 can achieve an aver-
age slot accuracy of greater than 90% without
any training.

• We demonstrate the impact of canonicaliza-
tion on extractive dialogue state tracking. We
also categorize errors based on None and Not
None slot values. We found the majority errors
for our DST model come from distinguishing
None or Not None for slots.

2 Related Works

Traditionally, dialogue state tracking methods (Liu
and Lane, 2017; Mrkšić et al., 2016; Zhong et al.,
2018; Nouri and Hosseini-Asl, 2018; Lee et al.,
2019) assume a fully-known fixed ontology for all
slots where the output space of a slot is constrained
by the values in the ontology. However, such ap-
proaches cannot handle previously unseen values
and do not scale well for slots such as restaurant-
name that can take potentially unbounded set of val-
ues. To alleviate these issues, Rastogi et al. (2017);
Goel et al. (2018) generate and score slot-value
candidates from the ontology, dialogue context n-
grams, slot tagger outputs, or a combination of
them. However, these approaches suffer if a reli-
able slot tagger is not available or if the slot value
is longer than the candidate n-grams. Xu and Hu
(2018) proposed attention-based pointing mecha-
nism to find the start and end of the slot value to bet-
ter tackle the issue of unseen slot values. Gao et al.
(2019) proposed using a RC framework for state
tracking. They track slot values by answering the
question “what is the value of the slot?” through
attention-based pointing to the dialogue context.
Chao and Lane (2019); Rastogi et al. (2019) uti-
lize BERT to encode the dialogue context and then
point to slot-value span in the encoded context. Al-
though these approaches are more practical and
scalable, they suffer when the exact slot value does
not appear in the context as expected by the back-
end database or if the value is not pointable. More
recently, hybrid approaches have attempted to com-
bine the benefits of both using predefined ontology
(closed vocabulary) and dynamically generating
candidate set or pointing (open vocabulary) ap-
proaches. Goel et al. (2019) select between the
two approaches per slot based on dev set. Wu et al.
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(2019) utilize pointer generator network to either
copy from the context or generate from vocabulary.

Perhaps, the most similar to our work is by
Zhang et al. (2019) and Zhou and Small (2019)
where they divide slot types into span-based (ex-
tractive) slots and pick-list (categorical) slots and
use QA framework to point or pick values for these
slots. A major limitation of these works is that they
utilize heuristics to determine which slots should
be categorical and which non-categorical. More-
over, in these settings most of the slots are treated
as categorical (21/30 and 25/30), even though some
of them have very large number of possible values,
e.g., restaurant-name. This is not scalable espe-
cially when the ontology is large, not comprehen-
sive, or when new domains/slots can occur at test
time as in DSTC8 dataset (Rastogi et al., 2019).

There are recent efforts into building or adapting
dialog state tracking systems in low source data
scenarios Wu et al. (2019); Zhou and Small (2019).
The general idea in these approaches is to treat
all but one domain as in-domain data and test on
the remaining unseen domain either directly (zero
shot) or after fine-tuning on small percentage (1%-
10%) of the unseen domain data (few shot). A
major drawback of these approaches is that they re-
quire several labeled in-domain examples in order
perform well on the unseen domain. This limits
these approaches to in-domain slots and slot defini-
tions and they do not generalize very well to new
slots or completely unseen target domain. This
also requires large amount of labeled data in the
source domain, which may not be available in real-
world scenario. Our proposed approach, on the
other hand, utilizes domain-agnostic QA datasets
with zero or a small percentage of DST data and
significantly outperforms these approaches in low-
resource settings.

3 Methods

3.1 Dialogue State Tracking as Reading
Comprehension

Dialogue as Paragraph For a given dialogue at
turn t, let us denote the user utterance tokens and
the agent utterance tokens as ut and at respectively.
We concatenate the user utterance tokens and the
agent utterance tokens at each turn to construct a
sequence of tokens as Dt = {u1,a1, ...,ut}. Dt

can be viewed as the paragraph that we are going
to ask questions on at turn t.

Slot as Question We can formulate a natural lan-
guage question qi, for each slot si in the dialogue
state. Such a question describes the meaning of
that slot in the dialogue state. Examples of (slot,
question) pairs can be seen in Table 2 and 3. We for-
mulate questions by considering characteristics of
domain and slot. In this way, DST becomes finding
answers ai to the question qi given the paragraph
Dt. Note that Gao et al. (2019) formulate dialogue
state tracking problem in a similar way but their
question formulation “what is the value of a slot ?”
is more abstract, whereas our questions are more
concrete and meaningful to the dialogue.

3.2 Span-based RC To Extractive DST

Figure 1: Model architecture for extractive state tracking.
“Encoder”is a pre-trained sentence encoder such as BERT.

For many slots in the dialogue state such as
names of attractions, restaurants, and departure
times, one can often find their values in the dia-
logue context with exact matches. Slots with a
wide range of values fits this description. Table 1
shows the exact match rate for each slot in Multi-
WOZ 2.1 dataset (Budzianowski et al., 2018; Eric
et al., 2019) where slots with large number of pos-
sible values tend to have higher exact match rate
(≥ 80%). We call tracking such slots as extractive
dialogue stack tracking (EDST).

This problem is similar to span-based RC where
the goal is to find a span in the passage that best
answers the question. Therefore, for EDST, we
adopt the simple BERT-based question answering
model used by Devlin et al. (2019), which has
shown strong performance on multiple datasets (Ra-
jpurkar et al., 2016, 2018; Reddy et al., 2019). In
this model as shown in Figure 1, the slot ques-
tion and the dialogue are represented as a single
sequence. The probability of a dialogue token ti
being the start of the slot value span is computed
as pi =

es·Ti∑
j e

s·Tj
, where Tj is the embedding of

each token tj and s is a learnable vector. A similar
formula is applied for finding the end of the span.

Handling None Values At any given turn in the
conversation, there are typically, many slots that
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Slot Name # Possible Values Exact Match Rate Extractive Categorical
hotel.semi.type 3 61.1% × X
hotel.semi.internet 3 62.1% × X
hotel.semi.parking 4 63.1% × X
restaurant.semi.pricerange 4 97.8% X X
hotel.semi.pricerange 6 97.7% X X
hotel.semi.area 6 98.8% X X
attraction.semi.area 6 99.0% X X
restaurant.semi.area 6 99.2% X X
hotel.semi.stars 7 99.2% X X
hotel.book.people 8 98.2% X X
hotel.book.stay 8 98.9% X X
train.semi.day 8 99.3% X X
restaurant.book.day 8 98.7% X X
restaurant.book.people 8 99.1% X X
hotel.book.day 11 98.1% X X
train.book.people 12 94.7% X ×
train.semi.destination 27 98.2% X ×
attraction.semi.type 27 86.6% X ×
train.semi.departure 31 97.6% X ×
restaurant.book.time 67 97.2% X ×
hotel.semi.name 78 88.7% X ×
taxi.semi.arriveby 97 91.9% X ×
restaurant.semi.food 103 96.4% X ×
taxi.semi.leaveat 108 81.1% X ×
train.semi.arriveby 156 91.5% X ×
attraction.semi.name 158 84.3% X ×
restaurant.semi.name 182 93.9% X ×
train.semi.leaveat 201 87.4% X ×
taxi.semi.destination 251 87.9% X ×
taxi.semi.departure 253 84.6% X ×

Table 1: Slot statistics for MultiWOZ 2.1. We classify the slots into extractive or categorical based on their exact match rate in
conversation as well as number of possible values. 3 slots are categorical only, 12 slots are both extractive and categorical, the
remaining 15 slots are extractive only.

Dialogue
U: I’m so hungry. Can you find me a place to eat in the
city centre?
A: I’m happy to help! There are a great deal of restaurants
there. What type of food did you have in mind?
U: I do not care, it just needs to be expensive.
A: Fitzbillies restaurant serves British food would that be
okay?
U: Yes, may I have the address?

restaurant.semi.food: What type of food does the user
want to eat?
Answer: [ 52-53 ] (I do not care, it just needs to be expen-
sive)

restaurant.semi.name: What is the name of the restaurant
where the user wants to eat?
Answer: [ 53-55 ] (Fitzbillies restaurant)

Table 2: Sample dialogue from MultiWOZ dataset showing
framing of extractive DST to span-based RC. The span text
(or don’t care user utterance) is also shown in italics.

have not been mentioned or accepted yet by the
user. All these slots must be assigned a None value
in the dialogue state. We can view such cases as
no answer exists in reading comprehension formu-
lation. Similar to Devlin et al. (2019) for SQuAD
2.0 task, we assign the answer span with start and

end at the beginning token [CLS] for these slots.

Handling Don’t Care Values To handle don’t
care value in EDST, a span is also assigned to
don’t care in the dialogue. We find the dialogue
turn when the slot value first becomes don’t care
and set the start and end of don’t care span to be
the start and end of the user utterance of this turn.
See Table 2 for an example.

3.3 Multiple-Choice Reading Comprehension
to Categorical Dialogue State Tracking

Figure 2: Model architecture for categorical dialog state
tracking. “Encoder”is a pre-trained sentence encoder such as
BERT. “Classifier” is a top-level fully connected layer.

The other type of slots in the dialogue state can-
not be filled through exact match in the dialogue
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Dialogue
U: I am looking for a place to to stay that has cheap price
range it should be in a type of hotel
A: Okay , Do you have a specific area you want to stay in?
U: No, I just need to make sure it’s cheap. Oh, and I need
parking.

hotel.semi.area: What is the area that the user wants to
book a hotel in?
A. East B. West C. North D. South E. Centre
F. Don’t Care X G. Not Mentioned

hotel.semi.parking: Does the user want parking at the
hotel?
A. Yes X B. No C. Don’t Care D. Not Mentioned

Table 3: Sample dialogue from MultiWOZ dataset showing
framing of categorical DST to multiple-choice RC.

context in a large number of cases. For example, a
user might express intent for hotel parking as “oh!
and make sure it has parking” but the slot hotel-
parking only accepts values from {Yes, No, Don’t
Care}. In this case, the state tracker needs to infer
whether or not the user wants parking based on the
user utterance and select the correct value from the
list. These kind of slots may not have exact-match
spans in the dialogue context but usually require a
limited number of values to choose from.

Tracking these type of slots is surprisingly sim-
ilar to multiple-choice reading comprehension
(MCRC) tasks. In comparison to span-based RC
tasks, the answers of MCRC datasets (Lai et al.,
2017; Sun et al., 2019) are often in the form of open,
natural language sentences and are not restricted to
spans in text. Following the traditional models of
MCRC (Devlin et al., 2019; Jin et al., 2019), we
concatenate the slot question, the dialogue context
and one of the answer choices into a long sequence.
We then feed this sequence into a sentence encoder
to obtain a logit vector. Given a question, we can
get m logit vectors assuming there are m answer
choices. We then transform these m logit vectors
into a probability vector through a fully connected
layer and a softmax layer, see Figure 2 for details.

Handling None and Don’t Care Values For
each question, we simply add two additional
choices “not mentioned” and “do not care” in the
answer options, representing None and don’t care,
as shown in Table 3. It is worth noting that certain
slots not only accept a limited number of values but
also their values can be found as an exact-match
span in the dialogue context. For these slots, both
extractive and categorical DST models can be ap-
plied as shown in Table 1.

4 Experiments

4.1 Datasets

# of passages # of examples

MRQA (span-based) 386,384 516,819
DREAM (multi-choice) 6,444 10,197
RACE (multi-choice) 27,933 97,687
MultiWOZ 8,420 298,978*

Table 4: Statistics of datasets used. (*: we only report the
number of positive examples (a non-empty value) in Multi-
WOZ for fair comparison.)

MultiWOZ We use the largest available multi-
domain dialogue dataset with state annotation:
MultiWOZ 2.0 (Budzianowski et al., 2018) and
MultiWOZ 2.1 (Eric et al., 2019), an enhanced, less
noisier version of MultiWOZ 2.0 dataset, which
contains 7 distinct domains across 10K dialogues.
We exclude hospital and police domain that have
very few dialogues. This results in 5 remaining do-
mains attraction, restaurant, taxi, train, hotel with
a total of 30 (domain, slot) pairs in the dialog state
following Wu et al. (2019); Zhang et al. (2019).

Reading Comprehension Datasets For span-
based RC dataset, we use the dataset from Ma-
chine Reading for Question Answering (MRQA)
2019 shared task (Fisch et al., 2019) that was fo-
cused on extractive question answering. MRQA
contains six distinct datasets across different do-
mains: SQuAD, NewsQA, TriviaQA, SearchQA,
HotpotQA, and NaturalQuestions. In this dataset,
any answer to a question is a segment of text or
span in a given document. For multiple-choice RC
dataset, we leverage the current largest multiple-
choice QA dataset, RACE (Lai et al., 2017) as well
as a dialogue-based multiple-choice QA dataset,
DREAM (Sun et al., 2019). Both of these datasets
are collected from English language exams that
are carefully designed by educational experts to
assess the comprehension level of English learners.
Table 4 summarizes the statistics of datasets. It
is worth noting that for MultiWOZ, although the
number of examples are significantly more than
multiple-choice QA datasets, the number of dis-
tinct questions are only 30 due to limited number
of slot types.

4.2 Canonicalization for Extractive Dialogue
State Tracking

For extractive dialogue state tracking, it is common
that the model will choose a span that is either a
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super-set of the correct reference or has a similar
meaning as the correct value but with a different
wording. Following this observation, we adopt a
simple canonicalization procedure after our span-
based model prediction. If the predicted value does
not exist in the ontology of the slot, then we match
the prediction with the value in the ontology that
is closest to the predicted value in terms of edit
distance1. Note that this procedure is only applied
at model inference time. At training time for ex-
tractive dialogue state tracking, the ontology is not
required.

4.3 Two-stage Training

A two-stage training procedure is used to train the
extractive and categorical dialogue state tracking
models with both types of reading comprehension
datasets (DREAM, RACE, and MRQA) and the
dialogue state tracking dataset (MultiWOZ).

Reading Comprehension Training Stage For
categorical dialogue state tracking model, we
coarse-tune the model on DREAM and RACE. For
extractive dialogue state tracking model, we coarse-
tune the model on MRQA dataset as a first step.

Dialog State Tracking Training Stage After be-
ing trained on the reading comprehension datasets,
we expect our models to be capable of answering
(passage, question) pairs. In this phase, we further
fine-tune these models on the MultiWOZ dataset.

5 Results and Analyses

5.1 DST with Full Training Data

Joint Goal Accuracy
SpanPtr (Xu and Hu, 2018) 29.09%
FJST (Eric et al., 2019) 38.00%
HyST (Goel et al., 2019) 39.10%
DSTreader (Gao et al., 2019) 36.40%
TRADE (Wu et al., 2019) 45.96%
DS-DST (Zhang et al., 2019) 51.21%
DSTQA w/span (Zhou and Small, 2019) 49.67%
DSTQA w/o span (Zhou and Small, 2019) 51.17%
STARC (this work) 49.48%

Table 5: Joint Goal Accuracy on MultiWOZ 2.1 test set.

We use the full data in MultiWOZ 2.1 to test
our models. For the first 15 slots with lowest num-
ber of possible values (from hotel.semi.type to ho-

1we use the function get closest matches of difflib in
Python for this implementation.

tel.book.day in Table 1, we use our proposed cate-
gorical dialogue state tracking model whereas for
the remaining 15 slots, we use the extractive dia-
logue state tracking model. We use the pre-trained
word embedding RoBERTa-Large (Liu et al., 2019)
in our experiment.

Table 5 summarizes the results. We can see that
our model, STARC (State Tracking As Reading
Comprehension), achieves close to the state-of-the-
art accuracy on MultiWOZ 2.1 in the full data set-
ting. It is worth noting that the best performing ap-
proach DS-DST (Zhang et al., 2019), cherry-picks
9 slots as span-based slots whereas the remaining
21 slots are treated as categorical. Further, the
second best result DSTQA w/o span (Zhou and
Small, 2019) does not use span-based model for
any slot. Unlike these state-of-the-art methods, our
method simply categorizes the slots based on the
number of values in the ontology. As a result, our
approach uses less number of (15 as compared to
21 in DS-DST) and more reasonable (only those
with few values in the ontology) categorical slots.
Thus, our approach is more practical to be applied
in a real-world scenario.

Ablation Dev Accuracy
STARC (this work) 53.95%
– RC Coarse Tuning 52.35%
– Canonicalization 51.07%
– RC Coarse Tuning – Canonicalization 50.84%
– Categorical Model 47.86%
– Categorical Model – Canonicalization 41.86%
DS-DST Threshold-10 49.08%
DS-DST Span Only 40.39%

Table 6: Ablation study with different aspects of our model
and other comparable approaches. The numbers reported are
joint goal accuracy on MultiWOZ 2.1 development set.

Ablation Study We also run ablation study to
understand which component of our model helps
with accuracy. Table 6 summarizes the results. For
fair comparison, we also report the numbers for DS-
DST Threshold-10 (Zhang et al., 2019) where they
also use the first 15 slots for categorical model and
the remaining for extractive model. We observe
that both two-stage training strategy using read-
ing comprehension data and canonicalization play
important role in higher accuracy. Without the cate-
gorical model (using extractive model for all slots),
STARC is still able to achieve joint goal accuracy
of 47.86%. More interestingly, if we remove the
categorical model as well as the canonicalization,
the performance drops drastically, but is still slight
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better than purely extractive model of DS-DST.

Error Type Extractive Categorical
ref not none, predicted none 43.7% 31.4%
ref none, predicted not none 25.6% 58.4%
ref not none, predicted not none 30.6% 10.0%

Table 7: Type of errors made by each model.

Handling None Value Through error analysis of
our models, we have learned that models’ perfor-
mance on None value has a significant impact on
the overall accuracy. Table 7 summarizes our find-
ings. We found that plurality errors for extractive
model comes from cases where ground-truth is not
None but model predicted None. For categorical
model, the opposite was true. The majority errors
were from model predicting not None value but the
ground-truth is actually None. We leave further
investigation on this issue as a future work.

5.2 Few shot from RC to DST
In few-shot setting, our model (both extractive
and categorical) is pre-trained on reading com-
prehension datasets and we randomly select lim-
ited amount of target domain data for fine-tuning.
We do not use out-of-domain MultiWOZ data for
training for few-shot experiments unlike previous
works. We evaluate our model with 1%, 5% and
10% of training data in the target domain. Ta-
ble 8 shows the results of our model under this
setting for five domains in MultiWOZ 2.02. We
also report the few-shot results for other two mod-
els: TRADE (Wu et al., 2019) and DSTQA (Zhou
and Small, 2019), where they perform the same
few-shot experiments but pre-trained with a hold-
out strategy, i.e., training on the other four domains
in MultiWOZ and fine-tune on the held-out do-
main. We can see that under all three different
data settings, our model outperforms the TRADE
and DSTQA models (expect the attraction domain
for DSTQA) by a large margin. Especially in 1%
data setting for hotel domain, which contains the
most number of slots (10) among all the five do-
mains, the joint goal accuracy dropped to 19.73%
for TRADE while our model can still achieve rela-
tively high joint goal accuracy of 45.91%. This sig-
nificant performance difference can be attributed to
pre-training our models on reading comprehension
datasets, which gives our model ability to compre-
hend passages or dialogues (which we have empiri-

2We are showing results on MultiWOZ 2.0 rather than 2.1
for the purpose of comparison to previous works.

cally verified in next section). The formulation of
dialogue state tracking as a reading comprehension
task helps the model to transfer comprehension ca-
pability. We also tried to repeat these experiments
with vanilla pre-trained Roberta-Large model (with-
out pretraining on RC dataset), but we could not
even get these models to converge in such low-
resource data settings. This further highlights the
importance of RC pretraining for low resource dia-
logue state tracking.

5.3 Zero shot from RC to DST

In zero-shot experiments, we want to investigate
how would the reading comprehension models be-
have on MultiWOZ dataset without any training on
state tracking data. To do so, we train our models
on reading comprehension datasets and test on Mul-
tiWOZ 2.1. Note that, in this setting, we only take
labels in MultiWOZ 2.1 that are not missing, ig-
noring the data that is “None” in the dialogue state.
For zero-shot experiments from multiple-choice
RC to DST, we take the first fifteen slots in Table 1
that are classified as categorical. For zero shot from
span-based RC to DST, we take twenty-seven slots
which are extractive expect the first three slots in
Table 1.

Figure 3 summarizes the results for hotel, restau-
rant, taxi and train domain in MultiWOZ 2.1. For
attraction domain, please refer to the supplemen-
tary section A. We can see that most of the slots
have an average accuracy of at least 50% or above
in both multiple-choice RC and span-based RC ap-
proaches, indicating the effectiveness of RC data.
For some slots such as hotel.stay, hotel.people,
hotel.day, restaurant.people, restaurant.day, and
train.day, we are able to achieve very high zero-
shot accuracy (greater than 90%). The zero-shot
setting in TRADE (Wu et al., 2019), where the
transfer is from the four source domains to the held-
out target domain, fails completely on certain slot
types like hotel.name. In contrast, our zero-shot
experiments from RC to DST are able to transfer
almost all the slots.

Table 9 illustrates the zero shot examples for
span-based RC model. We can see that although
the span-based RC model does not directly point
to the state value itself, it usually points to a span
that contains the ground truth state value and the
canonicalization procedure then turns the span into
the actual slot value. Such predicted spans can
be viewed as evidence for getting the ground-truth
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Hotel Restaurant Attraction Train Taxi
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

TRADE 19.73 37.45 41.42 42.42 55.70 60.94 35.88 57.55 63.12 59.83 69.27 71.11 63.81 66.58 70.19

DSTQA N/A 50.18 53.68 N/A 58.95 64.51 N/A 70.47 71.60 N/A 70.35 74.50 N/A 70.90 74.19

STARC 45.91 52.59 57.37 51.65 60.49 64.66 40.39 65.34 66.27 65.67 74.11 75.08 72.58 75.35 79.61

Table 8: Joint goal accuracy for few-shot experiments. Best numbers reported by TRADE and DSTQA are also shown.
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(a) Hotel
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Figure 3: Zero-shot average slot accuracy using multi-choice and span-based RC to DST in hotel, restaurant, taxi, and train
domain of MultiWOZ 2.1. The number in parentheses indicates the number of possible values that a slot can take.

Example (Span-based RC model prediction is bolded) Ground Truth State Value
Dialogue: “. . . .A: sure , what area are you thinking of staying, U: i do not have an area
preference but it needs to have free wifi and parking at a moderate price. . . .”
Question: “which area is the hotel at?” (hotel.semi.area)

don’t care

Dialogue: “U: i am looking for something fun to do on the east side of town . funky fun house
is my favorite place on the east side...
Question: “which area is the restaurant at?” (restaurant.semi.area)

east

Dialogue: “U: I need 1 that leaves after 13:30 for bishops stortford how about the tr8017 ?
A: it leaves at 15:29 and arrives at 16:07 in bishops stortford ....”
Question: “what time will the train leave from the departure location?” (train.semi.leaveat)

15:29

Dialogue: “U: hello i want to see some authentic architectures in cambridge!...”
Question: “what is the type of the attraction?” (attraction.semi.type) architecture

Dialogue: “...A: can i help you with anything else ? U: i would like to book a taxi from the
hong house to the hotel leaving by 10:15...”
Question: “where does the taxi leave from?” (taxi.semi.departure)

lan hong house

Table 9: Zero-shot examples to MultiWOZ 2.1 by span-based reading comprehension model trained on MRQA dataset. The
predicted span by the span-based RC model are bolded.

dialogue state, which makes dialogue state tracking
more explainable.

6 Conclusion

Task-oriented dialogue systems aim to help users
to achieve a variety of tasks. It is not unusual to
have hundreds of different domains in modern task-
oriented virtual assistants. How can we ensure the

86



dialogue system is robust enough to scale to dif-
ferent tasks given limited amount of data? Some
approaches focus on domain expansion by training
on several source domains and then adapting to the
target domain. While such methods can be success-
ful in certain cases, it is hard for them to generalize
to other completely different out-of-domain tasks.

Machine reading comprehension provides us a
clear and general basis for understanding the con-
text given a wide variety of questions. By formulat-
ing the dialogue state tracking as reading compre-
hension, we can utilize the recent advances in read-
ing comprehension models. More importantly, we
can utilize reading comprehension datasets to mit-
igate some of the resource issues in task-oriented
dialogue systems. As a result, we achieve much
higher accuracy in dialogue state tracking across
different domains given limited amount of data
compared to the existing methods. As the variety
of tasks and functionalities in a dialogue system
continues to grow, general methods for tracking
dialogue state across all tasks will become increas-
ingly necessary. We hope that the developments
suggested here will help to address this need.
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man, and Milica Gašić. 2018. Multiwoz - a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Guan-Lin Chao and Ian Lane. 2019. Bert-dst: Scalable
end-to-end dialogue state tracking with bidirectional
encoder representations from transformer. Proc. In-
terspeech 2019, pages 1468–1472.

Danqi Chen. 2018. Neural Reading Comprehension
and Beyond. Ph.D. thesis, Stanford University.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, and Dilek Hakkani-
Tur. 2019. Multiwoz 2.1: Multi-domain dialogue
state corrections and state tracking baselines. arXiv
preprint arXiv:1907.01669.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo,
Eunsol Choi, and Danqi Chen. 2019. Mrqa 2019
shared task: Evaluating generalization in reading
comprehension. arXiv preprint arXiv:1910.09753.

Shuyang Gao, Abhishek Sethi, Sanchit Agarwal, Tagy-
oung Chung, and Dilek Hakkani-Tur. 2019. Dialog
state tracking: A neural reading comprehension ap-
proach. arXiv preprint arXiv:1908.01946.

Rahul Goel, Shachi Paul, Tagyoung Chung, Jeremie
Lecomte, Arindam Mandal, and Dilek Hakkani-Tur.
2018. Flexible and scalable state tracking frame-
work for goal-oriented dialogue systems. arXiv
preprint arXiv:1811.12891.

Rahul Goel, Shachi Paul, and Dilek Hakkani-Tür.
2019. Hyst: A hybrid approach for flexible and
accurate dialogue state tracking. arXiv preprint
arXiv:1907.00883.

Di Jin, Shuyang Gao, Jiun-Yu Kao, Tagyoung Chung,
and Dilek Hakkani-tur. 2019. Mmm: Multi-stage
multi-task learning for multi-choice reading compre-
hension. arXiv preprint arXiv:1910.00458.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 785–
794.

Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. 2019.
Sumbt: Slot-utterance matching for universal
and scalable belief tracking. arXiv preprint
arXiv:1907.07421.

Bing Liu and Ian Lane. 2017. An end-to-end trainable
neural network model with belief tracking for task-
oriented dialog. arXiv preprint arXiv:1708.05956.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.
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A Zero shot experiments for Attraction
domain in MultiWOZ 2.1
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(a) Attraction

Figure 1: Zero shot average slot accuracy from RC to
DST in attraction domain of MultiWOZ 2.1. The num-
ber within the brackets associated with each slot name
in y-axis indicates the number of possible values that a
slot can take.

B Question Formation for Reading
Comprehension

The structural construct and the surface form of the
question can have an impact on the performance of
RC models. In this work, we handcrafted a ques-
tion for each slot that needs to be tracked. Each
question roughly asks What is the value of the slot
that the user in interested in?. The exact question
was tailored to each specific slot also taking do-
mains into account. We experimented with two
sets of handcrafted questions. The first set was
created in a procedural manner largely following
a template. The other was created in a more free-
form manner and was more natural. We did not
notice any significant model performance differ-
ence between the two sets. However, we did not
explore this dimension any further and leave it to
future work. An interesting future direction could
be to use a decoder to generate questions given slot
description as the input.
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Abstract

Slot Filling (SF) is one of the sub-tasks of Spo-
ken Language Understanding (SLU) which
aims to extract semantic constituents from a
given natural language utterance. It is formu-
lated as a sequence labeling task. Recently, it
has been shown that contextual information is
vital for this task. However, existing models
employ contextual information in a restricted
manner, e.g., using self-attention. Such meth-
ods fail to distinguish the effects of the con-
text on the word representation and the word
label. To address this issue, in this paper, we
propose a novel method to incorporate the con-
textual information in two different levels, i.e.,
representation level and task-specific (i.e., la-
bel) level. Our extensive experiments on three
benchmark datasets on SF show the effective-
ness of our model leading to new state-of-the-
art results on all three benchmark datasets for
the task of SF.

1 Introduction

Slot Filling (SF) is the task of identifying the se-
mantic constituents expressed in a natural language
utterance. It is one of the sub-tasks of spoken lan-
guage understanding (SLU) and plays a vital role
in personal assistant tools such as Siri, Alexa, and
Google Assistant. This task is formulated as a se-
quence labeling problem. For instance, in the given
sentence “Play Signe Anderson chant music that
is newest.”, the goal is to identify “Signe Ander-
son” as “artist”, “chant music” as “music-item” and
“newest” as “sort”.

Early work on SF has employed feature engi-
neering methods to train statistical models, e.g.,
Conditional Random Field (Raymond and Riccardi,
2007). Later, deep learning emerged as a promising
approach for SF (Yao et al., 2014; Peng et al., 2015;

* This work was done when the first author was an intern
at Adobe Research.

Liu and Lane, 2016). The success of deep models
could be attributed to pre-trained word embeddings
to generalize words and deep learning architectures
to compose the word embeddings to induce effec-
tive representations. In addition to improving word
representation using deep models, Liu and Lane
(2016) showed that incorporating the context of
each word into its representation could improve the
results. Concretely, the effect of using context in
word representation is two-fold: (1) Representa-
tion Level: As the meaning of the word is depen-
dent on its context, incorporating the contextual
information is vital to represent the true meaning
of the word in the sentence (2) Task Level: For SF,
the label of the word is related to the other words
in the sentence and providing information about
the other words, in prediction layer, could improve
the performance. Unfortunately, the existing work
employs the context in a restricted manner, e.g., via
attention mechanism, which obfuscates the model
about the two aforementioned effects of the contex-
tual information.

In order to address the limitations of the prior
work to exploit the context for SF, in this paper,
we propose a multi-task setting to train the model.
More specifically, our model is encouraged to ex-
plicitly ensure the two aforementioned effects of
the contextual information for the task of SF. In par-
ticular, in addition to the main sequence labeling
task, we introduce new sub-tasks to ensure each ef-
fect. Firstly, in the representation level, we enforce
the consistency between the word representations
and their context. This enforcement is achieved via
increasing the Mutual Information (MI) between
these two representations. Secondly, in the task
level, we propose two new sub-tasks: (1) To pre-
dict the label of the word solely from its context
and (2) To predict which labels exist in the given
sentence in a multi-label classification setting. By
doing so, we encourage the model to encode task-
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specific features in the context of each word. Our
extensive experiments on three benchmark datasets,
empirically prove the effectiveness of the proposed
model leading to new the state-of-the-art results on
all three datasets.

2 Related Work

In the literature, Slot Filling (SF), is categorized
as one of the sub-tasks of spoken language un-
derstanding (SLU). Early work employed feature
engineering for statistical models, e.g., Conditional
Random Field (Raymond and Riccardi, 2007). Due
to the lack of generalisation ability of feature based
models, deep learning based models superseded
them (Yao et al., 2014; Peng et al., 2015; Kurata
et al., 2016; Hakkani-Tür et al., 2016). Also, joint
models to simultaneously predict the intent of the
utterance and to extract the semantic slots has also
gained a lot of attention (Guo et al., 2014; Liu and
Lane, 2016; Zhang and Wang, 2016; Wang et al.,
2018; Goo et al., 2018; Qin et al., 2019; E et al.,
2019). In addition to the supervised settings, re-
cently other setting such as progressive learning
(Shen et al., 2019) or zero-shot learning has also
been studied (Shah et al., 2019). To the best of our
knowledge, none of the existing work introduces a
multi-task learning solely for the SF to incorporate
the contextual information in both representation
and task levels.

3 Model

Our model is trained in a multi-task setting in which
the main task is slot filling to identify the best possi-
ble sequence of labels for the given sentence. In the
first auxiliary task we aim to increase consistency
between the word representation and its context.
The second auxiliary task is to enhance task spe-
cific information in contextual information. In this
section, we explain each of these tasks in more
details.

3.1 Slot Filling

Formally, the input to a SF model is a sequence of
words X = [x1, x2, . . . , xn] and our goal is to pre-
dict the sequence of labels Y = [y1, y2, . . . , yn]. In
our model, the word xi is represented by vector ei
which is the concatenation of the pre-trained word
embedding and POS tag embedding of the word
xi. In order to obtain a more abstract representa-
tion of the words, we employ a Bi-directional Long
Short-Term Memory (BiLSTM) over the word rep-

resentations E = [e1, e2, . . . , en] to generate the
abstract vectors H = [h1, h2, . . . , hn]. The vector
hi is the final representation of the word xi and
is fed into a two-layer feed forward neural net to
compute the label scores si for the given word,
si = FF (hi). As the task of SF is formulated
as a sequence labeling task, we exploit a condi-
tional random field (CRF) layer as the final layer
of SF prediction. More specifically, the predicted
label scores S = [s1, s2, . . . , sn] are provided as
emission score to the CRF layer to predict the la-
bel sequence Ŷ = [ŷ1, ŷ2, . . . , ŷn]. To train the
model, the negative log-likelihood is used as the
loss function for SF prediction, i.e., Lpred.

3.2 Consistency between Word and Context

In this sub-task we aim to increase the consistency
between the word representation and its context.
To obtain the context of each word, we use max
pooling over the outputs of the BiLSTM for all
words of the sentence excluding the word itself,
hci = MaxPooling(h1, h2, ..., hn/hi). We aim to
increase the consistency between vectors hi and hci .
To this end, we propose to maximize the Mutual
Information (MI) between the word representation
and its context. In information theory, MI evalu-
ates how much information we know about one
random variable if the value of another variable
is revealed. Formally, the mutual information be-
tween two random variable X1 and X2 is obtained
by:

MI(X1, X2) =

∫

X1

∫

X2

P (X1, X2)·

log
P (X1, X2)

P (X1)P (X2)
dX1dX2

(1)

Using this definition of MI, we can reformu-
late the MI equation as KL-Divergence between
the joint distribution PX1X2 = P (X1, X2) and
the product of marginal distributions PX1

⊗
X2

=
P (X1)P (X2):

MI(X1, X2) = DKL(PX1X2 ||PX1
⊗

X2
) (2)

Based on this understanding of MI, if the two
random variables are dependent then the mutual
information between them (i.e. the KL-Divergence
in Equation 2) would be the highest. Consequently,
if the representations hi and hci are encouraged to
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have large mutual information, we expect them to
share more information.

Computing the KL-Divergence in equation 2
could be prohibitively expensive (Belghazi et al.,
2018), so we need to estimate it. To this end,
we exploit the adversarial method introduced in
(Hjelm et al., 2019). In this method, a discrim-
inator is employed to distinguish between sam-
ples from the joint distribution and the product
of the marginal distributions to estimate the KL-
Divergence in Equation 2. In our case, the sample
from joint distribution is the concatenation [hi : hci ]
and the sample from the product of the marginal
distribution is the concatenation [hi : hcj ] where
hcj is a context vector randomly chosen from the
words in the mini-batch. Formally:

Ldisc =
1

n
Σn
i=1 − (log(D[hi, h

c
i ])+

log(1−D([hi, h
c
j ])))

(3)

Where D is the discriminator. This loss is added to
the final loss function of the model.

3.3 Prediction by Contextual Information
In addition to increasing consistency between the
word representation and its context representation,
we aim to increase the task-specific information in
contextual representations. To this end, we train the
model on two auxiliary tasks. The first one aims
to use the context of each word to predict the label
of that word. The goal of the second auxiliary task
is to use the global context information to predict
sentence level labels. We describe each of these
tasks in more details in the following subsections.

Predicting Word Label
In this sub-task, we use the context representa-
tions of each word to predict its label. It will
increase the information encoded in the context
of the word about the label of the word. We use
the same context vector hci for the i-th word as
described in the previous section. This vector is
fed into a two-layer feed forward neural network
with a softmax layer at the end to output the proba-
bilities for each class, Pi(.|{x1, x2, ..., xn}/xi) =
softmax(FF (hci )). Finally, we use the following
negative log-likelihood as the loss function to be
optimized during training:

Lwp =
1

n
Σn
i=1 − log(Pi(yi|{x1, x2, ..., xn}/xi))

(4)

Predicting Sentence Labels
The word label prediction enforces the context of
each word to contain information about its label
but it lacks a global view about the entire sentence.
In order to increase the global information about
the sentence in the representation of the words, we
aim to predict the labels existing in a sentence from
the representations of its words. More specifically,
we introduce a new sub-task to predict which labels
exists in the given sentence. We formulate this task
as a multi-label classification problem. Formally,
for each sentence, we predict the binary vector
Y s = [ys1, y

s
2, ..., y

s
|L|] where L is the set of all

possible word labels. In the vector Y s, ysi is 1 if
the sentence X contains i-th label from the label
set L otherwise it is 0.

To predict vector Y s, we first compute the rep-
resentation of the sentence. This representation is
obtained by max pooling over the outputs of the
BiLSTM, H = MaxPooling(h1, h2, ..., hn). Af-
terwards, the vector H is fed into a two-layer feed
forward neural net with a sigmoid activation func-
tion at the end to compute the probability distribu-
tion of Y s(i.e., Pk(.|x1, x2, ..., xn) = σk(FF (H))
for k-th label in L). Note that since this task is a
multi-label classification, the number of neurons
at the final layer is equal to |L|. We optimize the
following binary cross-entropy loss:

Lsp =
1

|L|Σ
|L|
k=1 − (ysk · log(Pk(ysk|x1, x2, ..., xn))+

(1− ysk) · log(1− Pk(ysk|x1, x2, ..., xn)))

(5)

Finally, to train the entire model we optimize the
following combined loss:

L = Lpred + αLdiscr + βLwp + γLsp (6)

where α, β and γ are the trade-off parameters to be
tuned based on the development set performance.

4 Experiments

4.1 Dataset and Parameters
We evaluate our model on three SF datasets.
Namely, we employ ATIS (Hemphill et al.,
1990), SNIPS (Coucke et al., 2018) and EditMe
(Manuvinakurike et al., 2018). ATIS and SNIPS
are two widely adopted SF dataset and EditMe is
a SF dataset for editing images with four slot la-
bels (i.e., Action, Object, Attribute and Value). The
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statistics of the datasets are presented in the Ap-
pendix A. Based on the experiments on EditMe
development set, the following parameters are se-
lected: GloVe embedding with 300 dimensions to
initialize word embedding ; 200 dimensions for the
all hidden layers in LSTM and feed forward neural
net; 0.1 for trade-off parameters α, β and γ; and
Adam optimizer with learning rate 0.001. Follow-
ing previous work, we use F1-score to evaluate the
model.

4.2 Baselines
We compare our model with other deep learn-
ing based models for SF. Namely, we compare
the proposed model with Joint Seq (Hakkani-Tür
et al., 2016), Attention-Based (Liu and Lane, 2016),
Sloted-Gated (Goo et al., 2018), SF-ID (E et al.,
2019), CAPSULE-NLU (Zhang et al., 2019), and
SPTID (Qin et al., 2019). Note that we compare
our model with the single-task version of these
baselines. We also compare our model with other
sequence labeling models which are not specifi-
cally proposed for SF. Namely, we compare the
model with CVT (Clark et al., 2018) and GCDT
(Liu et al., 2019). CVT aims to improve input repre-
sentation using improving partial views and GCDT
exploits contextual information to enhance word
representations via concatenation of context and
word representation.

4.3 Results
Table 1 reports the performance of the model and
baselines. The proposed model outperforms all
baselines in all datasets. Among all baselines,
GCDT achieves best results on two out of three
datasets. This superiority shows the importance
of explicitly incorporating the contextual informa-
tion into word representation for SF. However, the
proposed model improves the performance sub-
stantially on all datasets by explicitly encouraging
the consistency between a word and its context in
representation level and task-specific (i.e., label)
level. Also, Table 1 shows that EditMe dataset is
more challenging than the other datasets, despite
having fewer slot types. This difficulty could be
explained by the limited number of training exam-
ples and more diversity in sentence structures in
this dataset.

4.4 Ablation Study
Our model consists of three major components: (1)
MI: Increasing mutual information between word

Model SNIPS ATIS EditMe
Joint Seq(2016) 87.3 94.3 -
Attention-Based(2016) 87.8 94.2 -
Sloted-Gated(2018) 89.2 95.4 84.9
SF-ID(2019) 90.9 95.5 85.2
CAPSULE-NLU(2019) 91.8 95.2 84.6
SPTID(2019) 90.8 95.1 85.3
CVT(2018) 91.4 94.8 85.4
GCDT(2019) 92.0 95.1 85.6
Ours 93.6 95.8 87.2

Table 1: Performance of the model and baselines on the
Test sets.

Model SNIPS ATIS EditMe
Full 93.6 95.8 87.2
Full - MI 92.9 95.3 84.2
Full - WP 91.7 94.9 83.2
Full - SP 92.5 95.2 84.1

Table 2: Test F1-score for the ablated models

and its context representations (2) WP: Predicting
the label of the word using its context to increase
word level task-specific information in the word
context (3) SP: Predicting which labels exist in
the given sentence in a multi-label classification to
increase sentence level task-specific information
in word representations. In order to analyze the
contribution of each of these components, we also
evaluate the model performance when we remove
one of the components and retrain the model. The
results are reported in Table 2. This Table shows
that all components are required for the model to
have its best performance. Among all components,
the word level prediction using the contextual in-
formation has the major contribution to the model
performance. This fact shows that contextual infor-
mation trained to be informative about the final task
is necessary to obtain the representations which
could boost the performance.

5 Conclusion

In this work, we introduced a new deep model for
the task of Slot Filling (SF). In a multi-task set-
ting, our model increases the mutual information
between the word representation and its context,
improves label information in the context and pre-
dicts which concepts are expressed in the given
sentence. Our experiments on three benchmark
datasets show the effectiveness of our model by
achieving the state-of-the-art results on all datasets
for the SF task.
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A Dataset Statistics

In our experiments, we employ three benchmark
datasets, ATIS, SNIPS and EditMe. Table 3
presents the statistics of these three datasets. More-
over, in order to provide more insight into the Ed-
itMe dataset, we report the labels statistics of this
dataset in Table 4.

Dataset Train Dev Test
SNIPS 13,084 700 700
ATIS 4,478 500 893

EditMe 1,737 497 559

Table 3: Total number of examples in test/dev/train
splits of the datasets

Label Train Dev Test
Action 1,562 448 479
Object 4,676 1,447 1,501

Attribute 1,437 403 462
Value 507 207 155

Table 4: Label Statistics of EditMe dataset
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Abstract

Intent classification (IC) and slot filling (SF)
are core components in most goal-oriented dia-
logue systems. Current IC/SF models perform
poorly when the number of training examples
per class is small. We propose a new few-shot
learning task, few-shot IC/SF, to study and im-
prove the performance of IC and SF models
on classes not seen at training time in ultra
low resource scenarios. We establish a few-
shot IC/SF benchmark by defining few-shot
splits for three public IC/SF datasets, ATIS,
TOP, and SNIPS. We show that two pop-
ular few-shot learning algorithms, model ag-
nostic meta learning (MAML) and prototyp-
ical networks, outperform a fine-tuning base-
line on this benchmark. Prototypical networks
achieves substantial gains in IC performance
on the ATIS and TOP datasets, while both pro-
totypical networks and MAML outperform
the baseline with respect to SF on all three
datasets. In addition, we demonstrate that joint
training as well as the use of pre-trained lan-
guage models, ELMo and BERT in our case,
are complementary to these few-shot learning
methods and yield further gains.

1 Introduction

In the context of goal-oriented dialogue systems,
intent classification (IC) is the process of classify-
ing a user’s utterance into an intent, such as Book-
Flight or AddToPlaylist, referring to the user’s goal.
While slot filling (SF) is the process of identify-
ing and classifying certain tokens in the utterance
into their corresponding labels, in a manner akin
to named entity recognition (NER). However, in
contrast to NER, typical slots are particular to the
domain of the dialogue, such as music or travel. As
a reference point, we list intent and slot label an-
notations for an example utterance from the SNIPS

dataset with the AddToPlaylist IC in Figure 1.
∗Work performed while at Amazon AI

Token Slot Label
Please O

add O
some O
Pete AddToPlaylist:artist

Townshend AddToPlaylist:artist
to O

my AddToPlaylist:playlist owner
playlist O
Fiesta AddToPlaylist:playlist
Hits AddToPlaylist:playlist
con AddToPlaylist:playlist
Lali AddToPlaylist:playlist

Figure 1: Tokens and corresponding slot labels for an
utterance from the AddToPlaylist intent class in the
SNIPS dataset prefixed by intent class name.

As of late, most state-of-the-art IC/SF models
are based on feed-forward, convolutional, or re-
current neural networks (Hakkani-Tür et al., 2016;
Goo et al., 2018; Gupta et al., 2019). These neural
models offer substantial gains in performance, but
they often require a large number of labeled ex-
amples (on the order of hundreds) per intent class
and slot-label to achieve these gains. The relative
scarcity of large-scale datasets annotated with in-
tents and slots prohibits the use of neural IC/SF
models in many promising domains, such as medi-
cal consultation, where it is difficult to obtain large
quantities of annotated dialogues.

Accordingly, we propose the task of few-shot
IC/SF, catering to domain adaptation in low re-
source scenarios, where there are only a handful of
annotated examples available per intent and slot in
the target domain. To the best of our knowledge,
this work is the first to apply the few-shot learning
framework to a joint sentence classification and
sequence labeling task. In the NLP literature, few-
shot learning often refers to a low resource, cross
lingual setting where there is limited data available
in the target language. We emphasize that our defi-
nition of few-shot IC/SF is distinct in that we limit
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the amount of data available per target class rather
than target language.

Few-shot IC/SF builds on a large body of exist-
ing few-shot classification work. Drawing inspi-
ration from computer vision, we experiment with
two prominent few shot image classification ap-
proaches, prototypical networks and model agnos-
tic meta learning (MAML). Both these methods
seek to decrease over-fitting and improve general-
ization on small datasets, albeit via different mech-
anisms. Prototypical networks learns class specific
representations, called prototypes, and performs
inference by assigning the class label associated
with the prototype closest to an input embedding.
Whereas MAML modifies the learning objective
to optimize for pre-training representations that
transfer well when fine-tuned on a small number of
labeled examples.

For benchmarking purposes, we establish few-
shot splits for three publicly available IC/SF
datasets: ATIS (Hemphill et al., 1990), SNIPS

(Coucke et al., 2018), and TOP (Gupta et al., 2018).
Empirically, prototypical networks yields substan-
tial improvements on this benchmark over the pop-
ular “fine-tuning” approach (Goyal et al., 2018;
Schuster et al., 2018), where representations are
pre-trained on a large, “source” dataset and then
fine-tuned on a smaller, “target” dataset. Despite
performing worse on intent classification, MAML
also achieves gains over “fine-tuning” on the slot
filling task. Orthogonally, we experiment with the
use of two pre-trained language models, BERT
and ELMO, as well as joint training on multiple
datasets. These experiments show that the use of
pre-trained, contextual representations is comple-
mentary to both methods. While prototypical net-
works is uniquely able to leverage joint training to
consistently boost slot filling performance.

In summary, our primary contributions are four-
fold:

1. Formulating IC/SF as a few-shot learning
task;

2. Establishing few-shot splits1 for the ATIS,
SNIPS, and TOP datasets;

3. Showing that MAML and prototypical net-
works can outperform the popular “fine-
tuning” domain adaptation framework;

1Few-shot split intent assignments given in section A.1

4. Evaluating the complementary of contextual
embeddings and joint training with MAML
and prototypical networks.

2 Related Work

2.1 Few-shot Learning

Early adoption of few-shot learning in the field
of computer vision has yielded promising re-
sults. Neural approaches to few-shot learning
in computer vision fall mainly into three cate-
gories: optimization-, metric-, or memory-based.
Optimization-based methods typically learn an ini-
tialization or fine-tuning procedure for a neural
network. For instance, MAML (Finn et al., 2017)
directly optimizes for representations that gener-
alize well to unseen classes given a few labeled
examples. Using an LSTM based meta-learner,
Ravi and Larochelle (2016) learn both the initial-
ization and the fine-tuning procedure. In contrast,
metric-based approaches learn an embedding space
or distance metric under which examples belong-
ing to the same class have high similarity. Pro-
totypical networks (Snell et al., 2017), siamese
neural networks (Koch, 2015), and matching net-
works (Vinyals et al., 2016) all belong to this cat-
egory. Alternatively, memory based approaches
apply memory modules or recurrent networks with
memory, such as a LSTM, to few-shot learning.
These approaches include differentiable extensions
to k-nearest-neighbors (Kaiser et al., 2017) and ap-
plications of the Neural Turing Machines (Graves
et al., 2014; Santoro et al., 2016).

2.2 Few-shot Learning for Text Classification

To date, applications of few-shot learning to natural
language processing focus primarily on text clas-
sification tasks. Yu et al. (2018) identify “clusters”
of source classification tasks that transfer well to
a given target task, and meta learn a linear combi-
nation of similarity metrics across “clusters”. The
source tasks with the highest likelihood of trans-
fer are used to pre-train a convolutional network
that is subsequently fine-tuned on the target task.
Han et al. (2018) propose FewRel, a few-shot re-
lation classification dataset, and use this data to
benchmark the performance of few-shot models,
such as prototypical networks and SNAIL (Mishra
et al., 2017). ATAML (Jiang et al., 2018), one of the
few optimization based approaches to few-shot sen-
tence classification, extends MAML to learn task-
specific as well as task agnostic representations
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using feed-forward attention mechanisms. (Dou
et al., 2019) show that further pre-training of con-
textual representations using optimization-based
methods benefits downstream performance.

2.3 Few-shot Learning for Sequence Labeling

In one of the first works on few-shot sequence
labeling, Fritzler et al. (2019) apply prototypical
networks to few-shot named entity recognition by
training a separate prototypical network for each
named entity type. This design choice makes their
extension of prototypical networks more restrictive
than ours, which trains a single model to classify
all sequence tags. (Hou et al., 2019) apply a CRF
based approach that learns emission scores using
pre-trained, contextualized embeddings to few-shot
SF (on SNIPS) and few-shot NER.

3 Task Formulation

3.1 Few-shot Classification

The goal of few-shot classification is to adapt a
classifier fφ to a set of new classes L not seen
at training time, given a few labeled examples
per class l ∈ L. In this setting, train and test
splits are defined by disjoint class label sets Ltrain
and Ltest, respectively. The classes in Ltrain are
made available for pre-training and those in Ltest
are held out for low resource adaptation at test
time. Few-shot evaluation is done episodically, i.e.
over a number of mini adaptation datasets, called
episodes. Each episode consists of a support set
S and a query set Q. The support set contains kl
labeled examples Sl = {(xil, yl)|i∈(1. . .kl)} per
held out class l ∈ L; we define S =

⋃
l∈L Sl. Sim-

ilarly, the query set contains kq labeled instances
Ql = {(xjl , yl)|j∈(1. . .kq)} for each class l ∈ L
s.t. Ql ∩ Sl = {}; we define Q =

⋃
l∈LQl. The

support set provides a few labeled examples of new
classes not seen at training time that fφ must adapt
to i.e. learn to classify, whereas the query set is
used for evaluation. The definition of few-shot
classification requires that evaluation is done on
episodes; however, most few-shot learning methods
train as well as evaluate on episodes. Consistent
with prior work, we train both MAML and proto-
typical networks methods on episodes, as opposed
to mini-batches.

3.2 Few-shot IC/SF

Few-shot IC/SF extends the prior definition of few-
shot classification to include both IC and SF tasks.

As Geng et al. (2019) showed, it is straightforward
to formulate IC as a few-shot classification task.
Simply let the class labels yl in section 3.1 corre-
spond to IC labels and partition the set of ICs into
the train and test splits, Ltrain and Ltest. Building
on this few-shot IC formulation, we re-define the
support and query sets to include the slots tl, in
addition the intent yl, assigned to each example xl.
Thus, the set of support and query instances for
class l ∈ L become Sl = {(xil, til, yl)|i∈(1. . .kl)}
and Ql = {(xjl , t

j
l , yl)|j∈(1. . .kq)}, respectively.

To construct an episode, we sample a total of kl+kq
labeled examples per IC l ∈ L to form the support
and query sets. Since utterances can exhibit many
unique slot-label combinations, it is possible to
sample an episode such that a slot-label appears in
only the query or support set. Therefore, to ensure
fair evaluation, we “mask” any slot-label that ap-
pears in only the query or support set by replacing
it with the Other slot label, which is ignored by our
SF evaluation metric.

4 Approach

4.1 Prototypical Networks for Joint Intent
Classification and Slot Filling

The original formulation of prototypical networks
(Snell et al., 2017) is not directly applicable to
sequence labeling. Accordingly, we extend proto-
typical networks to perform joint sentence classifi-
cation and sequence labeling. Our extension com-
putes “prototypes” cl and ca for each intent class l
and slot-label a, respectively. Each prototype c ∈
RD is the mean vector of the embeddings belong-
ing to a given intent class or slot-label class. These
embeddings are output by a sequence encoder
fφ(x) :→ RD, which takes a variable length utter-
ance of m tokens xi = (xi1, x

i
2, . . . , x

i
m) as input,

and outputs the final hidden state h ∈ RD of the en-
coder. For ease of notation, let Sl = {(xil, til, yl)}
be the support set instances with intent class yl.
And let Sa = {(xi[1:j], ti[1:j], yi)|tij = a} be the
support set sub-sequences with slot-label a for the
token xij in xi. Using this notation, we calculate
slot-label and intent class prototypes as follows:

cl =
1

|Sl|
∑

(xi,ti,yl)∈Sl

fφ(x
i) (1)

ca =
1

|Sa|
∑

(xi
[1:j]

, ti
[1:j]

, yi)

fφ(x
i
[1:j]) (2)
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Figure 2: Three model architectures, each consisting of an embedding layer, comprised of either GloVe word em-
beddings (GloVe), GloVe word embeddings concatenated with ELMo embeddings (ELMo), or BERT embeddings
(BERT), that feed into a bi-directional LSTM, which is followed by fully connected intent and slot output layers.

Given an example (x∗, t∗, y∗) ∈ Q, we compute
the conditional probability p(y = l | x∗, S) that
the utterance x∗ has intent class l as the normal-
ized Euclidean distance between fφ(x∗) and the
prototype cl,

p(y = l | x∗, S) = exp(−‖fφ(x∗)− cl‖22)∑
l′ exp(−‖fφ(x∗)− cl′‖22)

Similarly, we compute the conditional probabil-
ity p(t∗j = a | x∗, S) that the j-th token x∗j in the
utterance x∗ has slot-label t∗j = a as the normal-
ized Euclidean distance between fφ(x∗[1:j]) and the
prototype ca,

p(t∗j = a | x∗, S) =
exp(−

∥∥∥fφ(x∗[1:j])− ca
∥∥∥
2

2
)

∑
a′ exp(−

∥∥∥fφ(x∗[1:j])− ca′
∥∥∥
2

2
)

We define the joint IC and SF prototypical loss
function Lproto as the sum of the IC and SF neg-
ative log-likelihoods averaged over the query set
instances given the support set:

Lproto =
1

|Q|
∑

(x∗,t∗,y∗)∈Q
LprotoIC + LprotoSF

LprotoIC = − log p(y = y∗ | x∗, S)
LprotoSF = −

∑

t∗j∈t∗
log p(t∗j = a | x∗, S)

4.2 Model Agnostic Meta Learning (MAML)
MAML optimizes the parameters φ of the encoder
fφ such that when φ is fine-tuned on the support
set S for d steps, φ′ ← Finetune(φ, d |S), the fine-
tuned model fφ′ generalizes well to new class in-
stances in the query set Q. This is achieved by
updating φ to minimize the loss of the fine-tuned
model L(fφ′ , Q) on the query set Q. The update

to φ takes the form φ← φ−∇φL(fφ′ , Q), where
L is the sum of IC and SF softmax cross entropy
loss functions. Concretely, given a support and
query set (S,Q), MAML performs the following
two step optimization procedure:

1. φ′ ← Finetune(φ, d |S)

2. φ← φ−∇φL(fφ′ , Q)

Although, the initial formulation of MAML, which
we outline here, utilizes stochastic gradient descent
(SGD) to update the initial parameters φ, in prac-
tice, an alternate gradient based update rule can
be used in place of SGD. Empirically, we find it
beneficial to use Adam in place of SGD.

A drawback to MAML is that computing the
“meta-gradient”∇φL(fφ′ , Q) requires calculating
a second derivative, since the gradient must back-
propagate through the sequence of updates made by
Finetune(φ, d |S). Fortunately, in the same work
where (Finn et al., 2017) introduce MAML, they
propose a first order approximation of MAML,
foMAML, which ignores these second derivative
terms and performs nearly as well as the original
method. We utilize foMAML in our experiments
to avoid memory issues associated with MAML.

5 Few-shot IC/SF Benchmark

As there is no existing benchmark for few-shot
IC/SF, we propose few-shot splits for the Air Travel
Information System (ATIS, Hemphill et al. (1990)),
SNIPS (Coucke et al., 2018), and Task Oriented
Parsing (TOP, (Gupta et al., 2018)) datasets. A
few-shot IC/SF benchmark is beneficial for two
reasons. Firstly, the benchmark evaluates gener-
alization across multiple domains. Secondly, re-
searchers can combine these datasets in the future
to experiment with larger settings of n-way during
training and evaluation.
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Split
ATIS SNIPS TOP

#Utt #IC #SL #SV #Utt #IC #SL #SV #Utt #IC #SL #SV
Train 4,373 5 116 461 8,230 4 33 8,549 20,345 7 38 5,574
Dev 662 7 122 260 - - - - 4,333 5 33 2,228
Test 829 7 128 258 6,254 3 20 7,567 4,426 6 39 1,341
Total 5,864 19 366 583 14,484 7 53 13,599 29,104 18 110 6821

Table 1: Statistics on utterance (Utt), intent (IC), slot label (SL), and slot value (SV) counts for ATIS, TOP, and
SNIPS few-shot train, development, and test splits as well as the full dataset, provided under the heading total.

5.1 Datasets

ATIS is a well-known dataset for dialog system
research, which comprises conversations from the
airline domain. SNIPS, on the other hand, is a
public benchmark dataset developed by the Snips
corporation to evaluate the quality of IC and SF
services. The SNIPS dataset comprises multiple do-
mains including music, media, and weather. TOP,
which pertains to navigation and event search, is
unique in that 35% of the utterances contain multi-
ple, nested intent labels. These hierarchical intents
require the use of specialized models. Therefore,
we utilize only the remaining, non-hierarchical 65%
of utterances in TOP. To put the size and diversity
of these datasets in context, we provide utterance,
intent, slot-label, and slot value counts for each
dataset in table 1.

5.2 Few-shot Splits

We target train, development, and test split sizes
of 70%, 15%, and 15%, respectively. However,
the ICs in these datasets are highly imbalanced,
which prevents us from hitting these targets exactly.
Thereby, we manually select the ICs to include
in each split. For the SNIPS dataset, we choose
not to form a development split because there are
only 7 ICs in the SNIPS dataset, and we require a
minimum of 3 ICs per split. During preprocessing
we modify slot label names by adding the associ-
ated IC as a prefix to each slot. This preprocessing
step ensures that the slot labels are no longer pure
named entities, but specific semantic roles in the
context of particular intents. In table 1, we provide
statistics on the few-shot splits for each dataset.

6 Experiments

6.1 Episode Construction

For train and test episodes, we sample both the the
number of classes in each episode, the “way” n,
and the number of examples to include for each

sampled class l, the class “shot” kl, using the pro-
cedure put forward in (Triantafillou et al., 2019).
By sampling the shot and way, we allow for unbal-
anced support sets and a variable number of classes
per episode. These allowances are compatible with
the large degree of class imbalances present in our
benchmark, which would make it difficult to apply
a fixed shot and way for all intents.

To construct an episode given a few-shot class
split Lsplit, we first sample the way n uniformly
from the range [3, |Lsplit|]. We then sample n in-
tent classes uniformly at random from Lsplit to
form L. Next, we sample the query shot kq for the
episodes as follows:

kq = min(10, (min
l∈L

[0.5 ∗ |Xl|]))

where Xl is the set of examples with class label
l. Given the query shot kq, we compute the target
support set size for the episode as:

|S| = min(Kmax,
∑

l∈L
dβmin(20, |Xl| − q)e)

where β is sampled uniformly from the range
(0, 1] and Kmax is the maximum episode size.
Lastly, we sample the support shot kl for each class
as:

kl = min(bRl ∗ (|S| − |L|)c+ 1, |Xl| − q)

where Rl is a noisy estimate of the normalized
proportion of the dataset made up by class l, which
we compute as follows:

Rl =
exp(αl) ∗ |Xl|∑

l′∈L exp(αl′) ∗ |Xl′ |)
The noise in our estimate of the proportion Rl is

introduced by sampling the value of αl uniformly
from the interval [log(0.5), log(2)).
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6.2 Episode Sizes

We present IC/SF results for two settings of maxi-
mum episode size, Kmax = 20 and Kmax = 100,
in tables 2/4 and 3/5, respectively. When the maxi-
mum episode size Kmax = 20, the average support
set shot kl is 3.58 for ATIS, 3.78 for TOP, and
5.22 for SNIPS. In contrast, setting the maximum
episode size to Kmax = 100 increases the average
support set shot kl to 9.15 for ATIS, 9.81 for TOP,
and 10.83 for SNIPS.

6.3 Training Settings

In our experiments, we consider two training set-
tings. One in which we train on episodes, or
batches in the case of our baseline, from a single
dataset. And another, joint training approach that
randomly selects the dataset from which to sample
a given episode/batch. After sampling an episode,
we remove its contents from a buffer of available
examples. If there are no longer enough examples
in the buffer to create an episode, we refresh the
buffer to contain all examples.

6.4 Network Architecture

We evaluate the network architectures depicted in
Figure 2. These networks consist of an embedding
layer, a sequence encoder, and two output layers
for slots and intents, respectively. We greedily
predict the slot-label for each token in the input
sequence, according to the maximum output logit at
each position. We plan to explore alternate search
algorithms (e.g., beam search) in future work.

Each architecture uses a different pre-trained em-
bedding layer type, which are either non-contextual
or contextual. We experiment with one non-
contextual embedding, GLOVE word vectors (Pen-
nington et al., 2014), as well as two contextual
embeddings, GLOVE concatenated with ELMO

embeddings (Peters et al., 2018), and BERT em-
beddings (Devlin et al., 2018). The sequence en-
coder is a bi-directional LSTM (Hochreiter and
Schmidhuber, 1997) with a 512-dimensional hid-
den state. Output layers are fully connected and
take concatenated forward and backward LSTM
hidden states as input. Pre-trained embeddings are
kept frozen for training and adaptation. Attempts
to fine-tune BERT led to inferior results. We refer
to each architecture by its embedding type, namely
GLOVE, ELMO, or BERT.

6.5 Baseline

We compare the performance of our approach
against a FINE-TUNE baseline, which implements
the domain adaptation framework commonly ap-
plied to low resource IC/SF (Goyal et al., 2018).
We pre-train the FINE-TUNE baseline, either jointly
or individually, on the classes in our training
split(s). Then at evaluation time, we freeze the
pre-trained encoder and “fine-tune” new output lay-
ers for the slots and intents included in the support
set. This fine-tuned model is then used to predict
the intent and slots for each held out example in
the query set.

6.6 Hyper-parameters

We train all models using the Adam optimizer
(Kingma and Ba, 2014). We use the default learn-
ing rate of 0.001 for the baseline and prototypical
networks. For foMAML we set the outer learning
rate to 0.0029 and finetune for d = 8 steps with an
inner learning rate of 0.01. We pre-train the FINE-
TUNE baseline with a batch size of 512. At test
time, we fine-tune the baseline for 10 steps on the
support set. We train the models without contextual
embeddings (GloVe alone) for 50 epochs and those
with contextual ELMo or BERT embeddings for
30 epochs because they exhibit faster convergence.

6.7 Evaluation Metrics

To assess the performance of our models, we re-
port the average IC accuracy and slot F1 score over
100 episodes sampled from the test split of an in-
dividual dataset. We use the AllenNLP (Gardner
et al., 2017) CategoricalAccuracy implementation
to compute IC Accuracy. And to compute slot F1
score, we use the seqeval library’s span based F1
score implementation.2 The span based F1 score
is a relatively harsh metric in the sense that a slot
label prediction is only considered correct if the
slot label and span exactly match the ground truth
annotation.

7 Results

7.1 Few-shot Learning Algorithms

Prototypical networks Considering both IC and
SF tasks, prototypical networks is the best perform-
ing algorithm. The most successful variant of proto-
typical networks, Proto ELMO + joint training, ob-
tains absolute improvements over the FINE-TUNE

2https://github.com/chakki-works/seqeval
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Embed. Algorithm IC Accuracy
SNIPS SNIPS (joint) ATIS ATIS (joint) TOP TOP (joint)

GloVe Fine-tune 69.52 ± 2.88 70.25 ± 1.85 49.50 ± 0.65 58.26 ± 1.12 37.58 ± 0.54 40.93 ± 2.77
GloVe foMAML 61.08 ± 1.50 59.67 ± 2.12 54.66 ± 1.82 45.20 ± 1.47 33.75 ± 1.30 31.48 ± 0.50
GloVe Proto 68.19 ± 1.76 68.77 ± 1.60 65.46 ± 0.81 63.91 ± 1.27 43.20 ± 0.85 38.65 ± 1.35
ELMo Fine-tune 85.53 ± 0.35 87.64 ± 0.73 49.25 ± 0.74 58.69 ± 1.56 45.49 ± 0.61 47.63 ± 2.75
ELMo foMAML 78.90 ± 0.77 78.86 ± 1.31 53.90 ± 0.96 52.47 ± 2.86 38.67 ± 1.02 36.49 ± 0.99
ELMo Proto 83.54 ± 0.40 85.75 ± 1.57 65.95 ± 2.29 65.19 ± 1.29 50.57 ± 2.81 50.64 ± 2.72
BERT Fine-tune 76.04 ± 8.84 77.53 ± 5.69 43.76 ± 4.61 50.73 ± 3.86 39.21 ± 3.09 40.86 ± 3.75
BERT foMAML 67.36 ± 1.03 68.37 ± 0.48 50.27 ± 0.69 48.80 ± 2.82 38.50 ± 0.43 36.20 ± 1.21
BERT Proto 81.39 ± 1.85 81.44 ± 2.91 58.84 ± 1.33 58.82 ± 1.55 52.76 ± 2.26 52.64 ± 2.58

Table 2: Kmax = 20 average IC accuracy on 100 test episodes from the ATIS, SNIPS, or TOP datasets in the form
mean ± standard deviation, computed over 3 random seeds, comparing GloVe, ELMo, and BERT model variants
for both individual and joint training, where we train on all training sets and test on a specific test set.

Embed. Algorithm IC Accuracy
SNIPS SNIPS (joint) ATIS ATIS (joint) TOP TOP (joint)

GloVe Fine-tune 72.24 ± 2.58 73.00 ± 1.84 49.91 ± 1.90 56.07 ± 2.94 39.66 ± 1.34 41.10 ± 0.65
GloVe foMAML 66.75 ± 1.28 67.34 ± 2.62 54.92 ± 0.87 58.46 ± 1.91 33.62 ± 1.53 35.68 ± 0.62
GloVe Proto 70.45 ± 0.49 72.66 ± 1.96 70.25 ± 0.39 69.58 ± 0.41 48.84 ± 1.59 46.85 ± 0.86
ELMo Fine-tune 87.69 ± 1.05 88.90 ± 0.18 49.42 ± 0.79 56.99 ± 2.12 47.44 ± 1.61 48.87 ± 0.54
ELMo foMAML 80.80 ± 0.47 81.62 ± 1.07 59.10 ± 2.52 56.16 ± 1.34 41.80 ± 1.49 36.24 ± 0.79
ELMo Proto 86.76 ± 1.62 87.74 ± 1.08 70.10 ± 1.26 71.89 ± 1.45 58.60 ± 1.91 56.87 ± 0.39
BERT Fine-tune 76.66 ± 8.68 79.53 ± 4.25 44.08 ± 6.05 49.71 ± 3.84 40.05 ± 2.35 40.46 ± 1.74
BERT foMAML 70.43 ± 1.56 72.79 ± 1.11 51.36 ± 3.74 50.25 ± 0.88 36.15 ± 2.17 35.24 ± 0.35
BERT Proto 83.51 ± 0.88 86.29 ± 1.09 66.89 ± 2.31 65.70 ± 2.31 61.30 ± 0.32 62.51 ± 1.79

Table 3: Kmax = 100 average IC accuracy on 100 test episodes from the ATIS, SNIPS, or TOP datasets in the
form mean ± standard deviation, computed over 3 random seeds, comparing GloVe, ELMo, and BERT model
variants for both individual and joint training, where we train on all training sets and test on a specific test set.

Embed. Algorithm Slot F1 Measure
SNIPS SNIPS (joint) ATIS ATIS (joint) TOP TOP (joint)

GloVe Fine-tune 6.72 ± 1.24 6.68 ± 0.40 2.57 ± 1.21 13.22 ± 1.07 0.90 ± 0.51 0.76 ± 0.21
GloVe foMAML 14.07 ± 1.01 12.91 ± 0.43 18.44 ± 0.91 16.91 ± 0.32 5.34 ± 0.43 9.22 ± 1.03
GloVe Proto 29.63 ± 0.75 27.75 ± 2.52 31.19 ± 1.15 38.45 ± 0.97 10.65 ± 0.83 18.55 ± 0.35
ELMo Fine-tune 22.02 ± 1.13 16.00 ± 2.07 7.47 ± 2.60 7.19 ± 1.71 1.26 ± 0.46 1.17 ± 0.32
ELMo foMAML 33.81 ± 0.33 32.82 ± 0.84 27.58 ± 1.25 24.45 ± 1.20 22.35 ± 1.23 15.53 ± 0.64
ELMo Proto 59.88 ± 0.53 59.73 ± 1.72 33.97 ± 0.38 40.90 ± 2.21 20.12 ± 0.25 28.97 ± 0.82
BERT Fine-tune 12.47 ± 0.31 8.75 ± 0.28 9.24 ± 1.67 15.93 ± 3.10 3.15 ± 0.28 1.08 ± 0.30
BERT foMAML 12.72 ± 0.12 13.28 ± 0.53 18.91 ± 1.01 16.05 ± 0.32 5.93 ± 0.43 8.23 ± 0.81
BERT Proto 42.09 ± 1.11 43.77 ± 0.54 37.61 ± 0.82 39.27 ± 1.84 20.81 ± 0.40 28.24 ± 0.53

Table 4: Kmax = 20 average Slot F1 score on 100 test episodes from the ATIS, SNIPS, or TOP datasets in the
form mean ± standard deviation, computed over 3 random seeds, comparing GloVe, ELMo, and BERT model
variants for both individual and joint training, where we train on all training sets and test on a specific test set.

Embed. Algorithm Slot F1 Measure
SNIPS SNIPS (joint) ATIS ATIS (joint) TOP TOP (joint)

GloVe Fine-tune 7.06 ± 1.87 7.76 ± 0.91 2.72 ± 1.65 17.20 ± 3.03 1.26 ± 0.44 0.67 ± 0.33
GloVe foMAML 16.77 ± 0.67 16.53 ± 0.32 17.80 ± 0.42 23.33 ± 2.89 4.11 ± 0.81 9.89 ± 1.13
GloVe Proto 31.57 ± 1.28 31.17 ± 1.31 31.32 ± 2.79 41.07 ± 1.14 9.99 ± 1.08 18.93 ± 0.77
ELMo Fine-tune 22.37 ± 0.91 17.09 ± 2.57 8.93 ± 2.86 11.09 ± 2.00 2.04 ± 0.41 1.03 ± 0.24
ELMo foMAML 36.10 ± 1.49 37.33 ± 0.24 26.91 ± 2.64 26.37 ± 0.15 18.32 ± 0.52 16.55 ± 0.79
ELMo Proto 62.71 ± 0.40 62.14 ± 0.75 35.20 ± 2.46 41.28 ± 2.73 18.44 ± 2.41 28.33 ± 1.33
BERT Fine-tune 14.71 ± 0.43 10.50 ± 0.90 11.53 ± 1.46 20.41 ± 1.85 4.98 ± 0.66 1.48 ± 0.85
BERT foMAML 14.99 ± 1.29 15.83 ± 0.94 17.68 ± 2.42 17.11 ± 1.31 3.37 ± 0.36 10.58 ± 0.45
BERT Proto 46.50 ± 0.75 48.77 ± 0.71 40.63 ± 3.37 43.10 ± 1.76 20.58 ± 2.27 28.92 ± 1.09

Table 5: Kmax = 100 average Slot F1 score on 100 test episodes from the ATIS, SNIPS, or TOP datasets in the
form mean ± standard deviation, computed over 3 random seeds, comparing GloVe, ELMo, and BERT model
variants for both individual and joint training, where we train on all training sets and test on a specific test set.
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ELMO + joint training baseline of up to 6% IC
accuracy and 43 slot F1 points for Kmax = 20,
and 14% IC accuracy and 45 slot F1 points for
Kmax = 100. The one case in which Proto ELMO

+ joint training does worse than the baseline is on
SNIPS IC, but these losses are all under 2%. Over
the 36 possible combinations of dataset, embedding
type, and setting of Kmax, Prototypical networks
performs best in 27/36 instances for IC and 35/36
instances for SL. In comparison, FINE-TUNE per-
forms best in 9/36 instances for IC and is never
the best algorithm for SL. Conversely, foMAML
is never the best algorithm for IC and is the best
algorithm in 1/36 cases for SL.

foMAML The results for foMAML are more
mixed in terms of IC and SF performance rel-
ative to the baseline. The best foMAML vari-
ant, foMAML ELMO, underperforms FINE-TUNE

ELMO on SNIPS and TOP IC by up to 6%.
Yet foMAML improves IC accuracy by 4%
(Kmax = 20) to 9% (Kmax = 100) on ATIS.
foMAML ELMO consistently outperforms FINE-
TUNE ELMO on SF for all datasets, generating
gains of 11∼21 F1 points for Kmax = 20 and
13∼17 F1 points for Kmax = 100. Notably,
BERT and foMAML do not work well in combina-
tion. Specifically, the SF performance of foMAML
BERT is comparable to, or worse than, foMAML
GLOVE on all datasets for both Kmax = 20 and
Kmax = 100.

7.2 Model Variants
Non-contextual Pretrained Embeddings The
GLOVE model architecture does not perform as
well as ELMO or BERT. On average over exper-
imental settings, the GLOVE variant of the win-
ning algorithm has 10% lower IC Accuracy and
16 point lower slot F1 score than the winning al-
gorithm paired with the best model. Note that an
experimental setting here refers to a combination
of dataset, value of Kmax, and use of individual
or joint training. Somewhat surprisingly, GLOVE

performs nearly as well as ELMO and even better
than BERT on ATIS IC. We speculate that ATIS
IC does not benefit as much from the use of ELMO

or BERT because ATIS carrier phrases are less
diverse, as evidenced by the smaller number of
unique carrier phrases in the ATIS test set (527)
compared to SNIPS (3,718) and TOP (4,153).

Contextual Pretrained Embeddings A priori,
it is reasonable to suspect that the performance

gain obtained by our few-shot learning algorithms
could be dwarfed by the benefit of using a large,
pre-trained model like ELMO or BERT. However,
our experimental results suggest that the use of
pre-trained language models is complementary to
our approach, in most cases. For example, ELMO

increases the slot F1 score of foMAML from 14.07
to 33.81 and boosts the slot F1 of prototypical net-
works from 31.57 to 62.71 on the SNIPS dataset
for Kmax = 100. Similarly, when Kmax = 20,
BERT improves foMAML and prototypical net-
works TOP IC accuracy from 33.75% to 38.50%
and from 43.20% to 52.76%, respectively. In ag-
gregate, we find ELMO outperforms BERT. We
quantify this via the average absolute improvement
ELMO obtains over BERT when both models use
the winning algorithm for a given dataset and train-
ing setting. On average, ELMO improves IC ac-
curacy over BERT by 2% for Kmax = 20 and 1%
for Kmax = 100. With respect to slot F1 score,
ELMO produces an average gain over BERT of
5 F1 points for Kmax = 20 and 3 F1 points for
Kmax = 100. This is consistent with previous
findings in (Peters et al., 2019) that ELMO can out-
perform BERT on certain tasks when the models
are kept frozen and not fine-tuned.

7.3 Joint Training

Few-shot learning algorithms are in essence learn-
ing to learn new classes. Therefore, these algo-
rithms should be adept at leveraging a diverse train-
ing dataset to improve generalization. We test this
hypothesis by jointly training each approach on all
three datasets. Our results demonstrate that joint
training has little effect on IC Accuracy; however,
it improves the SF performance of prototypical
networks, particularly on ATIS and TOP. Joint
training increases Prototypical networks average
slot F1 score, computed over datasets and model
variants, by 4.41 points from 31.77 to 36.18 for
Kmax = 20 and by 5.20 points from 32.99 to 38.19
when Kmax = 100. In comparison, Fine-tune ob-
tains much smaller average absolute improvements,
0.55 F1 points and 1.29 F1 points for Kmax = 20
and Kmax = 100, respectively.

8 Conclusion

We show that few-shot learning techniques can sub-
stantially improve IC/SF performance in ultra low
resource scenarios. Specifically, our extension of
prototypical networks for joint IC and SF consis-
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tently outperforms a fine-tuning baseline with re-
spect to both IC Accuracy and slot F1 score. More-
over, we establish a benchmark for few-shot IC/SF
to support future work on this important topic. Our
contribution is a step toward the creation of more
sample efficient IC/SF models. Yet there is still
considerable work to be done in pursuit of this goal.
In particular, we encourage the creation of larger
few-shot IC/SF benchmarks to test how few-shot
learning algorithms scale with larger episode sizes.
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A Appendices

A.1 Few-shot IC/SF Splits
We list the few-shot splits that we establish for the
ATIS, SNIPS, and TOP datasets in tables 6, 7, 8,
respectively. In addition to the assignment of intent
classes to train, development (dev) and test splits,
we also report the number of utterances and slot
labels associated with each intent class.
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Split IC Name # Utt # SL SL Names (without IC prefix)
Train atis flight 4298 71 or, mod, meal, flight, economy, connect, day name, city name, round trip,

class type, flight mod, compartment, flight stop, flight days, flight time,
fare amount, airline name, airline code, airport name, airport code, cost relative,
aircraft code, flight number, period of day, toloc.city name, arrive time.time,
meal description, toloc.state name, depart time.time, toloc.state code, de-
part date.year, fare basis code, fromloc.city name, stoploc.city name, from-
loc.state name, toloc.airport name, fromloc.state code, toloc.country name,
toloc.airport code, stoploc.state code, fromloc.airport name, fromloc.airport code,
stoploc.airport name, stoploc.airport code, depart date.day name, ar-
rive date.day name, depart time.end time, arrive time.end time, re-
turn date.day name, arrive date.month name, arrive date.day number, de-
part date.month name, depart date.day number, depart time.start time, ar-
rive time.start time, depart time.period mod, arrive time.period mod, re-
turn time.period mod, return date.month name, return date.day number, ar-
rive time.time relative, depart time.time relative, depart date.date relative,
return date.date relative, arrive date.date relative, depart time.period of day,
depart date.today relative, arrive date.today relative, arrive time.period of day,
return time.period of day, return date.today relative

Train atis capacity 37 5 mod, airline name, aircraft code, toloc.city name, fromloc.city name
Train atis flight no 20 22 or, flight mod, class type, flight time, airline name, cost relative, flight number,

toloc.city name, arrive time.time, toloc.state name, depart time.time,
toloc.state code, fromloc.city name, stoploc.city name, fromloc.state name,
depart date.day name, depart date.month name, depart date.day number, ar-
rive time.time relative, depart time.time relative, depart time.period of day,
depart date.today relative

Train atis meal 12 12 meal, airline name, airline code, flight number, toloc.city name, arrive time.time,
toloc.state code, meal description, fromloc.city name, toloc.airport code, de-
part date.day name, depart time.period of day

Train atis restriction 6 6 round trip, fare amount, cost relative, toloc.city name, restriction code, from-
loc.city name

Dev atis airfare 471 45 or, meal, economy, connect, round trip, class type, flight mod, fare amount,
flight stop, flight time, flight days, airline name, airline code, cost relative,
flight number, aircraft code, toloc.city name, depart time.time, toloc.state code,
toloc.state name, depart date.year, arrive time.time, fromloc.city name, sto-
ploc.city name, toloc.airport name, fromloc.state name, toloc.airport code, from-
loc.state code, fromloc.airport code, fromloc.airport name, depart date.day name,
arrive date.day name, arrive date.month name, arrive date.day number, de-
part date.month name, depart date.day number, return date.month name,
return date.day number, depart time.period mod, depart time.time relative,
depart date.date relative, arrive time.time relative, arrive date.date relative,
depart time.period of day, depart date.today relative

Dev atis flight time 55 20 flight mod, class type, flight time, airline name, airline code, air-
port name, flight number, aircraft code, toloc.city name, depart time.time,
meal description, fromloc.city name, toloc.airport code, fromloc.airport name,
depart date.day name, depart date.month name, depart date.day number, de-
part date.date relative, depart time.time relative, depart time.period of day

Dev atis quantity 54 25 economy, city name, class type, round trip, flight stop, flight days, airline code,
airline name, flight number, aircraft code, toloc.city name, arrive time.time,
fare basis code, depart time.time, fromloc.city name, stoploc.city name,
toloc.airport name, arrive date.month name, arrive date.day number, de-
part date.month name, depart date.day number, arrive time.time relative, de-
part time.time relative, depart date.today relative, depart time.period of day

Dev atis distance 30 8 city name, airport name, toloc.city name, depart time.time, fromloc.city name,
fromloc.airport name, depart date.month name, depart date.day number

Dev atis city 25 11 city name, class type, airline name, airport code, airport name,
toloc.city name, depart time.time, fromloc.city name, fromloc.airport code,
depart time.time relative, depart time.period of day

Dev atis ground fare 25 6 city name, airport name, transport type, toloc.city name, fromloc.city name, from-
loc.airport name

Dev atis airline;atis flight no 2 7 toloc.city name, arrive time.time, fromloc.city name, depart date.month name, de-
part date.day number, depart date.date relative, arrive time.time relative

Test atis ground service 291 23 or, time, day name, city name, state code, state name, month name, day number,
flight time, airport name, airport code, time relative, transport type, today relative,
period of day, toloc.city name, fromloc.city name, toloc.airport name,
fromloc.airport name, depart date.day name, depart date.month name, de-
part date.day number, depart date.date relative

Test atis airline 195 36 mod, connect, city name, class type, round trip, flight stop, flight days,
airline code, airport name, airline name, aircraft code, flight number,
cost relative, toloc.city name, toloc.state code, depart time.time, arrive time.time,
toloc.state name, fromloc.city name, stoploc.city name, toloc.airport name, from-
loc.state code, fromloc.airport code, fromloc.airport name, depart date.day name,
depart time.end time, arrive date.month name, arrive date.day number, de-
part date.month name, depart date.day number, depart time.start time, de-
part time.time relative, depart date.date relative, depart date.today relative,
depart time.period of day, arrive time.period of day

Test atis abbreviation 180 14 mod, meal, meal code, days code, class type, airport code, airline code, air-
line name, aircraft code, booking class, toloc.city name, fare basis code, restric-
tion code, fromloc.city name

Test atis aircraft 90 23 mod, city name, class type, flight mod, airline name, airline code, flight number,
aircraft code, toloc.city name, depart time.time, toloc.state code, ar-
rive time.time, fromloc.city name, stoploc.city name, depart date.day name,
arrive date.day name, depart date.month name, depart date.day number, ar-
rive date.month name, arrive date.day number, depart time.time relative, ar-
rive time.time relative, depart time.period of day

Test atis airport 38 9 mod, city name, state code, state name, flight stop, airport name, airline name,
toloc.city name, fromloc.city name

Test atis flight;atis airfare 33 21 flight mod, round trip, fare amount, flight stop, airline name, flight number,
cost relative, toloc.city name, depart time.time, arrive time.time, toloc.state code,
fromloc.city name, depart date.day name, return date.day name, de-
part date.month name, depart date.day number, depart time.time relative,
depart date.date relative, arrive time.time relative, return date.date relative,
depart time.period of day

Test atis day name 2 2 toloc.city name, fromloc.city name

Table 6: Few-shot splits for the ATIS dataset, listing the split assignment, number of utterances (# Utt), number of
slot labels (# SL), and names of slot labels associated with each intent class (IC). For brevity, we exclude the intent
class prefix that we add to the slot label names during prepossessing (in the form intent-name/slot-name).
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Split IC Name # Utt # SL SL Names (without IC prefix)
Train BookRestaurant 2073 14 poi, sort, city, state, country, cuisine,

facility, timeRange, served dish, restau-
rant type, restaurant name, spatial relation,
party size number, party size description

Train SearchScreeningEvent 2059 7 timeRange, movie name, movie type, ob-
ject type, location name, spatial relation, ob-
ject location type

Train RateBook 2056 7 best rating, rating unit, object name, ob-
ject type, rating value, object select, ob-
ject part of series type

Train AddToPlaylist 2042 5 artist, playlist, music item, entity name,
playlist owner

Test PlayMusic 2100 9 sort, year, album, genre, track, artist, service,
playlist, music item

Test GetWeather 2100 9 city, state, country, timeRange, geo-
graphic poi, spatial relation, current location,
condition temperature, condition description

Test SearchCreativeWork 2054 2 object name, object type

Table 7: Few-shot splits for the SNIPS dataset, listing the split assignment, number of utterances (# Utt), number
of slot labels (# SL), and names of slot labels associated with each intent class (IC). For brevity, we exclude the
intent class prefix that we add to the slot label names during prepossessing (in the form intent-name/slot-name).
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Split IC Name # Utt # SL SL Names (without IC prefix)
Train IN:GET EVENT 10063 9 SL:AMOUNT, SL:ORDINAL, SL:LOCATION,

SL:DATE TIME, SL:NAME EVENT,
SL:CATEGORY EVENT, SL:ATTENDEE EVENT,
SL:ATTRIBUTE EVENT, SL:ORGANIZER EVENT

Train IN:GET INFO TRAFFIC 8629 11 SL:PATH, SL:SOURCE, SL:LOCATION,
SL:WAYPOINT, SL:DATE TIME, SL:DESTINATION,
SL:PATH AVOID, SL:METHOD TRAVEL,
SL:ROAD CONDITION, SL:WAYPOINT AVOID,
SL:OBSTRUCTION AVOID

Train IN:UNSUPPORTED 1484 0
Train IN:GET ESTIMATED DEPARTURE 160 10 SL:PATH, SL:SOURCE, SL:WAYPOINT,

SL:LOCATION, SL:DESTINATION,
SL:METHOD TRAVEL, SL:ROAD CONDITION,
SL:OBSTRUCTION AVOID,
SL:DATE TIME ARRIVAL,
SL:DATE TIME DEPARTURE

Train IN:UNINTELLIGIBLE 4 0
Train IN:GET EVENT ATTENDEE AMOUNT 3 5 SL:ORDINAL, SL:LOCATION, SL:DATE TIME,

SL:NAME EVENT, SL:CATEGORY EVENT
Train IN:GET EVENT ORGANIZER 2 3 SL:LOCATION, SL:DATE TIME,

SL:CATEGORY EVENT
Dev IN:GET ESTIMATED DURATION 2309 12 SL:PATH, SL:SOURCE, SL:WAYPOINT,

SL:DATE TIME, SL:DESTINATION,
SL:PATH AVOID, SL:METHOD TRAVEL,
SL:WAYPOINT AVOID, SL:ROAD CONDITION,
SL:OBSTRUCTION AVOID,
SL:DATE TIME ARRIVAL,
SL:DATE TIME DEPARTURE

Dev IN:GET DISTANCE 1962 9 SL:PATH, SL:SOURCE, SL:AMOUNT,
SL:DESTINATION, SL:PATH AVOID,
SL:UNIT DISTANCE, SL:METHOD TRAVEL,
SL:OBSTRUCTION AVOID,
SL:DATE TIME DEPARTURE

Dev IN:GET LOCATION 47 5 SL:LOCATION, SL:POINT ON MAP,
SL:LOCATION USER, SL:LOCATION MODIFIER,
SL:CATEGORY LOCATION

Dev IN:GET INFO ROUTE 13 5 SL:PATH, SL:SOURCE, SL:WAYPOINT,
SL:DESTINATION, SL:DATE TIME DEPARTURE

Dev IN:GET EVENT ATTENDEE 2 2 SL:ATTENDEE EVENT, SL:CATEGORY EVENT
Test IN:UNSUPPORTED NAVIGATION 2175 0
Test IN:GET DIRECTIONS 752 12 SL:PATH, SL:SOURCE, SL:WAYPOINT,

SL:DESTINATION, SL:PATH AVOID,
SL:METHOD TRAVEL, SL:WAYPOINT AVOID,
SL:ROAD CONDITION, SL:OBSTRUCTION AVOID,
SL:DATE TIME ARRIVAL,
SL:DATE TIME DEPARTURE,
SL:ROAD CONDITION AVOID

Test IN:GET ESTIMATED ARRIVAL 538 11 SL:PATH, SL:SOURCE, SL:WAYPOINT,
SL:LOCATION, SL:DESTINATION,
SL:PATH AVOID, SL:METHOD TRAVEL,
SL:ROAD CONDITION, SL:OBSTRUCTION AVOID,
SL:DATE TIME ARRIVAL,
SL:DATE TIME DEPARTURE

Test IN:UNSUPPORTED EVENT 424 0
Test IN:GET INFO ROAD CONDITION 316 9 SL:PATH, SL:SOURCE, SL:LOCATION,

SL:DATE TIME, SL:DESTINATION,
SL:METHOD TRAVEL, SL:ROAD CONDITION,
SL:DATE TIME ARRIVAL,
SL:DATE TIME DEPARTURE

Test IN:UPDATE DIRECTIONS 221 7 SL:PATH, SL:SOURCE, SL:DESTINATION,
SL:PATH AVOID, SL:OBSTRUCTION AVOID,
SL:DATE TIME ARRIVAL,
SL:DATE TIME DEPARTURE

Table 8: Few-shot splits for the TOP dataset, listing the split assignment, number of utterances (# Utt), number of
slot labels (# SL), and names of slot labels associated with each intent class (IC). For brevity, we exclude the intent
class prefix that we add to the slot label names during prepossessing (in the form intent-name/slot-name).
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Abstract

MultiWOZ (Budzianowski et al., 2018) is
a well-known task-oriented dialogue dataset
containing over 10,000 annotated dialogues
spanning 8 domains. It is extensively used as
a benchmark for dialogue state tracking. How-
ever, recent works have reported presence of
substantial noise in the dialogue state annota-
tions. MultiWOZ 2.1 (Eric et al., 2019) iden-
tified and fixed many of these erroneous an-
notations and user utterances, resulting in an
improved version of this dataset. This work
introduces MultiWOZ 2.2, which is a yet an-
other improved version of this dataset. Firstly,
we identify and fix dialogue state annotation
errors across 17.3% of the utterances on top
of MultiWOZ 2.1. Secondly, we redefine the
ontology by disallowing vocabularies of slots
with a large number of possible values (e.g.,
restaurant name, time of booking). In addi-
tion, we introduce slot span annotations for
these slots to standardize them across recent
models, which previously used custom string
matching heuristics to generate them. We also
benchmark a few state of the art dialogue state
tracking models on the corrected dataset to fa-
cilitate comparison for future work. In the end,
we discuss best practices for dialogue data col-
lection that can help avoid annotation errors.

1 Introduction

Task-oriented dialogue systems have become very
popular in the recent years. Such systems assist the
users in accomplishing different tasks by helping
them interact with APIs using natural language. Di-
alogue systems consist of multiple modules which
work together to facilitate such interactions. Most
architectures have a natural language understand-
ing and dialogue state tracking module to generate
a structured representation of user’s preferences
from the dialogue history. This structured repre-
sentation is used to make API calls and as a signal

for other modules. Then, the dialogue policy mod-
ule determines the next actions to be taken by the
dialogue system. This is followed by the natural
language generation module, which converts the
generated actions to a natural language utterance,
which is surfaced to the user.

Recently, data-driven techniques have achieved
state-of-the-art performance for the different dia-
logue systems modules (Wen et al., 2017b; Ren
et al., 2018; Zhang et al., 2019; Chao and Lane,
2019). However, collecting high quality anno-
tated dialogue datasets remains a challenge for
the researchers because of the extensive annota-
tion required for training the modules mentioned
above. Many public datasets like DSTC2 (Hen-
derson et al., 2014), WOZ (Wen et al., 2017a),
SimulatedDialogue (Shah et al., 2018), Multi-
WOZ (Budzianowski et al., 2018), TaskMas-
ter (Byrne et al., 2019), SGD (Rastogi et al., 2019),
etc. have been very useful to facilitate research
in this area. Among these datasets, MultiWOZ
is the most widely used benchmark for dialogue
state tracking. It contains over 10,000 dialogues
spanning 8 domains, namely - Restaurant, Hotel,
Attraction, Taxi, Train, Hospital, Bus, and Police.

Since its inception, the MultiWOZ dataset has
undergone a few updates. Lee et al. (2019) intro-
duced user dialogue actions providing a structured
semantic representation for user utterances. Eric
et al. (2019) fixed 32% of dialogue state annota-
tions across 40% of the turns and introduced slot
descriptions, culminating in MultiWOZ 2.1, a new
version of the dataset. Despite the large scale of
corrections introduced in MultiWOZ 2.1, there are
still many unaddressed annotation errors (Zhang
et al., 2019). Furthermore, several approaches to
dialogue state tracking use span annotations iden-
tifying the locations in the user and system utter-
ances where slot values have been mentioned, to
make the system efficient and generalizable to new
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slot values (Rastogi et al., 2017; Wu et al., 2019;
Zhang et al., 2019; Rastogi et al., 2019; Xu and
Hu, 2018; Zhou and Small, 2019; Gao et al., 2019).
Because of the absence of these span annotations
in MultiWOZ, these approaches resort to generat-
ing them using custom string matching heuristics,
making their comparison difficult.

To address these limitations, we introduce Mul-
tiWOZ 2.21, an updated version of the MultiWOZ
dataset. Our contributions are threefold.

1. We identify the annotation errors, inconsisten-
cies, and ontology issues in MultiWOZ 2.1, and
publish its improved version.

2. We add slot span annotations for user and sys-
tem utterances to standardize them across future
models. We also annotate the active user intents
and requested slots for each user utterance.

3. We benchmark a few state-of-the-art dialogue
state tracking models on the corrected dataset to
facilitate comparison for future work.

The paper is organized as follows. First we
describe the different types of annotation errors
and inconsistencies we observed in MultiWOZ 2.1
(Section 2). Then, we outline the redefinition of
ontology (Section 3), followed by the description
of correction procedure (Section 4) and new anno-
tations we introduce (Section 5). Finally, in Section
6, we present the performance of a few recent dia-
logue state tracking models on MultiWOZ 2.2.

2 Annotation Errors

The MultiWOZ dataset was collected using a
Wizard-of-Oz setup (Kelley, 1984). In this setup,
two crowd-workers are paired together, one acting
as a user and the other as the dialogue agent. Each
dialogue is driven by a unique set of instructions
specifying the user goal, which are shared with the
crowd-worker playing the role of the user. After
every user turn, the crowd-worker playing the role
of the dialogue agent (wizard) annotates the up-
dated dialogue state. After updating the state, the
tool shows the set of entities matching the dialogue
state to the wizard, who then uses it to generate a
response which is sent to the user. Remaining an-
notations such as the system actions are collected
using a second annotation task.

1The dataset is available at https://github.com/
budzianowski/multiwoz.

The Wizard-of-Oz setup is widely considered to
produce natural conversations, as there is no turn
level intervention guiding the flow of the dialogue.
However, because of its heavy reliance on humans
for generating the correct annotations, the proce-
dure is prone to noisy annotations. We identified
two major classes of errors outlined below, which
were not corrected in MultiWOZ 2.1.

2.1 Hallucinated Values
Hallucinated values are present in dialogue state
without being specified in the dialogue history. We
observed four different types of such errors, which
are shown in Figure 1 and described below.

1. Early Markups: These values have been men-
tioned by the agent in a future utterance. Since
the user has not accepted them yet, they should
be excluded from the dialogue state.

2. Annotations from Database: These values are
not mentioned in the dialogue at all, even in
the future utterances. They appear to be incor-
rectly added by the wizard based on results of
the database call.

3. Typos: These values cannot be found in the di-
alogue history because of a typographical error.
These errors occur since slot values are entered
as free-form text in the annotation interface.

4. Implicit Time Processing: This specifically re-
lates to slots taking time as a value. Sometimes,
the value is obtained by adding or subtracting
some pre-determined duration from the time
specified in dialogue history (Figure 1). In other
cases, it is implicitly rounded off to closest quar-
ter (Dialogue 1 in Figure 2). This further bur-
dens models with learning temporal arithmetic.

We observed that the errors mentioned above are
quite frequent. In total we found that hallucinated
values appear in 3128 turns across 948 dialogues
in the MultiWOZ 2.1 dataset.

2.2 Inconsistent State Updates
We also encountered annotations in MultiWOZ 2.1
that are semantically correct, but don’t follow con-
sistent annotation guidelines. Inconsistencies arise
in the dialogue state because of three main reasons:

1. Multiple Sources: A slot value may be in-
troduced in the dialogue state through various
sources. It may either be mentioned by the user,
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Example Dialogue Segment MultiWOZ 2.1 MultiWOZ 2.2

1. Early Markup

User: Help me find a moderate priced british
food place please.

r-food=british,
r-pricerange=moderate,

r-name=one seven

r-food=british,
r-pricerange=moderate

Sys: restaurant one seven is a nice place. Do you
want to book?

2. Annotation from Database
User: Can you give me the address to the
hospital in Cambridge?

hospital-department=acute
medical assessment unit -no update-

Sys: The address is Hills Rd, Cambridge
Postcode: CB20QQ

3. Typo
Sys: Okay, I can help with that. What day and
time would you like to dine and how many
people should I have the reservation for?

r-bookday=thursday,
r-booktime=15:00,
hotel-area=west

r-bookday=thursday,
r-booktime=5:00,
hotel-area=west

User: On Thursday at 5:00. I also need a hotel in
the same area. No need to have free parking.

4. Implicit Time Processing

User: Can I get the postcode for that? I also need
to book a taxi to the Golden Wok.

r-name=Golden Wok,
r-bookday=friday,
r-booktime=11:00,

taxi-leaveAt=friday,
taxi-destination=Golden

Wok

r-name=Golden Wok,
r-bookday=friday,
r-booktime=11:00,

taxi-destination=Golden
Wok

Sys: The postcode is cb21tt. Are you looking for
a taxi from Old Schools to the Golden Wok?

User: Yes I do. I’d like to make sure I arrive at
the restaurant by the booked time. Can you
check?

r-name=Golden Wok,
r-bookday=friday,
r-booktime=11:00,

taxi-leaveAt=friday,
taxi-arriveby=10:45

r-name=Golden Wok,
r-bookday=friday,
r-booktime=11:00,

taxi-arriveby=11:00

Figure 1: Examples of hallucinated values in MultiWOZ 2.1 and the corrections in MultiWOZ 2.2. Please note
that we omit state annotations unrelated to the extracted utterances. “r” used in the slot name in the right two
columns is an abbreviation of restaurant.

offered by the system, carried over from another
slot in the dialogue state of a different domain,
or be a part of the ontology.

2. Value Paraphrasing: The same slot value can
be mentioned in many different ways, often
within the same dialogue e.g. the value “18:00”
for the slot time may be mentioned as “6 pm”,
“1800”, “0600 pm”, “evening at 6” etc.

3. Inconsistent tracking strategy: Crowd-
workers have inconsistent opinions on which
slot values should be tracked in the same dia-
logue context. For example, some workers track
all slot values that the user agrees with while
others only track user-specified slot values.

Table 1 shows dialogue state update from three
different sources for similar slots from different
dialogues in MultiWOZ 2.1. In the first case, the

value “08:00” for slot train-arriveby comes from
the ontology, despite the presence of an equivalent
value “8:00” in the user utterance. On the other
hand, in the second example, the slot value in the
dialogue state comes from the user utterance de-
spite the ontology listing “17:45” as a value for the
slot train-leaveat. In the third example, the value of
train-leaveat is not derived from any of the sources
mentioned above, but is generated by incorporating
the semantics. The slot value can be mentioned in
multiple ways, but in order to evaluate a dialogue
system fairly, it’s necessary to either maintain a
consistent rule for deciding how the value is picked
among all the mentions or consider all the men-
tions as the correct answer. MultiWOZ 2.1 gives
one unique correct answer for each dialogue state
but lacks an explicit rule on how it is determined.
This inconsistency confuses the model during train-
ing and unfairly penalizes it during evaluation if it
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Source User utterance Dialogue state update
Ontology I need to arrive by 8:00. train-arriveby=08:00
Dialogue
history

Sometime after 5:45 PM would be
great.

train-leaveat=5:45pm

None
I plan on getting lunch first, so
sometime after then I’d like to leave.

train-leaveat=after lunch

Table 1: Example of slot values annotated using different strategies in “PMUL0897.json”, ‘MUL0681.json‘”, and
“PMUL3200.json” in MultiWOZ 2.1.

outputs a slot value which is different but equiva-
lent to the one listed in ground truth.

Figure 2 shows another example where dialogue
states are updated differently in similar scenarios.
In both dialogues, the system offers an instance
that fulfills the user’s requirement, but the dialogue
states are updated differently after user shows an
intent to book the ticket. Specifically, in dialogue 1
the value for train-arriveby provided by the system
is tracked in the dialogue state while not in dialogue
2. Dialogue 1 also showcases the implicit time
processing issue discussed in Section 2.1, where
the time “12:08” has been rounded to “12:15” in
the dialogue state.

3 Ontology Issues

Although MultiWOZ 2.0 provides a predefined on-
tology which is claimed to enumerate all slots and
the possible values for every slot, it has been re-
ported to be incomplete. As a result, many re-
searchers have built their own ontology to achieve
a better performance (Wu et al., 2019; Goel et al.,
2019). To fix the problem of incompleteness, Mul-
tiWOZ 2.1 rebuilt the ontology by listing all values
present in dialogue states across the dataset, but it
still has some unaddressed issues.

First, for some slots, multiple values sharing
the same semantics are listed. Some examples
are “8pm” and “20:00”, “a and b guesthouse”
and “a and b guest house”, “cheap|moderate” and
“moderate|cheap” for the slots restaurant-book-
time, hotel-semi-name and hotel-semi-pricerange
respectively. We find that 51% of the values for
the slot hotel-name are not semantically unique,
and similar figures for the restaurant-name and
attraction-name slots. Such duplicate values make
evaluation hard since MultiWOZ 2.1 only assumes
one correct value for each slot in the dialogue state.

Second, we observe multiple slot values in the
ontology that can’t be associated with any enti-
ties in the database. Values like “free” for slot

attraction-name; “cam”, “dif”, and “no” for slot
restaurant-name are some examples. Such values
could be introduced in the ontology because of ty-
pographical errors in the utterances or annotation
errors. Our investigation shows that 21.0% of the
slot values in the ontology can’t be directly mapped
back to the values in the database through exact
string matching. We also observed a few logical ex-
pressions like “cheap|moderate”, “NOT(hamilton
lodge)” etc. in the ontology. We believe that these
expressions, although semantically correct, add
noise during training. The ontology should either
omit such expressions altogether or include all pos-
sible expressions to enable generalization to cases
not observed in the training data.

4 Correction Procedure

To avoid the issues described above, we advocate
the definition of ontology prior to data collection.
This not only serves as a guideline for annotators,
but also prevents annotation inconsistencies in the
dataset and corruption of the ontology from typo-
graphical and annotation errors. This section de-
scribes our definition of the new ontology, which
we call schema, followed by the corrections made
to the state and action annotations. Lastly, we also
show the statistics of our modifications.

4.1 Schema Definition

It is not realistic for the ontology to enumerate all
the possible values for some slots like restaurant-
name and restaurant-booktime, which can take a
very large set of values. With addition or removal
of entities in the database, the set of possible val-
ues also keeps changing continuously. Rastogi
et al. (2019) proposed a representation of ontol-
ogy, called schema, to facilitate building a scalable
dialogue system that is capable of handling such
slots. A schema divides the different slots into
two categories - non-categorical and categorical.
Slots with a large or dynamic set of possible values
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Figure 2: Example of dialogues states being updated differently in similar scenarios. In both dialogues, user
accepts a train offered by the system. In dialogue 1, train-arriveby is annotated in the dialogue state after user’s
agreement, but not in dialogue 2. Dialogue 1 also shows implicit time processing, where the value 12:08 in the
system utterance is rewritten to 12:15 in the subsequent dialogue state.

Domain Categorical slots Non-categorical slots
Restaurant pricerange, area, bookday, bookpeople food, name, booktime
Attraction area, type name

Hotel
pricerange, parking, internet, stars, area,
type, bookpeople, bookday, bookstay

name

Taxi - destination, departure, arriveby, leaveat
Train destination, departure, day, bookpeople arriveby, leaveat
Bus day departure, destination, leaveat

Hospital - department
Police - name

Table 2: Categorical and non-categorical slots defined for 8 domains in MultiWOZ 2.2.

are called non-categorical. Unlike ontology, the
schema doesn’t provide a pre-defined list of values
for such slots. Their value is extracted from the
dialogue history instead.

On the other hand, slots like hotel-pricerange
or hotel-type, which naturally take a small finite
set of values are called categorical. Similar to
the ontology, the schema lists all possible values
for such slots. Furthermore, during annotation, the
values of these slots in the dialogue state and user or
system actions must be selected from a pre-defined
candidate list defined in the schema. This helps
achieve sanity and consistency in annotations.

We define categorical and non-categorical slots
for each domain as shown in Table 2. The idea
of splitting the slots in MultiWOZ into categorical
and non-categorical is not new. Many models have
used the number of possible slot values as the clas-
sification criterion (Zhang et al., 2019). Similarly,

we classify slots with fewer than 50 different slot
values in the training set as categorical, and the
others as non-categorical.

Note that since the Bus and Police domains have
very few dialogues in the training set (5 and 145
respectively), the number of possible slot values in
this domain does not reflect the true attributes of the
slots. Thus, we classify them by referring to similar
slots in different domains instead of following the
threshold rule.

4.2 Categorical Slots
The list of all possible values for categorical slots
is built from the corresponding database provided
with MultiWOZ 2.1. In addition, we allow “dont-
care” as a special value, which is used when user
doesn’t have a preference. We also observe cases
where the mentioned value is outside the scope of
the database, such as the example below, where
MultiWOZ 2.1 specifies “$100” as the value for
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hotel-pricerange in the dialogue state.

User: Well,I want it cheaper than AIRBNB,so how
about $100 a night?

System: Unfortunately, we do not have such spe-
cific price ranges, but our options are divided into
3 categories: cheap, moderate or expensive. Which
would you prefer?

Since “$100” is not a part of the schema, we use
“unknown” as the slot value in the dialogue state to
express that the requirement specified by the user
can not be fulfilled by the schema.

4.3 Non-categorical Slots
Values of non-categorical slots are extracted from
the dialogue history. Due to the typographical er-
rors and slot value paraphrasing, the exact value
can not be found in many cases. Some examples
are “el shaddia guest house” being written as “‘el
shaddai” or “18:00” being written as “6pm” in the
dialogue utterances. Since in practice, typographi-
cal errors are inevitable and the same value can be
mentioned in variable ways, we try to not modify
the utterance to keep the dialogue natural. We also
allow the presence of more than one value in the di-
alogue state. During evaluation, a prediction listing
either of the listed values is considered correct.

We use a customized string matching method
that takes into consideration the possible typos and
alternative expressions to locate all values semanti-
cally similar to the annotation. If there are multiple
matches, we select the most recently mentioned
value and annotate its span. We also add this value
to the dialogue state, while preserving the original
value. Figure 3 shows the differences between the
annotations in MultiWOZ 2.1 and MultiWOZ 2.2.
The former only assumes a single value for each
slot, even though the slot values can be mentioned
in multiple ways and predicting any one of these
variants should be considered correct. Thus, in
MultiWOZ 2.2, the dialogue state can contain a list
of values for a slot: predicting any value in this list
is considered correct.

In some cases, slot value is carried over from
other slots without being explicitly mentioned in
the dialogue. For instance, in the utterance “I need
to book a taxi from the museum to the restaurant”,
the slot value for taxi-destination is copied from
the value for restaurant-name populated earlier.
Instead of annotating the span for taxi-destination,
we note down the original slot that taxi-destination

Figure 3: Example of the difference between dialogue
state annotation in MultiWOZ 2.1 and MultiWOZ 2.2
and span annotations in MultiWOZ 2.2.

copies its value from. The span annotation for such
slots can be obtained by tracing back the copy chain.
We posit that this information can be beneficial for
state tracking models utilizing a copy mechanism.

4.4 User and System Actions
The user and system action annotations provide a
semantic representation of the respective utterances.
These annotations were not part of the original Mul-
tiWOZ 2.0 release. They were created by Lee et al.
(2019) and were subsequently added to MultiWOZ
2.1. However, around 5.82% of turns have miss-
ing action annotations. We use crowdsourcing to
obtain annotations for these 8,333 dialogue turns
(7,339 user and 994 system). The slot names used
in dialogue acts are slightly different from the ones
used in dialogue state annotations. We rename the
slots in the dialogue acts to remove this mismatch.

MultiWOZ 2.1 uses domain-specific prefixes to
associate actions with a certain domain. A few dia-
logue acts also have the “Booking” prefix, which is
used in a few domains including Restaurant, Hotel
and Train whenever a reservation is involved. In
these cases, it is difficult to identify the domain
corresponding to the action since the same prefix
is used across many domains. We eliminate the
domain and “Booking” prefixes from the dialogue
acts, so that a uniform representation of actions can
be used across all domains. To retain the associa-
tion with the domain, actions for the same domain
are grouped together into frames, following the
representation used by Rastogi et al. (2019).

4.5 Statistics
Table 3 contains statistics on the corrections in the
training, dev, and test sets. We observe that the
errors are relatively uniformly distributed across
the three splits. Combining all the aforementioned
procedures, we modify dialogue states in 17.3% of
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Dataset % of state % of dialogues
train 17.3 27.9
dev 17.3 28.7
test 17.6 29.5

Table 3: The ratio of the modified dialogue states (same
as the number of user utterances) and modified dia-
logues in the training, dev, and test sets.

the user utterances across 28.2% of all dialogues.
Out of the total modified 12,375 utterance anno-
tations, a majority of the corrections fix the state
update inconsistencies described in Section 2.2 by
listing all the different ways in which a value has
been mentioned over the dialogue context in the
dialogue state. Of these state updates, 1497, or
just over 12% involved corrections for two or more
slots. Missing action annotations were added in
a total of 8,333 utterances, whereas pre-existing
actions in MultiWOZ 2.1 were verified and fixed
for around 10% of the utterances.

5 Additional annotations

Besides the span annotations, we also add active
user intents and requested slots for every user turn.
Predicting active user intents and requested slots
are two new sub-tasks that can be used to evaluate
model performance and facilitate dialogue state
tracking. Prediction of active intents or APIs is
also essential for efficiency in large-scale dialogue
systems which support hundreds of APIs.

• Active intents: It specifies all the intents ex-
pressed in the user utterance. Note that utterances
may have multiple active intents. For example,
in “can i get the college’s phone number. i am
also looking for a train to birmingham new street
and should depart from cambridge looking for a
train”, the user exhibits the intent both to know
more about an attraction and to search for a train.

Based on the action and state annotations, we de-
fine a single search intent for the Attraction, Bus,
Hotel, and Police domains and a single booking
intent for Taxi domain, whereas for the Restau-
rant, Hotel, and Train domains, both search and
booking intents are defined.

• Requested slots: It specifies the slots that the
user requests information about from the system.
This field is generated based on the user actions
in each turn. These annotations find direct ap-
plicability in developing dialogue policy models,

since requesting additional information about en-
tities is very common in task-oriented dialogue.

6 Dialogue State Tracking Benchmarks

Recent data-driven dialogue state tracking models
that achieve state-of-the-art performance mainly
adopt two classes of methods: span-based and
candidate-based. Span-based methods extract val-
ues from dialogue history and are suitable for track-
ing states of non-categorical slots, while candidate-
based methods that perform classification on pre-
defined candidate lists to extract values are better-
suited for categorical slots. To test models’ per-
formance on both categorical and non-categorical
slots, we selected three dialogue state tracking mod-
els that use a mixture of both methods to bench-
mark the performance on the updated dataset: SGD-
baseline (Rastogi et al., 2019), TRADE (Wu et al.,
2019), and DS-DST (Zhang et al., 2019).

TRADE considers each slot as a mixture of cate-
gorical and non-categorical slot. It uses a pointer
generator architecture to either generate the slot
value from a pre-defined vocabulary or tokens
in the dialogue history. On the contrary, SGD-
baseline has separate tracking strategies for cate-
gorical and non-categorical slots. It first uses a
shared pretrained BERT (Devlin et al., 2018) to
encode a context embedding for each user turn, a
slot embedding for each slot, and a slot value em-
bedding for each slot value in the candidate list of
the categorical slots. Then, it utilizes linear net-
works to perform classification for the categorical
slot and to find start and end span indices for non-
categorical slots. DS-DST is a recently proposed
model achieving state-of-the-art performance on
MultiWOZ 2.1 using pre-trained BERT. The main
difference between DS-DST and SGD-baseline is
that the context embedding used in DS-DST is con-
ditioned on the domain-slot information while it is
not in SGD-baseline.

We use joint goal accuracy as our metric to eval-
uate the models’ performance. The joint goal ac-
curacy is defined as the average accuracy of pre-
dicting all the slot values for a turn correctly. The
performance of different models is shown in Ta-
ble 4. In general, we observe similar performance
on MultiWOZ 2.1 and MultiWOZ 2.2 across the
three models. Table 5 compares the joint goal accu-
racy over only the categorical slots (cat-joint-acc)
and only the non-categorical slots (noncat-joint-
acc) across all the models. It shows that TRADE
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Model
Multi-
WOZ

2.0

Multi-
WOZ

2.1

Multi-
WOZ

2.2
TRADE 0.486 0.460 0.454

SGD-
baseline

- 0.434 0.420

DS-DST 0.522 0.512 0.517

Table 4: Joint goal accuracy of TRADE, SGD-baseline
and DS-DST models on MultiWOZ 2.0, MultiWOZ 2.1
and MultiWOZ 2.2 datasets.

Model Cat-joint-
acc

Noncat-
joint-acc

TRADE 0.628 0.666
SGD-baseline 0.570 0.661

DS-DST 0.706 0.701

Table 5: Performance of TRADE, SGD-baseline, and
DS-DST models on predicting categorical and non-
categorical slots. Cat-joint-acc and noncat-joint-acc
denote joint goal accuracy on categorical and non-
categorical slots respectively.

and SGD-baseline demonstrate considerably higher
performance on non-categorical slots than categor-
ical slots. We infer that it may be caused by the
corrections ensuring that the value in the dialogue
state is also present in the dialogue history for all
non-categorical slots.

7 Discussion

The Wizard-of-Oz paradigm is a very powerful
technique to collect natural dialogues. However,
the process of annotating these dialogues is prone
to noise. In this section, we discuss some of the best
practices to follow during task-oriented dialogue
data collection so as to minimize annotation errors.

It is important to define an ontology or schema
before data collection, listing the interface of all
the domains and APIs. The schema should identify
categorical slots, which have a fixed set of pos-
sible values, and the annotation interface should
enforce the correctness of these slots. In particu-
lar, the interface should only allow the annotator
to pick one of the values specified in the schema.
For non-categorical slots, the interface should only
allow values which have been mentioned in the dia-
logue history, and display an error otherwise. These
simple checks help avoid typographical errors and
value paraphrasing issues, discussed in Section 2.
The annotation task can be followed by simple val-
idation checks to identify erroneous annotations,

which can be fixed by a follow-up crowd-sourcing
task. For instance, listing the set of all possible val-
ues for every slot in the dataset helped us quickly
identify instances listing “thursday” as the value
for a time slot or “no” as the name of a hotel.

We also observed a few annotations utiliz-
ing logical expressions to represent the dia-
logue state. For instance, some dialogue state
annotations utilize string “cheap>moderate” to
mean that cheap is preferred over moderate, and
“cinema|entertainment|museum|theatre” to mean
that all values separated by “|”are acceptable. How-
ever, such values are disproportionately rare in the
dataset (<1% of dialogues), thus making it difficult
for models to handle such cases. It brings into ques-
tion how to define a more expressive representation
which can support such complex annotations and
how we should design the model capable of han-
dling such cases. We hope that as the state tracking
technology advances, there will be more focus on
this direction. On the other hand, it is important
to ensure that such complex constraints are propor-
tionately represented in the dataset if the system is
intended to support them.

8 Conclusion

MultiWOZ 2.1 (Eric et al., 2019) is an improved
version of the MultiWOZ 2.0 dataset, which is ex-
tensively used as a benchmark for dialogue state
tracking. We identify annotation errors, inconsis-
tencies and ontology related issues which were
left unaddressed in MultiWOZ 2.1, and publish a
corrected version – MultiWOZ 2.2. We added a
new schema, standardized slot values, corrected
annotation errors and standardized span annota-
tions. Furthermore, we annotated active intents
and requested slots for each user turn, and added
missing user and system actions besides fixing ex-
isting ones. We benchmark a few state-of-the-art
models on the new dataset: experimental results
show that the models’ performance is similar be-
tween MultiWOZ 2.1 and MultiWOZ 2.2. We hope
the cleaned dataset helps make fairer comparisons
among models and facilitate research in this field.
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Abstract

Human-like chit-chat conversation requires
agents to generate responses that are fluent, en-
gaging and consistent. We propose Sketch-
Fill-A-R, a framework that uses a persona-
memory to generate chit-chat responses in
three phases. First, it generates dynamic
sketch responses with open slots. Second, it
generates candidate responses by filling slots
with parts of its stored persona traits. Lastly, it
ranks and selects the final response via a lan-
guage model score. Sketch-Fill-A-R outper-
forms a state-of-the-art baseline both quanti-
tatively (10-point lower perplexity) and qual-
itatively (preferred by 55% in head-to-head
single-turn studies and 20% higher in con-
sistency in multi-turn user studies) on the
Persona-Chat dataset. Finally, we extensively
analyze Sketch-Fill-A-R’s responses and hu-
man feedback, and show it is more consis-
tent and engaging by using more relevant re-
sponses and questions.

1 Introduction

Chit-chat is a rich domain that challenges machine
learning models to express fluent natural language
and to successfully interact with other agents. Chit-
chat stands in contrast to goal-oriented dialogue,
such as when a customer has the explicit goal of
booking a flight ticket. When agents communicate,
they each have internal state (e.g., their knowledge,
intent) and typically have limited knowledge of the
state of other agents (Chen et al., 2017). As a result,
human-like chit-chat requires agents to be fluent,
engaging and consistent with what has been said
and their persona (Zhang et al., 2018).

These requirements make learning generative
chit-chat models a complex task. First, given an
existing conversation history, there may be a large
number of valid responses (Vinyals and Le, 2015).

∗Work done as an intern at Salesforce Research.

Bot Persona traits:
1. i love to drink wine and dance in the moonlight
2. i am very strong for my age
3. i’m 100 years old
4. i feel like i might live forever

hi , how are you doing today ?

Human user

Bot

good ! you ? celebrating with fellow centenarians

Bot sketch response

that is great ! i love to @persona and @persona .

Human user

nice . i'm playing some card games with my family .

Bot selected response with lowest language model perplexity

that is great ! i love to drink and dance . [LM-score = 1.24]

Figure 1: Chit-chat generation with Sketch-Fill-A-R.

Hence, supervised learning of chit-chat models that
cover a large number of topics and styles requires
a significant amount of data (Zhou et al., 2018).
Second, as conversations progress and more oppor-
tunities for contradiction arise, maintaining consis-
tency becomes more difficult (Serban et al., 2016,
2017). Third, engaging chit-chat responses fol-
low conversational structures that are not captured
well by perplexity (Dinan et al., 2019; Liu et al.,
2016). Indeed, our human user studies show that
both consistency and engagingness are only weakly
correlated with perplexity, and fluency is not at all.

We propose Sketch-Fill-A-R, a dialogue agent
framework that can learn to generate fluent, consis-
tent and engaging chit-chat responses. Our key mo-
tivation is the hypothesis that human-like chit-chat
responses often 1) follow common conversational
patterns with insertions of agent-specific traits, and
2) condition explicitly on those persona traits.

Sketch-Fill-A-R decomposes response genera-
tion into three phases: sketching, filling and rank-
ing, see Figure 1. First, Sketch-Fill-A-R dynami-
cally generates a sketch response with slots, which
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enables it to learn response patterns that are com-
patible with many specific persona traits. Second,
it generates candidate responses by filling in slots
with words stored in memory. This enables Sketch-
Fill-A-R’s responses to adhere to its persona. Third,
the candidate responses are ranked by perplexity
under a pre-trained language model (LM), which
encourages the final response (with lowest LM per-
plexity) to be fluent.

In sum, our contributions are as follows:

• We describe Sketch-Fill-A-R and how its
multi-phase generation process encourages
fluency, consistency and engagingness.

• We show that Sketch-Fill-A-R significantly
improves hold-out perplexity by ∼ 10 points
on the Persona-Chat dataset over state-of-
the-art baselines.

• We show Sketch-Fill-A-R is rated higher
on conversational metrics and preferred over
baselines in single and multi-turn user studies.

• We extensively analyze Sketch-Fill-A-R’s re-
sponse statistics and human feedback, and
show that it is more consistent by using a nar-
rower set of responses, and more engaging, by
asking more questions than baselines.

2 Related Work

Chit-chat Dialogue Dialogue agents such as
Amazon Alexa, Apple Siri, and Google Home are
commonplace today, and are mainly task-oriented:
they help users achieve specific tasks. On the other
hand, Microsoft XiaoIce (Zhou et al., 2018) is an
example of an undirected chit-chat dialogue agent.

Historically task-oriented dialogue systems are
composed via components such as dialogue state
tracking and natural language generation (Juraf-
sky and Martin, 2009). Even now, the natural
language generation component often uses hand-
crafted templates and rules defined by domain
experts that are filled via heuristics (Gao et al.,
2019). More recently task-oriented dialogue sys-
tems have been trained end-to-end (Bordes et al.,
2016), but these systems have specific user intents
they aim to fulfill, and so represent a more con-
strained task. Early conversational dialogue sys-
tems such as ELIZA (Weizenbaum et al., 1966)
and Alice (Wallace, 2009) were also based on
hand-crafted rules and thus brittle. To alleviate
this rigidity, more recent neural seq2seq models

(Sutskever et al., 2014) are trained end-to-end
(Vinyals and Le, 2015; Sordoni et al., 2015; Ser-
ban et al., 2017; Li et al., 2016). To help guide
conversation (Ghazvininejad et al., 2018; Dinan
et al., 2018; Gopalakrishnan et al., 2019) incorpo-
rated knowledge-grounded datasets, while (Zhang
et al., 2018) created the Persona-Chat dataset
used in this work. Sketch-Fill-A-R dynamically
generates slot sketches and bears resemblance to
(Wu et al., 2019) which assumed data are structured
domain-specific triplets and contexts follow tem-
plates. However, Sketch-Fill-A-R does not assume
the personas and responses have rigid syntactic
structure, and introduces a ranking procedure. Con-
verse to our sketch-and-fill procedure, (Qian et al.,
2017) train a model to select a persona trait and
decode around the trait. Finally, (Welleck et al.,
2018) also re-rank by scoring utterances with Nat-
ural Language Inference to improve consistency.

Neural Sequence Models Sketch-Fill-A-R ex-
tends a neural encoder-decoder structure (Sutskever
et al., 2014) but is agnostic to the chosen form
of encoder-decoder. In this work we use recur-
rent models and attention (Bahdanau et al., 2014),
which auto-regressively embed and generate se-
quences, but our framework is general, allowing
non-recurrent encoders and decoders like Trans-
former networks with non-recurrent self-attention
(Vaswani et al., 2017; Devlin et al., 2018) to be
substituted for the recurrent encoder and decoder.

Sketch-Fill-A-R uses a simple memory module
to store words from personas, which act as context
for generation. Weston et al. (2014); Sukhbaatar
et al. (2015) introduced learned Key-Value Memory
Networks, while Kumar et al. (2016) introduced
Dynamic Memory Nets for question-answering via
an iterative attention over memory. Also, Sketch-
Fill-A-R decodes responses using a re-ranking strat-
egy based on language model scores, which com-
plements strategies in (Kulikov et al., 2018).

3 Sketch-Fill-A-R

Our key motivation is to generate human-like chit-
chat responses that are conditioned on persona-
relevant information. Sketch-Fill-A-R generates
chit-chat using a persona-memory to dynamically
generate sketches that capture conversational pat-
terns, and inserting persona-relevant information.

To set notation: capitals W,V, . . . denote matri-
ces, i, j, k are vector-matrix indices and x, y, . . .
denote vectors. The model input at time t is xt and
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i never broke a bone in my body ever in my life
i am a stunt double as my second job
i read twenty books a year
i was raised in a single parent household
i only eat kosher

persona-encoder

A: hello there , how are you today ?
B: hello ! how has your day been ?
A: great so far preparing my kindergarten lesson for tomorrow .

conversation-encoder

that is great ! i am a @persona @persona .

reranking

sketch decoder

select

LSTM

LSTMLSTM

memory-readoutpersona-memory

A: attention
Sketch-Fill

R: reranking

Figure 2: Sketch-Fill-A-R generates sketch responses in 4 steps. First, it encodes the conversation history and
personas into hidden states he,·t . It stores word-embeddings for selected rare words from persona traits in a persona-
memory. The final encoder hidden state he,cT produces a read-out vector hmem. Lastly, the decoder outputs a sketch
response with @persona slots using hmem, encoder hidden states and attention over personas and conversation.

i never broke a bone in my body ever in my life
i am a stunt double as my second job
i read twenty books a year
i was raised in a single parent household
i only eat kosher

that is great ! i am a stunt double .

that is great ! i am a twenty double .

awesome ! i like to stunt book .

awesome ! i like to stunt double .

0.23

1.51

1.72

0.86

that is great ! i am a @persona @persona .

1: beam-search sketch responses

selected candidate words to fill @persona slots

2: candidate responses LM perplexity

awesome ! i like to do @persona @persona .

Figure 3: Sketch-Fill-A-R inference strategy. During
inference, Sketch-Fill-A-R uses beam search to gener-
ate B sketch responses (step 1, depicted B = 2). In
step 2, each beam with @persona slots produces can-
didate responses by filling it with rare words selected
from the persona traits. Finally, a language model
scores each candidate and Sketch-Fill-A-R returns the
lowest-perplexity candidate.

the output at time u is yu. We denote the conver-
sation by xct and persona trait words by xpt . Both
input and output words xt, yu ∈ {0, 1}V are 1-hot
vectors, where V denotes the vocabulary size. The
vocabulary contains all unique words, punctuation
and special symbols (e.g., EOS, @persona). x0:T
denotes a sequence (x0, . . . , xT ).

Formally, we aim to learn a response genera-
tion model that predicts words yu using a probabil-
ity distribution P (y0:U |x0:T ; θ) over sequences of
T words and N persona traits with R rare words.
Here U is the output sequence length and θ are the

model weights. We use deep neural networks, a
model class that has recently seen success in lan-
guage generation tasks (Bahdanau et al., 2014).

Sketch-Fill-A-R uses several components to gen-
erate sketch responses:

• An encoder he0:T = Enc (x0:T ; θ) that com-
putes hidden representations et of the input.

• A memory module h
mem

= Mem (x0:R; θ)
that stores all rare words from persona traits
(constructed by removing stop words).

• A language model PLM (xt+1|x0:t; θ) that
computes a distribution over next words.

• A sketch decoder

hd0:U = Dec
(
he0:T , h

mem
; θ
)

that synthesizes both the encoded input and
memory readouts, and predicts the next word
ŷu in the sketch response.

3.1 Sketch Response Generation
Encoder We instantiate both encoder and de-
coder using recurrent neural networks. In this
work, we use LSTMs (Hochreiter and Schmidhu-
ber, 1997), although other choices are possible (El-
man, 1990; Cho et al., 2014). The encoder com-
putes hidden states h0:T ∈ Rdhid auto-regressively:

het+1 = LSTM (e(xt), h
e
t ; θ) , (1)

where e(xt) are word-embedding representations
of the raw input tokens xt. For relevant context in
decoding, Sketch-Fill-A-R encodes both conversa-
tion history xc0:T and individual persona traits xp0:T
into hidden states h

conv
0:T and h

pers
0:T . We denote final

hidden states for all N personas as h
pers
0:N .
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Memory Module Sketch-Fill-A-R selects a sub-
set of rare words, xpr from the persona traits by
removing stop-words, punctuation, and other sym-
bols. After encoding the input dialogue, Sketch-
Fill-A-R does a memory readout using the final
conversation encoder hidden state h

conv
T as a query:

h
mem

= h
conv
T + o, (2)

o =
∑

r

prx
p
rC

2, (3)

pr = σ(((h
conv
T )TxprC

1)) (4)

where r is a vector index over the rare word mem-
ory, σ is a softmax activation function creating
attention weights pi ∈ Rdhid , and Ck are trainable
embedding matrices where Ck ∈ RV×dhid .

Attention Decoder The decoder is an LSTM
which recursively computes hidden states hdu that
are mapped into a distribution over output words:

hdu+1 = LSTM
(
yu, h

d
u; θ
)
, (5)

hd0 = f
(
W d[heT , h

mem
] + bd

)
, (6)

P (yu+1|x0:T , y0:u) = σ(cuW
emb). (7)

At decoding time u+ 1 the decoder computes the
next hidden state hdu+1 using the previous predicted
word yu and decoder hidden state hdu, in addition
to attention over the context of the response (the
previous utterances and the agent’s persona traits).
The decoder projects [heT , h

mem
] down to size dhid

and uses it as the initial hidden state of the decoder.
W emb ∈ Rdhid×V is the transpose of the encoding
embedding matrix and used to convert the decoding
context to a word. The decoding context cu aug-
ments decoder hidden state hdu with attention vec-
tors cconv

u over encoded conversation hidden states
and cpers

u over encoded persona hidden states for
additional information:

cu = f
(
W ac[hdu, c

conv
u , cpers

u ] + bac
)
, (8)

cconv
u = 〈σ(〈W a[hdu] + ba, hconv

0:T 〉), hconv
0:T 〉, (9)

cpers
u = 〈σ(〈W a[hdu] + ba, h

pers
0:N 〉), h

pers
0:N 〉, (10)

where f is a tanh, W ac ∈ R3∗dhid×dhid , W a ∈
Rdhid×dhid and σ is the softmax activation function.
In Equations 9 and 10 the softmax is over the en-
coder time dimension and 〈·, ·〉 is an inner product.

3.2 Inference Reranking Strategy
Sketch-Fill-A-R trains the sketch-decoder outputs
(Equation 7) by minimizing cross-entropy loss

Model Parameters Perplexity
KVMemNet 46.3M 34.54
Sketch-Fill 26.6M 26.75
Sketch-Fill-R 26.6M 26.74
Sketch-Fill-A 26.9M 24.17
Sketch-Fill-A-R 26.9M 24.99

Table 1: Sketch-Fill-A-R achieves significantly lower
out-of-sample perplexity than KVMemNet. Perplexity
for Sketch-Fill-A-R is measured over the sketch tem-
plate responses. The number of persona tag occur-
rences is very small, constituting 8% of the total words.
See Appendix for more information.

Sequence size KVMemNet Sketch-Fill-A-R (ours)
Unigram 5.39% 1.72%
Bigram 32.65 % 7.32 %
Trigram 54.95 % 13.97 %
Full responses 70.16 % 50.60 %

Table 2: Percentage of novel n-grams and full re-
sponses generated by the KVMemNet and Sketch-Fill-
A-R models computed on the full validation set.

with ground truths y∗u. However, during infer-
ence, Sketch-Fill-A-R uses an iterative generate-
and-score approach to produce the final response:

1. Perform beam search with beam size B to
generateB sketch responses

{
ŷb
0:Uxb

}
b=1,...,B

that may contain @persona tags.

2. For each sketch with tags, select the persona i∗

with the highest attention weight wu∗,i∗(hcT )
from the first sketch tag location u∗, and con-
struct B′ candidate responses by filling each
@persona slot with words selected from i∗.

3. Compute the perplexity sb of all B′ candidate
responses using a pre-trained language model:

sk = exp
1

T b

T b∑

t=0

− logPLM
(
ybu|yb0:u−1

)
.

4. Choose response b∗ = minb sb with the low-
est LM-likelihood score as the final response.

For Sketch-Fill variants that do not use reranking
to fill slots, we follow the methodology of (Wu
et al., 2019) in using a memory pointer network in
order to fill slots. For detail, see the Appendix.

4 Empirical Validation

To validate Sketch-Fill-A-R, we first show that it
achieves better supervised learning performance
than baselines on a chit-chat dialogue dataset.
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Persona-Chat Dataset We trained Sketch-
Fill-A-R to generate single-turn agent responses on
the Persona-Chat dataset (Zhang et al., 2018),
which contains 10,907 dialogues. Here, a dialogue
consists of multiple turns: a single turn contains
the utterance of a single agent. We processed this
dataset into training examples that each consist of
the conversation history xct , set of persona traits
xpt of the model, and the ground truth sketch re-
sponse yu. This process yielded 131,438 training
examples. Rare words were identified by remov-
ing all punctuation and stop words from the set
of persona traits (see Appendix for more informa-
tion). Ground truth sketch responses were then
constructed by replacing all rare word instances in
ground truth responses with @persona tags.

Language Model Pre-training Sketch-Fill-A-R
uses a Transformer-based GPT (Radford et al.,
2018) pre-trained on the Books text corpus (Zhu
et al., 2015) to rank candidate responses with filled
@persona slots according to their LM-perplexity
scores. For model details, see the Appendix.

Experimental Setup We compared 4 variations
of Sketch-Fill-A-R with a strong baseline: 1

• Key-Value Memory Network (KVMemNet)
(Zhang et al., 2018),

• Sketch-Fill (SF)

• Sketch-Fill-A: SF + attention

• Sketch-Fill-R: SF + reranking

• Sketch-Fill-A-R: SF + attention + reranking

(Zhang et al., 2018) showed not only that models
trained on Persona-Chat outperform models trained
on other dialogue datasets (movies, Twitter) in en-
gagingness but also that KVMemNet outperforms
vanilla Seq2Seq on Persona-Chat. As a result we
omit comparison with Seq2Seq. KVMemNet is the
strongest of the few public baselines available to
compare against on chitchat with personas.

All Sketch-Fill-A-R models use language model
reranking (see Section 3.2). All input tokens xct , x

p
t

were first encoded using 300-dimensional GLoVe
word embeddings e(xt) (Pennington et al., 2014).

1A number of chit-chat models posted results in the Con-
vAI2 competition. However, we could not reproduce these,
as all competitive methods rely on extensive pre-training with
large models, or do not have code or trained models available.

All models were trained by minimizing loss on the
ground truth sketch response y∗0:U :

min
θ
−

U∑

u=0

〈y∗u, logP (yu|x0:T , y0:u−1; θ)〉. (11)

For training details, see the Appendix. The results
are shown in Table 1. Sketch-Fill models outper-
form KVMemNet on validation perplexity, while
using significantly fewer weights than KVMemNet.
This suggests the structure of Sketch-Fill models
fits well with chit-chat dialogue.

5 User Study and Qualitative Analysis

Although Sketch-Fill models perform well quanti-
tatively, a crucial test is to evaluate how well they
perform when judged by human users on conver-
sational quality, which is not explicitly captured
by perplexity. We performed single and multi-turn
dialogue user studies to assess the quality of Sketch-
Fill-A-R, rated along several dimensions:

• Fluency: whether responses are grammati-
cally correct and sound natural.

• Consistency: whether responses do not con-
tradict the previous conversation.

• Engagingness: how well responses fit the pre-
vious conversation and how likely the conver-
sation would continue.

Our definition of engagingness includes relevance,
defined in pragmatics and relevance theory (Wilson
and Sperber, 2002; Grice, 1991) as a statement
leading to positive cognitive effect. However an
engaging statement may be ironic (Sperber and
Wilson, 1981), humorous, or specific to individuals.

We also explore which qualities of Sketch-Fill-
A-R’s outputs are correlated with human ratings
and perplexity scores. Our results suggest that:

• Conditioning on persona-memory provides
more consistency.

• Sketch-Fill-A-R poses more questions, which
correlates with higher engagingness.

• Responses need to be fluent in order to be con-
sistent or engaging. In addition, more consis-
tent responses are more likely to be engaging.

• Perplexity is not correlated with high-quality
responses.
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Baseline Consistency Engagingness Fluency Ours Consistency Engagingness Fluency
Test I KVMemNet 3.60± 0.84 3.81± 0.66 4.49± 0.45 Sketch-Fill 2.51± 1.16 2.57± 1.10 2.98± 1.29
Test II KVMemNet 3.57± 0.86 3.77± 0.62 4.54± 0.47 Sketch-Fill-A 2.49± 1.04 2.51± 1.03 2.75± 1.20
Test III KVMemNet 3.18± 1.16 3.51± 0.85 4.41± 0.48 Sketch-Fill-R 3.34± 1.02 3.89± 0.79 4.45± 0.78
Test IV KVMemNet 3.31± 1.03 3.56± 0.78 4.43± 0.48 Sketch-Fill-A-R 3.54± 1.01 3.69± 0.92 4.43± 0.71

Table 3: User study ratings of single-turn responses (score range where 1 is low and 5 is high). Each row shows
ratings from a head-to-head experiment where responses from Sketch-Fill-A-R-variants and KVMemNet over
100 different conversations were shown to 5 human raters. Sketch-Fill with reranking show a small gain over
KVMemNet on all qualitative metrics, but the variance in the ratings is high. Sketch-Fill variants without reranking
perform much worse, due to their responses not being fluent, despite achieving low perplexity (see Figure 1).

A/B Experiment KVMemNet Sketch-Fill-x (ours)
vs Sketch-Fill 380 120
vs Sketch-Fill-A 396 103
vs Sketch-Fill-R 225 275
vs Sketch-Fill-A-R 232 266

Table 4: Human A/B-preferences between KVMemNet
and Sketch-Fill-A-R variations on 100 conversations,
each shown to 5 users. Two Sketch-Fill-A-R variations
are preferred over KVMemNet.

Fluency Consistency Engagingness Perplexity
Fluency 1 0.40 0.46 -0.01
Consistency - 1 0.67 -0.20
Engagingness - - 1 -0.15
Perplexity - - - 1

Table 5: Pearson’s correlation ρ between human ratings
and perplexity of user study examples. For visual KDE-
plots of the data, see the Appendix.

5.1 Single-turn Experiments

The studies were conducted on 100 random exam-
ples sampled from the validation set, where each
example was rated by 5 judges. Each example
contained a conversation with multiple lines of
history and a single KVMemNet or Sketch-Fill
response. Judges came from English speaking
countries and were calibrated with examples of
good/bad responses in all metrics before judging.

The study was executed in two settings, fine-
grained, where the judges rated the responses on
a scale from 1 (lowest) to 5 (highest) for each of
the mentioned dimensions, and binary, where they
chose which response best fit the conversation.

The results of the fine-grained survey are pre-
sented in Table 3, where each row corresponds to
a separate head-to-head experiments in which the
KVMemNet model was paired with one of the ver-
sions of Sketch-Fill-A-R. The study showed small
gains on all metrics for all Sketch-Fill-A-R vari-
ations, however, the variance of results was high.
We believe that this artifact could be caused by a
number of factors, including subjective preferences
of raters and potential ambiguities in the experi-

ments description. We notice that Sketch-Fill and
Sketch-Fill-A reach lower perplexity values than
KVMemNet, but comparatively have lower evalua-
tions across the board. Conversely, ranking models
like Sketch-Fill-R and Sketch-Fill-A-R have higher
scores on all metrics. We observe that the differ-
ence is due to the ranker giving more fluent outputs
via better selection of persona words to use.

Table 4 shows the results of the human study in
a binary setting. In these experiments the base and
attention-augmented versions of Sketch-Fill-A-R
outperformed KVMemNet by a clear margin.

The following subsections present in-depth anal-
yses of the human study. They focus on the Sketch-
Fill-A-R model, since it yielded both the best per-
plexity and user study results.

Correlation between ratings To study and bet-
ter understand the reasoning behind the ratings as-
signed by annotators, we look at the correlation be-
tween the different dimensions in which responses
where scored. Figure 5 shows Kernel-Density-
Estimation plots of the data points and associated
Pearson correlation coefficients ρ. The data shows
weak (ρ = 0.397) to moderate (ρ = 0.462) corre-
lation between fluency and consistency, and fluency
and engagingness ratings respectively. The data
shows ρ value of 0.670 between engagingness and
consistency ratings, suggesting strong correlation
between those dimensions. See appendix for more
detailed information. The numbers were obtained
on human ratings of the Sketch-Fill-A-R model,
but comparable numbers were also obtained for the
KVMemNet model. The mentioned results follow
intuition, as fluency of a response is a notion that
can be easily defined and identified. On the other
hand consistency and engagingness are ambiguous,
and (possibly) partially overlapping, concepts.

To associate quantitative metrics from Table 1
with human ratings, we computed correlation be-
tween perplexity values from the sketch decoder
of the Sketch-Fill-A-R model with human scores
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Model Trait 1: I married a super model from Italy
Model Trait 2: I’ve zero family that I’m close to
Model Trait 3: My name is George
Model Trait 4: I’m a bee farmer
Model Trait 5: My favorite food is papaya
Human: hi what’s up
Model: do you like papaya ?
Human: eh, i‘m more into mango
Model: what is your favorite papaya ?
Human: probably just the normal ones.
Human: what do you like to do?
Model: i am a bee farmer .
Human: woah , that‘s cool
Model: how are you ?
Human: i‘m doing well ,
Human: just trying to get some work done
Model: do you have any hobbies ?
Human: i like to play basketball , what about you?
Model: i love papaya food .
Human: what is your name?
Model: george . what is your favorite name ?

Table 6: Example multi-turn dialog between a human
and Sketch-Fill-AR. Model persona traits are shown
above; the human was not given specific persona traits.

Model Trait 1: I work for our local supermarket
Model Trait 2: My favorite band is The Who
Model Trait 3: I have never been out of Ohio
Model Trait 4: My favorite food is pizza with black olives
Human: what are you doing today?
Model: i am ok what do you do for fun ?
Human: I like biking. Do you bike?.
Model: cool ! i am watching a movie with my little girl
Human: You have a daughter? How old is she?.
Model: oh that is cool . i do not have any myself .
Human: Oh. do you have a girlfriend then?.
Model: she is an ex singer from the early 2000s ,
Model: mostly does pop songs and the like
Human: What kind of movies do you like?
Model: little girl and my mother lives with us
Model: she‘s a concert pianist, she in between jobs
Human: who is this little girl?
Model: she also likes karate
Model: she is why i got a brown belt !
Human: what is her name?
Model: she had a green thumb and loved flowers

Table 7: Example multi-turn dialog between a hu-
man and KVMemNet. Model persona traits are shown
above; the human was not given specific persona traits.

Metric KVMemNet Sketch-Fill-A-R (ours)
Fluency 3.27± 1.19 2.83± 1.31
Consistency 2.15± 1.18 3.72± 1.26
Engagement 1.93± 0.92 2.41± 1.33

Table 8: Multi-turn user study ratings (score range
1 (lowest) - 5 (highest)). We collected 30 conversa-
tions with 20 turns between human raters and mod-
els. KVMemNet is more fluent, but Sketch-Fill-A-R
is more engaging and significantly more consistent.

Human: hi there . how are you
Model: hi good just writing some music and you
Human: i am well . just took my dog for a walk
KVMemNet: sorry , i trying to become the next big thing
in music , i sing
Sketch-Fill-A-R: what kind of music do you like to do ?

Table 9: An example single-turn response for KVMem-
Net and Sketch-Fill-A-R given the same context.

across different dimensions. The study showed
no correlation for fluency (ρ = -0.015), and weak
correlations for consistency (ρ = -0.190) and en-
gagingness (ρ = -0.147).

Model vocabulary analysis To assess the diver-
sity of responses generated by the models, we cal-
culated the percentage of unique n-grams and full
responses present in the model outputs. Table 2
presents these values for KVMemNet and Sketch-
Fill-A-R computed on the full validation set. The
numbers show that the KVMemNet model clearly
outperforms our model in terms of generating di-
verse and unique outputs by a factor of 3-4x. How-

ever, we hypothesize that this additional diversity
may lead to lower engagingness scores.

Consistency over time In order to evaluate the
models capacity to stay consistent with its previ-
ous statements, and thus implicitly its ability to
utilize information present in the chat history, we
compared how the consistency rating changed as
the number of lines of the conversation increased.
Figure 4 visualizes this metric both for our model
and KVMemNet. In the case of both models, the
consistency decreases as the chat history get longer,
indicating that models have problems keeping track
of their previous statements. When analyzing the
linear trend we noticed that the decrease in perfor-
mance is slower for the Sketch-Fill-A-R model. We
hypothesize that this effect can be partially caused
by the high diversity of sequences generated by
the KVMemNet, which in turn affects the models
ability to generate consistent conversation.

Effect of question responses (See et al., 2019)
note that for a conversation to be engaging, re-
sponses in chit-chat dialogue should be a mix of
statements and questions, where the model inquires
about certain traits and information of the other
agent. We expand on this by evaluating the effect
of a question’s presence in the response has on
the ratings coming from the judges. The results
are presented in Figure 4c. The study showed that
there is a strong correlation between the model ask-
ing a question and the users rating the response as
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(a) KVMemNet (b) Sketch-Fill-A-R
(c) Sketch-Fill-A-R: Human ratings vs
question/no-question responses

Figure 4: Impact of conversation length on the consistency of outputs generated by the KVMemNet (left) and
Sketch-Fill-A-R (middle). As conversation length increases (more dialogue turns) both models become less con-
sistent, but KVMemNet degrades faster than Sketch-Fill-A-R. Right: impact of response containing a question on
human ratings. Responses including questions tend to receive higher human ratings.

more engaging. Asking questions has a small but
positive influence on engagingness and fluency.

To further analyze this aspect, we measured the
frequency of questions in the set of 100 responses
coming from the Sketch-Fill-A-R and KVMemNet
models. We found that our model produced 49
question responses out of which 25 had both a
statement and a question. In the same setting the
KVMemNet produced 15 questions out of which
only 1 contained a statement and a question. This
insight could explain the gains on the engagingness
ratings found by our human study.

5.2 Multi-turn User Study

To evaluate both models in the more challenging
multi-turn setting, we collected 30 conversations
that lasted 20 turns, between each model and hu-
man users. Users were asked to score their conver-
sations with the models on a scale from 1 (lowest)
to 5 (highest) across the same dimensions as in the
single-turn experiments. Table 8 shows the human
ratings for both Sketch-Fill-A-R and KVMemNet.
Both were judged as less fluent (scores ≈ 3) than
in the single-turn case (scores ≥ 4). This is likely
due to the models having to respond to a range of
conversation histories unseen during training.

Notably, Sketch-Fill-A-R beat KVMemNet on
consistency by a significantly larger margin (3.72
vs 2.15) than in the single-turn setting. This sug-
gests that Sketch-Fill-A-R benefits from condition-
ing response generation on its persona-memory
thus adhering more closely to responses compati-
ble with its persona.

Further, Sketch-Fill-A-R is more engaging. This
suggests that in the multi-turn setting, there also is a
positive correlation between engagingness and con-

sistency as in the single-turn case (see Appendix):
consistent models can be more engaging as well.

Table 7 shows an example of KVMemNet’s in-
consistency. While every model utterance is fluent
individually, KVMemNet noticeably contradicts
itself in the context of previous utterances and fre-
quently ignores the human responses (e.g ”i do not
have any myself” after ”my little girl”). We believe
the lack of structure inherent in models built on
vanilla Seq2Seq make KVMemNet prone to this
mistake. Table 6 shows Sketch-Fill-A-R conducts
a more engaging conversation, with pertinent re-
sponses and questions. However, this structure can
restrict Sketch-Fill-A-R, as sketches may be filled
with incorrect persona traits (e.g ”i love papaya
food.”). See the Appendix for more examples.

6 Discussion and Future Work

In our study we have identified several paths for fu-
ture work. First, our results reinforce that perplex-
ity does not strongly correlate with human judg-
ment of response quality. It is crucial to develop an
automated metric that correlates well with human
judgment as human evaluation is expensive, time
consuming, and prone to inconsistencies. Secondly,
despite outperforming other models in the multi-
turn dialogue setting on consistency and engage-
ment, our model has not reached human-like flu-
ency. In order to demonstrate complex higher-level
traits such as empathy, models must first master
these lower-level abilities. Finally, correct use of
rare words and proper nouns leads to higher human
scores. Existing models are unable to deal with out-
of-vocabulary tokens and rare words gracefully,
and incorporation of commonsense via methods
like external knowledge bases will be useful.
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7 Appendix

7.1 Ethical Implications
During experiments, we identified a number
of ethical implications for future work. The
Persona-Chat dataset was noted by some raters
to contain potentially inappropriate statements
(e.g., ”my wife spends all my money”) and is based
in US culture (e.g., food, music, cars, names).
It also lacked content to fail gracefully when it
didn’t have an appropriate response (e.g., ”I’m
sorry I don’t understand,” ”I don’t know”). As
such, learned model responses were occasionally
insensitive and confusing to human users.

7.2 Model Architecture and Training
Parameters

In all models we used single-layer LSTMs with
hidden sizes of 300 throughout, and used GloVe
embeddings of size 300. All Sketch-and-Fill mod-
els were trained with Adam initialized with learn-
ing rate 0.0001. We used batch sizes of 32. In
single-turn experiments we used beam sizes of 7,
and in multi-turn experiments we used beam sizes
of 10. Dropout was applied for all models with
probability 0.4.

7.3 Persona Preprocessing
Persona traits were pre-processed to remove stop-
words. These were initialized with the defaults
from NLTK and augmented with top commonly
seen words in persona traits.

[”and”, ”my”, ”i”, ”very”, ”is”, ”favorite”, ”to”,
”like”, ”go”, ”also”, ”i’m”, ”am”, ”a”, ”lot”, ”at”,
”the”, ”for”, ”when”, ”are”, ”this”, ”on”, ”just”,
”.”, ”,”, ”!”, ”?”, ”help”, ”play”, ”in”, ”have”, ”of”,
”by”, ”do”, ”one”, ”it”, ”an”, ”was”, ”me”, ”could”,
”be”, ”with”, ”but”, ”before”, ”after”, ”from”,
”iv́e”, ”dont́”, ”only”, ”love”, ”had”, ”iḿ”, ”over”,
”what”, ”as”, ”want”, ”into”, ”try”, ”whatever”,
”get”, ”t”, ”s”, ”no”, ”own”, ’i’, ’me’, ’my’, ’my-
self’, ’we’, ’our’, ’ours’, ’ourselves’, ’you’, ’your’,
’yours’, ’yourself’, ’yourselves’, ’he’, ’him’, ’his’,
’himself’, ’she’, ’her’, ’hers’, ’herself’, ’it’, ’its’, ’it-
self’, ’they’, ’them’, ’their’, ’theirs’, ’themselves’,
’what’, ’which’, ’who’, ’whom’, ’this’, ’that’,
’these’, ’those’, ’am’, ’is’, ’are’, ’was’, ’were’, ’be’,
’been’, ’being’, ’have’, ’has’, ’had’, ’having’, ’do’,
’does’, ’did’, ’doing’, ’a’, ’an’, ’the’, ’and’, ’but’,
’if’, ’or’, ’because’, ’as’, ’until’, ’while’, ’of’, ’at’,
’by’, ’for’, ’with’, ’about’, ’against’, ’between’,
’into’, ’through’, ’during’, ’before’, ’after’, ’above’,

’below’, ’to’, ’from’, ’up’, ’down’, ’in’, ’out’, ’on’,
’off’, ’over’, ’under’, ’again’, ’further’, ’then’,
’once’, ’here’, ’there’, ’when’, ’where’, ’why’,
’how’, ’all’, ’any’, ’both’, ’each’, ’few’, ’more’,
’most’, ’other’, ’some’, ’such’, ’no’, ’nor’, ’not’,
’only’, ’own’, ’same’, ’so’, ’than’, ’too’, ’very’, ’s’,
’t’, ’can’, ’will’, ’just’, ’don’, ’should’, ’now’]

7.4 Number of Persona Tags
Training: 124,298 words were converted to persona
tags out of 1,505,395 words total.
Validation: 8,307 words were converted to persona
tags out of 92,586 words total.

7.5 Global-to-Local Memory Pointer
Networks

(Wu et al., 2019) construct a global memory dis-
tribution that acts as a mask over the memory
and is concatenated with encoded dialogue his-
tory and memory information before initializing
as the decoder’s hidden state. They also construct
a local memory pointer that identifies the word to
retrieve. These auxiliary tasks are trained using
cross-entropy loss.

The global pointer label is defined Glabel =
(gl0, ..., g

l
i) as a vector where gli is 1 if the word

is expected in y∗t and 0 otherwise. Using the same
notation as in Section 3.1, we compute the global
pointer as follows:

gi = Sigmoid(((yt, h
d
t )
T ei) (12)

Lossg = −
T∑

i=1

[gli × log(gi) + (1− gli)× log(1− gi]

(13)

(14)

This global pointer is used as a mask on the
memory module before the decoding procedure
ei = ei × gi. The local pointer label is used at
every time step to identify which memory index
(and thus word) to point to. If at y∗t a persona trait
is expected, Llabelt holds corresponding index, and
is m otherwise.

Lossl =

m∑

t=1

−log(Lt(Llabelt ) (15)

7.6 Language Model Pretraining
OpenAI GPT consists of a 12 layer Transformer
and is pre-trained on the BooksCorpus dataset.
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Figure 5: Correlations between different dimensions in which model responses where rated. Plots include Pearson
correlation coefficients (ρ) for each dimension pair. The data suggests weak to moderate correlation between
fluency and consistency, and fluency and engagingness respectively, and strong correlation between engagingness
and consistency.

User A: hi there . how are ou 
User B: hi good just writing some music and you 
User A: i am well . just took my dog for a walk

Conversation history

KVMEMNet: sorry , i trying to become the next
          big thing in music , i sing
Fluency:      4.00 ± 1.10
Consistency:  2.60 ± 1.62
Engagingness: 3.20 ± 1.33
Preferred by 1 out of 5 raters 

Sketch-and-Fill: what kind of music do you like
                 to do ?
Fluency:      4.80 ± 0.40
Consistency:  4.00 ± 0.63
Engagingness: 3.60 ± 1.50
Preferred by 4 out of 5 raters 

Figure 6: Example conversations from the human user
studies.

7.7 Visualizing Model Attention

We visualize the three sets of attention weights in
our model: the context weights in Figure 7, and
memory weights and persona trait weights in Fig-
ure 8. Figure 7’s x-axis shows a conversation end-
ing with a question reflected by the user about hob-
bies. The response has high attention weights on
hobbies and the user’s own garden hobby in the
previous context. Figure 8 (right) shows that in
response to this hobbies question, attention is first
distributed over hobby-related personas before con-
verging on the mountain biking persona trait over
time. Finally, we observe in Figure 8 (left) that
the memory attention is most heavily weighted on
coffee, which may explain why the coffee persona
begins with such high weights.
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Figure 7: Attention weights over the previous con-
text. Decoder timesteps are on the y-axis and encoder
timesteps are on the x-axis.
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Personas:
1: i hate the color pink
2: i do not drink alcohol
3: i’m a huge co!ee lover
4: my father was a construction worker
5: i enjoy mountain biking as a hobby

p1 p2 p4 p5p3

Figure 8: Attention over memory (left) and persona
traits (right). After observing “love”, Sketch-Fill-A-R
attends to personas 3, 5 with related personas.
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User A: what do you do for work ? 
User B: i'm a life coach and i'm good at it 
User A: i could use your services . 
User B: i'll run right over and help 
User A: that is very kind of you . 
User B: i run marathons and that is 
        serious business 
User A: i work out but it is just to hang 
        with friends

KVMEMNet: that is sick i go running a lot
Fluency:      4.80 ± 0.40
Consistency:  2.40 ± 1.50
Engagingness: 3.60 ± 1.36
Preferred by 1 out of 5 raters 

Sketch-and-Fill: what do you do for a living ?
Fluency:      4.80 ± 0.40
Consistency:  4.40 ± 0.49
Engagingness: 4.00 ± 1.55
Preferred by 3 out of 5 raters 

Conversation history

Figure 9: Average ratings by 5 users for one example.

7.8 Example Dialogues from KVMemNet
7.9 Example Dialogues from Sketch-Fill-A-R

Model Trait 1: I played football for a division a college
Model Trait 2: I enjoy poetry
Model Trait 3: I try various coffees as a hobby
Model Trait 4: I‘m a huge star wars fan
Human: Hi. What do you do you for fun?.
Model: hello ! i love music i am in school to be a music teacher
Human: That sounds exciting! I left school a long time ago..
Model: i teach french
Human: You must be talented to teach both music and french.
Model: do you speak other languages ?
Human: No, just English. What about you?.
Model: i can only speak one language !
Human: Me too. Luckily we speak the same language.
Model: no do you speak another language ?
Human: No I don’t speak any other languages.
Model: i do not . i do not even speak the 5 love languages
Human: I wasn’t aware that there were 5 love languages.
Human: Tell me more..
Model: i speak six other languages , pick one and i will speak it
Human: I pick language number 3.
Model: only speak english but that is pretty cool

Model Trait 1: I enjoy coloring books
Model Trait 2: My husband is adopted
Model Trait 3: I‘ve a german shepherd dog
Model Trait 4: I like to watch NHL hockey
Model Trait 5: I live is a rural farming community
Human: yo. what’s up?.
Model: i am great how about you ?
Human: i am depressed.
Model: yes ! i love to dance to it . i am pretty amazing at it
Human: oh... that’s odd. and rude...
Human: you want to dance to my depression?
Model: i love to dance i have moves
Human: describe your depression
Model: dance to me. i love to dance ,
Model: not to brag but i am an incredible dancer !
Human: ok. i get it. but how. alone or with others?.
Model: that is nice . no do not dance but i like to sing so...
Human: no dancing after all? you’re just messing with me?
Model: yeah , dancing with my friends is my favorite .
Human: whatever man. cool .
Model: can we dance together ? i have no brothers or sisters .

Model Trait 1: I have zero family that I‘m close to
Model Trait 2: My name is George
Model Trait 3: My favorite food is papaya
Model Trait 4: I am a bee farmer
Model Trait 5: I married a super model from Italy
Human: hi.
Model: i am good how about you
Human: i didn’t ask you that?.
Model: its pretty cool lol , tell me about you ?
Human: my favorite color is orange.
Model: oh i see that sounds cool then
Human: what about you?
Model: i hate organ lol
Human: what do u do for fun i like to go hiking.
Model: i like blue my favorite disney princess is ariel .
Human: cool, what other disney princesses do you like?.
Model: yeah disney is great . i named my 4 dogs after disney
characters .
Model: i like ariel becuase i have a pet fish.
Human: i love watching disney movies ! how old are you?
Model: cool my favorite color is red
Human: you’re just ignoring me huh.
Model: ariel has always been my favorite

Table 10: Multi-turn examples from KVMemNet.
Model persona traits are listed before the example con-
versation.
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Model Trait 1: I‘m a librarian
Model Trait 2: I really like to travel
Model Trait 3: I have visited Spain a times
Model Trait 4: I think I will retire in a few years
Model Trait 5: I am 60years old
Human: hi , how are you doing?.
Model: i am doing well . how about you ?
Human: i‘m doing ok, i used to be an alcoholic.
Model: oh . i am sorry to hear that .
Human: tell me something about yourself.
Model: i‘m a librarian .
Human: neat , what do you do as a librarian?.
Model: i work at a library .
Human: cool, what do you do for fun?.
Model: i love to read . what about you ?
Human: i like to play basketball.
Model: that sounds like fun .
Human: it is! where are you from?.
Model: i‘m in the librarian .

Model Trait 1: My dream in life is to work from home
Model Trait 2: I dye my hair every three months
Model Trait 3: I went to school to be a veterinarian
but hated it
Model Trait 4: I have an internet addiction
and spend a lot of time playing roleplaying games
Human: Ciao.
Model: how are you doing tonight ?
Human: Good. Can you speak Italian?.
Model: what do you do for a living
Human: I‘m a teacher. How about you?.
Model: i am a veterinarian .
Human: Do you have a dog?
Model: i do not have any pets .
Human: How do you become a vet?
Model: i am a vet . i am a vet .
Human: Do you have emergency service?
Human: Do you need to take on call?
Model: what do you like to do for fun ?
Human: Call of duty.
Model: i like to games and roleplaying time .
Human: Me too.
Model: do you have any hobbies ?
Human: Not really.
Model: i love to addiction internet .

Model Trait 1: If I am not cooking in the kitchen
then I am definitely on the water
Model Trait 2: I love cooking but I also enjoy fishing
Model Trait 3: Spiderman is my favorite
Model Trait 4: I also love comic books
Human: hi i‘m [Human name]. how are you doing today ?
Model: good, has been very busy lately.
Model: what are you going to school for ?
Human: i don’t go to school, i‘m working.
Model: what do you do in your free time ?
Human: i play piano.
Model: i love fishing and cooking .
Human: great.
Model: what is your favorite spiderman ?
Human: i don’t like spiderman.
Model: i like to enjoy .
Human: like what?
Model: spiderman is my favorite . what is your favorite ?

Table 11: Multi-turn examples from Sketch-Fill-A-R.
Model persona traits are listed before the example con-
versation.
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Abstract

The predominant approach to open-domain di-
alog generation relies on end-to-end training
of neural models on chat datasets. However,
this approach provides little insight as to what
these models learn (or do not learn) about en-
gaging in dialog. In this study, we analyze
the internal representations learned by neural
open-domain dialog systems and evaluate the
quality of these representations for learning
basic conversational skills. Our results sug-
gest that standard open-domain dialog systems
struggle with answering questions, inferring
contradiction, and determining the topic of
conversation, among other tasks. We also find
that the dyadic, turn-taking nature of dialog is
not fully leveraged by these models. By explor-
ing these limitations, we highlight the need for
additional research into architectures and train-
ing methods that can better capture high-level
information about dialog.1

1 Introduction

Open-domain dialog systems often rely on neural
models for language generation that are trained
end-to-end on chat datasets. End-to-end training
eliminates the need for hand-crafted features and
task-specific modules (for example, for question
answering or intent detection), while delivering
promising results on a variety of language genera-
tion tasks including machine translation (Bahdanau
et al., 2014), abstractive summarization (Rush et al.,
2015), and text simplification (Wang et al., 2016).

However, current generative models for dialog
suffer from several shortcomings that limit their
usefulness in the real world. Neural models can
be opaque and difficult to interpret, posing barri-
ers to their deployment in safety-critical applica-
tions such as mental health or customer service

∗Second author equal contribution.
1Our code is available at https://github.com/

AbdulSaleh/dialog-probing

(Belinkov and Glass, 2019). End-to-end training
provides little insight as to what these models learn
about engaging in dialog. Open-domain dialog
systems also struggle to maintain basic conversa-
tions, frequently ignoring user input (Sankar et al.,
2019) while generating irrelevant, repetitive, and
contradictory responses (Saleh et al., 2019; Li et al.,
2016, 2017a; Welleck et al., 2018). Table 1 shows
examples from standard dialog models which fail
at basic interactions – struggling to answer ques-
tions, detect intent, and understand conversational
context.

In light of these limitations, we aim to answer
the following questions: (i) Do neural dialog mod-
els effectively encode information about the con-
versation history? (ii) Do neural dialog models
learn basic conversational skills through end-to-end
training? (iii) And to what extent do neural dialog
models leverage the dyadic, turn-taking structure
of dialog to learn these skills?

To answer these questions, we propose a set of
eight probing tasks to measure the conversational
understanding of neural dialog models. Our tasks
include question classification, intent detection, nat-
ural language inference, and commonsense reason-
ing, which all require high-level understanding of
language. We also carry out perturbation experi-
ments designed to test if these models fully exploit
dialog structure during training. These experiments
entail breaking the dialog structure by training on
shuffled conversations and measuring the effects
on probing performance and perplexity.

We experiment with both recurrent (Sutskever
et al., 2014) and transformer-based (Vaswani et al.,
2017) open-domain dialog models. We also ana-
lyze models with different sizes and initialization
strategies, training small models from scratch and
fine-tuning large pre-trained models on dialog data.
Thus, our study covers a variety of standard models
and approaches for open-domain dialog generation.
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Our analysis reveals three main insights:

1. Dialog models trained from scratch on chat
datasets perform poorly on the probing tasks,
suggesting that they struggle with basic con-
versational skills. Large, pre-trained models
achieve much better probing performance but
are still on par with simple baselines.

2. Neural dialog models fail to effectively en-
code information about the conversation his-
tory and the current utterance. In most cases,
simply averaging the word embeddings is su-
perior to using the learned encoder represen-
tations. This performance gap is smaller for
large, pre-trained models.

3. Neural dialog models do not leverage the
dyadic, turn-taking nature of conversation.
Shuffling conversations in the training data
had little impact on perplexity and probing
performance. This suggests that breaking the
dialog structure did not significantly affect the
quality of learned representations.

Our code integrates with and extends ParlAI
(Miller et al., 2017), a popular open-source plat-
form for building dialog systems. We also pub-
licly release all our code at https://github.com/
AbdulSaleh/dialog-probing, hoping that prob-
ing will become a standard method for interpreting
and analyzing open-domain dialog systems.

2 Related Work

Evaluating and interpreting open-domain dialog
models is notoriously challenging. Multiple studies
have shown that standard evaluation metrics such
as perplexity and BLEU scores (Papineni et al.,
2002) correlate very weakly with human judge-
ments of conversation quality (Liu et al., 2016;
Ghandeharioun et al., 2019; Dziri et al., 2019).
This has inspired multiple new approaches for eval-
uating dialog systems. One popular evaluation
metric involves calculating the semantic similar-
ity between the user input and generated response
in high-dimensional embedding space (Liu et al.,
2016; Ghandeharioun et al., 2019; Dziri et al., 2019;
Park et al., 2018; Zhao et al., 2017; Xu et al., 2018).
Ghandeharioun et al. (2019) proposed calculating
conversation metrics such as sentiment and co-
herence on self-play conversations generated by
trained models. Similarly, Dziri et al. (2019) use

neural classifiers to identify whether the model-
generated responses entail or contradict user input
in a natural language inference setting.

To the best of our knowledge, all existing ap-
proaches for evaluating the performance of open-
domain dialog systems only consider external
model behavior in the sense that they analyze prop-
erties of the generated text. In this study, we ex-
plore internal representations instead, motivated by
the fact that reasonable internal behavior is crucial
for interpretability and is often a prerequisite for
effective external behavior.

Outside of open-domain dialog, probing has
been applied for analyzing natural language pro-
cessing models in machine translation (Belinkov
et al., 2017) and visual question answering (Sub-
ramanian et al., 2019). Probing is also commonly
used for evaluating the quality of “universal” sen-
tence representations which are trained once and
used for a variety of applications (Conneau et al.,
2018; Adi et al., 2016) (for example, InferSent
(Conneau et al., 2017), SkipThought (Kiros et al.,
2015), USE (Cer et al., 2018)). Along the same
lines, natural language understanding benchmarks
such as GLUE (Wang et al., 2018) and SuperGLUE
(Wang et al., 2019) propose a set of diverse tasks
for evaluating general linguistic knowledge. Our
analysis differs from previous work since it is fo-
cused on probing for conversational skills that are
particularly relevant to dialog generation.

With regard to perturbation experiments, Sankar
et al. (2019) found that standard dialog models are
largely insensitive to perturbations of the input text.
Here we introduce an alternative set of perturba-
tion experiments to similarly explore the extent to
which dialog structure is being leveraged by these
models.

3 Methodology

3.1 Models and Data

In this study, we focus on the three most
widespread dialog architectures: recurrent neural
networks (RNNs) (Sutskever et al., 2014), RNNs
with attention (Bahdanau et al., 2014), and Trans-
formers (Vaswani et al., 2017). We use the Par-
lAI platform (Miller et al., 2017) for building and
training the models. We train models of two differ-
ent sizes and initialization strategies. Small mod-
els (≈ 14M parameters) are initialized randomly
and trained from scratch on DailyDialog (Li et al.,
2017b). Large models (≈ 70M parameters) are
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Question
Answering

Inference &
Entailment

Intent
Detection

Emotional
Understanding

[Usr]: What do you
do for a living?
[Bot]: I’m from
south america, lol

[Usr]: what’s your
favorite food?
[Bot]: I love food
[Usr]: you like food?
[Bot]: no, I don’t

[Usr]: Give me music
recommendations.
[Bot]: I don’t know
what I want to do with
my life.

[Usr]: I feel so
miserable
[Bot]: I’m afraid it’s
too much for me.

Table 1: Examples from open-domain dialog systems struggling with simple conversational skills.

Figure 1: Probing setup. Dotted arrows emphasize that
probing is applied to frozen models after dialog train-
ing. Only the parameters of the classifier module are
learned during probing.

pre-trained on WikiText-103 (Merity, 2016), and
then fine-tuned on DailyDialog.2

DailyDialog (Li et al., 2017b) is a dataset of
14K train, 1K validation, and 1K test multi-turn
dialogs collected from an English learning web-
site. The dialogs are of much higher quality than
datasets scraped from Twitter or Reddit. WikiText-
103 (Merity, 2016) is a dataset of 29K Wikipedia
articles. For pre-training the large models, we for-
mat WikiText-103 as a dialog dataset by treating
each paragraph as a conversation and each sentence
as an utterance.

3.2 Probing experiments

In open-domain dialog generation, the goal is to
generate the next utterance or response, ut+1, given
the conversation history, [u1, . . . , ut]. First, we
train our models on dialog generation using a
maximum-likelihood objective (Sutskever et al.,
2014). We then freeze these trained models and
use them as feature extractors. We run the dialog
models on text from the probing tasks and use the
internal representations as features for a two-layer
multilayer perceptron (MLP) classifier trained on
the probing tasks as in figure 1. This follows the
same methodology outlined in previous probing

2See the supplemental material for further training details.

studies (Belinkov et al., 2017; Belinkov and Glass,
2017; Conneau et al., 2018; Adi et al., 2016).

The assumption here is that if a model learns
certain conversational skills, then knowledge of
these skills should be reflected in its internal rep-
resentations. For example, a model that excels at
answering questions would be expected to learn
useful internal representations for question answer-
ing. Thus, the performance of the probing classifier
on question answering can be used as a proxy for
learning this skill. We extend this reasoning to
eight probing tasks designed to measure a model’s
conversational understanding.

The probing tasks require high-level reasoning,
sometimes across multiple utterances, therefore
we aggregate utterance-level representations for
probing. Our probing experiments consider three
types of internal representations:

Word Embeddings: To get the word embed-
ding representations, we first averaged word em-
beddings of all words in the previous utterances,
[u1, . . . , ut−1], then we separately averaged word
embeddings of all words in the current utterance,
ut, and concatenated the two resulting, equal-
length vectors. Encoding the past utterances and
the current utterance separately is important since
it provides some temporal information about utter-
ance order. We used the dialog model’s encoder
word embedding matrix.

Encoder State: For the the encoder state, we ex-
tracted the encoder outputs after running it on the
entire probing task input (i.e. the full conversa-
tion history, [u1, . . . , ut]). Crucially, encoder states
are the representations passed to the decoder for
generation and are thus different for each architec-
ture. For RNNs we used the last encoder hidden
and cell states. For RNNs with attention the de-
coder has access to all the encoder hidden states
(not just the final ones), through the attention mech-
anism. Thus, for RNNs with attention, we first
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averaged the encoder hidden states corresponding
to the previous utterances, [u1, . . . , ut−1], and then
we separately averaged the encoder hidden states
corresponding to the current utterance, ut, and con-
catenated the two resulting, equal-length vectors.
We also concatenated the last cell state. Similarly,
for Transformers, we averaged the encoder outputs
corresponding to the previous utterances and sepa-
rately averaged encoder outputs corresponding to
the current utterance and concatenated them.

Combined: The combined representations are
the concatenation of of the word embeddings and
encoder state representations.

We also use GloVe (Pennington et al., 2014)
word embeddings as a simple baseline. We encode
the probing task inputs using the word embeddings
approach described above. We ensure that GloVe
and all models of a certain size (small vs large)
share the same vocabulary for comparability.

3.3 Perturbation Experiments

We also propose a set of perturbation experiments
designed to measure whether dialog models fully
leverage dialog structure for learning conversa-
tional skills. We create a new training dataset by
shuffling the order of utterances within each conver-
sation in DailyDialog. This completely breaks the
dialog structure and utterances no longer naturally
follow one another. We train (or fine-tune) separate
models on the shuffled dataset and evaluate their
probing performance relative to models trained on
data as originally ordered.

4 Probing Tasks

The probing tasks selected for this study measure
conversational understanding and skills relevant
to dialog generation. Some tasks are inspired by
previous benchmarks (Wang et al., 2018), while
others have not been explored before for probing.
Examples are listed in the supplemental material.

TREC: Question answering is a key skill for ef-
fective dialog systems. A system that deflects user
questions could seem inattentive or indifferent. In
order to correctly respond to questions, a model
needs to determine what type of information the
question is requesting. We probe for question an-
swering using the TREC question classification
dataset (Li and Roth, 2002), which consists of ques-
tions labeled with their associated answer types.

DialogueNLI: Any two turns in a conversation
could entail each other (speakers agreeing, for ex-
ample), or contradict each other (speakers disagree-
ing), or be unrelated (speakers changing topic of
conversation). A dialog system should be sensi-
tive to contradictions to avoid miscommunication
and stay aligned with human preferences. We use
the Dialogue NLI dataset (Welleck et al., 2018),
which consists of pairs of dialog turns with entail-
ment, contradiction, and neutral labels to probe for
natural language inference. The original dataset
examines two utterances from the same speaker (“I
go to college”, “I am a student”), so we modify the
second utterance to simulate a second speaker (“I
go to college”, “You are a student”).

MultiWOZ: Every utterance in a conversation
can be considered as an action or a dialog act per-
formed by the speaker. A speaker could be making
a request, providing information, or simply greet-
ing the system. MultiWOZ 2.1 (Eric et al., 2019)
is a dataset of multi-domain, goal-oriented con-
versations. Human turns are labeled with dialog
acts and the associated domains (hotel, restaurant,
etc.), which we use to probe for natural language
understanding.

SGD: Tracking user intent is also important for
generating appropriate responses. The same intent
is often active across multiple dialog turns since
it takes more than one turn to book a hotel, for
example. Determining user intent requires reason-
ing over multiple turns in contrast to dialog acts
which are turn-specific. To probe for this task,
we use intent labels from the multi-domain, goal-
oriented Schema-Guided Dialog dataset (Rastogi
et al., 2019).

WNLI: Endowing neural models with common-
sense reasoning is an ongoing challenge in machine
learning (Storks et al., 2019). We use the Winograd
NLI dataset, a variant of the Winograd Schema
Challenge (Levesque et al., 2012), provided in the
GLUE benchmark (Wang et al., 2018) to probe
for commonsense reasoning. WNLI is a sentence
pair classification task where the goal is to iden-
tify whether the hypothesis correctly resolves the
referent of an ambiguous pronoun in the premise.

SNIPS: The Snips NLU benchmark (Coucke
et al., 2018) is a dataset of crowdsourced, single-
turn queries labeled for intent. We use this dataset
to probe for intent classification.
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ScenarioSA: An understanding of sentiment and
emotions is crucial for building social, human-
centered conversational agents. We use Scenar-
ioSA (Zhang et al., 2019) as a sentiment classifi-
cation probing task. The dataset is composed of
natural, multi-turn, open-ended dialogs with turn-
level sentiment labels.

DailyDialog Topic: The DailyDialog dataset
comes with conversation-level annotations for ten
diverse topics, such as ordinary life, school life,
relationships, and health. Inferring the topic of
conversation is an important skill that could help
dialog systems stay consistent and on topic. We
use dialogs from the DailyDialog test set to create a
probing tasks where the goal is to classify a dialog
into the appropriate topic.

5 Results

Figure 2: Bar plot showing difference between average
scores for word embeddings and encoder states.

5.1 Quality of Encoder Representations

Results from our probing experiments are pre-
sented in tables 2 and 3. We calculate an aver-
age score to summarize the overall accuracy on all
tasks. Here we explore whether the encoder learns
high quality representations of the conversation his-
tory. We focus on encoder states because these
representations are passed to the decoder and used
for generation (figure 1). Thus, effectively encod-
ing information in the encoder states is crucial for
dialog generation.

Figure 2 shows the difference in average probing
accuracy between the word embeddings and the
encoder state for each model. The word embed-
dings outperform the encoder state for all the small
models. This performance gap is most pronounced
for the Transformer but is non-existent for the large
recurrent models.

Figure 3: Bar plot showing difference between average
scores for combined representations (word embeddings
+ encoder state) and GloVe baseline.

One possible explanation is that the encoder
highlights information relevant to generating dia-
log at the cost of obfuscating or losing information
relevant to the probing tasks – given that the goals
of certain probing tasks do not perfectly align with
natural dialog generation. For example, the Daily-
Dialog dataset contains examples where a question
is answered with another question (perhaps for clar-
ification). The TREC question classification task
does not account for such cases and expects each
question to have a specific answer type. This ex-
planation is supported by the observation that the
information in the word embeddings and encoder
state is not necessarily redundant. The combined
representations often outperform using either one
separately (albeit by a minute amount).

Regardless of the reason behind this gap in per-
formance, multiple models still fail to effectively
encode information about the conversation history
that is already present in the word embeddings.

5.2 Probing for Conversational
Understanding

In this section, we compare the probing perfor-
mance of the ordered dialog models to the sim-
ple baseline of averaging GloVe word embeddings.
Here we consider the combined representations
since they achieve the best performance overall and
can act as a proxy for all the information captured
by the encoder about the conversation history.

Since our probing tasks test for conversational
skills important for dialog generation, we would ex-
pect the dialog models to outperform GloVe word
embeddings. However, this is generally not the
case. As figure 3 shows, the GloVe baseline outper-
forms the small recurrent models while being on
par with the large pre-trained models in terms of
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Model TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Majority 18.8 34.5 17.0 6.5 14.3 56.3 37.8 34.7 27.5
GloVe Mini 83.8 70.8 91.9 71.2 98.0 48.2 75.3 54.0 74.2
RNN

Word Embs. 79.0 63.7 88.1 63.2 95.7 52.2 66.7 55.4 65.7
Enc. State 80.4 55.4 69.7 47.3 93.4 49.4 62.5 56.8 60.2
Combined 81.9 60.0 82.4 60.9 95.3 49.9 64.8 57.3 64.4

RNN + Attn
Word Embs. 75.6 64.5 87.5 65.9 96.5 50.1 62.6 55.1 69.7
Enc. State 77.2 59.5 80.0 57.0 95.1 49.9 64.7 59.0 67.8
Combined 79.2 64.6 86.3 66.8 96.7 51.3 65.3 58.5 71.1

Transformer
Word Embs. 81.2 71.6 90.9 70.9 97.7 48.6 74.4 62.3 74.7
Enc. State 67.9 54.1 68.7 47.2 85.1 49.4 57.4 55.4 60.7
Combined 81.5 71.3 91.2 70.3 97.9 50.1 72.8 59.6 74.3

Table 2: Accuracy on probing tasks for small models trained with random initialization on DailyDialog. Best Avg
result for each model underlined. Best Avg result in bold.

Model TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Majority 18.8 34.5 17.0 6.5 14.3 56.3 37.8 34.7 27.5
GloVe 86.5 70.3 91.6 70.5 97.8 49.9 75.1 54.3 74.5
RNN

Word Embs. 84.0 71.6 91.4 69.8 98.1 51.4 72.0 52.3 73.8
Enc. State 84.6 66.8 89.9 72.9 97.2 48.6 67.8 61.0 73.6
Combined 85.6 69.4 91.1 74.0 97.6 49.6 69.1 61.4 74.7

RNN + Attn
Word Embs. 83.4 71.4 91.8 70.1 97.9 49.5 72.1 55.7 74.0
Enc. State 85.0 65.6 90.0 73.6 97.2 47.5 70.4 63.0 74.0
Combined 86.6 70.0 92.0 75.9 97.7 48.8 73.5 62.3 75.9

Transformer
Word Embs. 89.4 70.4 91.4 70.3 98.3 51.4 71.7 51.5 74.3
Enc. State 71.3 58.5 70.7 57.5 88.5 50.2 58.8 64.1 65.0
Combined 90.0 70.2 91.1 70.5 98.1 50.4 72.4 62.9 75.7

Table 3: Accuracy on probing tasks for large, Wikipedia pre-trained models fine-tuned on DailyDialog. Best Avg
result for each model underlined. Best Avg result in bold.
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Figure 4: Bar plot showing difference between average
scores for models trained on ordered and shuffled data.

average score. Tables 2 and 3 show that this pattern
also generally applies at the task level, not just in
terms of average score.

Closer inspection, however, reveals one excep-
tion. Combined representations from both the small
and large models consistently outperform GloVe
on the DailyDialog Topic task. This is the only
task that is derived from the DailyDialog test data,
which follows the same distribution as the dialogs
used for training the models. This suggests that
lack of generalization can partly explain the weak
performance on other tasks. It is also worth noting
that DailyDialog Topic is labeled at the conversa-
tion level rather than the turn level. Thus, identify-
ing the correct label does not necessarily require
reasoning about turn-level interactions (unlike Dia-
logueNLI, for example).

The poor performance on the majority of tasks,
relative to the simple GloVe baseline, leads us to
conclude that standard dialog models trained from
scratch struggle to learn the basic conversational
skills examined here. Large, pre-trained models do
not seem to master these skills either, with perfor-
mance on par with the baselines.

5.3 Effect of Dialog Structure

Tables 4 and 5 summarize the results of the pertur-
bation experiments. Figure 4 shows the difference
in average performance between the ordered and
shuffled models. We show results for the encoder
states since these representations are important for
encoding the conversation history, as discussed in
section 5.1. The encoder states are also sensitive
to word and utterance order, unlike averaging the
word embeddings. So if a model can fully exploit
the dyadic, turn-taking, structure of dialog, this is
likely to be reflected in the encoder state represen-
tations.

In most of our experiments, models trained on or-
dered data outperformed models trained on shuffled
data, as expected. We can see in figure 4, that av-
erage scores for ordered models were often higher
than for shuffled models. However, the absolute
gap in performance was at most 2%, which is a
minute difference in practice. And even though or-
dered models achieved higher accuracy on average,
if we examine individual tasks in tables 4 and 5, we
can find instances where the shuffled models out-
performed the ordered ones for each of the tested
architectures, sizes, and initialization strategies.

The average difference in test perplexity between
all the ordered and shuffled models was less than 2
points. This is also a minor difference in practice,
suggesting that model fit and predictions are not
substantially different when training on shuffled
data. We evaluated all the models on the ordered
DailyDialog test set to calculate perplexity. The
minimal impact of shuffling the training data sug-
gests that dialog models do not adequately lever-
age dialog structure during training. Our results
show that essentially all of the information captured
when training on ordered dialogs is also learned
when training on shuffled dialogs.

6 Limitations

Some of our conclusions assume that probing per-
formance is indicative of performance on the end-
task of dialog generation. Yet it could be the case
that certain models learn high quality representa-
tions for probing but cannot effectively use them
for generation, due to a weakness in the decoder for
example. To address this limitation, future work
could examine the relationship between probing
performance and human judgements of conversa-
tion quality. Belinkov (2018) argues more research
on the causal relation between probing and end-task
performance is required to address this limitation.

However, it is reasonable to assume that captur-
ing information about a certain probing task is a
pre-requisite to utilizing information relevant to
that task for generation. For example, a model that
cannot identify user sentiment is unlikely to use in-
formation about user sentiment for generation. We
also find that lower perplexity (better data fit) is cor-
related with better probing performance (table 6),
suggesting that probing is a valuable, if imperfect,
analysis tool for open-domain dialog systems.
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Model Test PPL TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Majority - 18.8 34.5 17.0 6.5 14.3 56.3 37.8 34.7 27.5
GloVe Mini - 83.8 70.8 91.9 71.2 98.0 48.2 75.3 54.0 74.2
RNN

Ordered 27.2 80.4 55.4 69.7 47.3 93.4 49.4 62.5 56.8 60.2
Shuffled 29.0 77.3 55.7 71.2 46.4 92.8 51.5 57.0 56.8 59.7

RNN + Attn
Ordered 26.0 77.2 59.5 80.0 57.0 95.1 49.9 64.7 59.0 67.8
Shuffled 28.8 80.2 60.8 80.8 60.7 92.9 50.8 57.9 59.3 67.9

Transformer
Ordered 29.3 67.9 54.1 68.7 47.2 85.1 49.4 57.4 55.4 60.7
Shuffled 30.8 58.6 52.1 62.6 46.4 83.5 50.4 53.5 63.8 58.9

Table 4: Perplexity and accuracy on probing tasks for small models trained with random initialization on ordered
and shuffled dialogs from DailyDialog. Results shown are for probing the encoder state. Best Avg result for each
model underlined.

Model Test PPL TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Majority - 18.8 34.5 17.0 6.5 14.3 56.3 37.8 34.7 27.5
GloVe - 86.5 70.3 91.6 70.5 97.8 49.9 75.1 54.3 74.5
RNN

Ordered 17.0 84.6 66.8 89.9 72.9 97.2 48.6 67.8 61.0 73.6
Shuffled 19.1 85.4 65.1 89.5 69.0 97.3 50.5 64.7 65.4 73.4

RNN + Attn
Ordered 16.5 85.0 65.6 90.0 73.6 97.2 47.5 70.4 63.0 74.0
Shuffled 19.6 84.1 64.9 89.9 71.1 96.6 50.3 64.7 65.4 73.4

Transformer
Ordered 19.8 71.3 58.5 70.7 57.5 88.5 50.2 58.8 64.1 65.0
Shuffled 21.4 66.1 58.0 68.8 58.0 89.6 49.0 56.3 64.2 63.8

Table 5: Perplexity and accuracy on probing tasks for large, Wikipedia pre-trained models fine-tuned on ordered
and shuffled dialogs from DailyDialog. Results shown are for probing the encoder state. Best Avg result for each
model underlined.

Models TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Scratch -0.72 -0.61 -0.65 -0.43 -0.82 -0.24 -0.99 0.40 -0.75
Pretrained -0.76 -0.80 -0.74 -0.81 -0.71 0.61 -0.93 0.65 -0.76
All -0.55 -0.84 -0.71 -0.87 -0.63 0.30 -0.73 -0.64 -0.92

Table 6: Probing performance of the encoder state negatively correlates with test perplexity. Results imply that
models with better data fit (lower perplexity) achieve better probing performance. Note that this is insufficient to
establish a causal relationship.
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7 Conclusion

We use probing to shed light on the conversational
understanding of neural dialog models. Our find-
ings suggest that standard neural dialog models
suffer from many limitations. They do not effec-
tively encode information about the conversation
history, struggle to learn basic conversational skills,
and fail to leverage the dyadic, turn-taking structure
of dialog. These limitations are particularly severe
for small models trained from scratch on dialog
data but occasionally also affect large pre-trained
models. Addressing these limitations is an inter-
esting direction of future work. Models could be
augmented with specific components or multi-task
loss functions to support learning certain skills. Fu-
ture work can also explore the relationship between
probing performance and human evaluation.
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Alan Ritter, and Dan Jurafsky. 2017a. Adversar-
ial learning for neural dialogue generation. arXiv
preprint arXiv:1701.06547.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1,
pages 1–7. Association for Computational Linguis-
tics.

140



Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017b. Dailydialog: A manu-
ally labelled multi-turn dialogue dataset. Proceed-
ings of the 8th International Joint Conference on
Natural Language Processing, pages 986–995.

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. arXiv preprint
arXiv:1603.08023.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Stephen Merity. 2016. The wikitext long term depen-
dency language modeling dataset. Salesforce Meta-
mind, 9.

Alexander H Miller, Will Feng, Adam Fisch, Jiasen Lu,
Dhruv Batra, Antoine Bordes, Devi Parikh, and Ja-
son Weston. 2017. Parlai: A dialog research soft-
ware platform. arXiv preprint arXiv:1705.06476.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Yookoon Park, Jaemin Cho, and Gunhee Kim. 2018.
A hierarchical latent structure for variational conver-
sation modeling. In NAACL (Long Papers), pages
1792–1801.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2019. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. arXiv preprint
arXiv:1909.05855.

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685.

Abdelrhman Saleh, Natasha Jaques, Asma Ghande-
harioun, Judy Hanwen Shen, and Rosalind Picard.
2019. Hierarchical reinforcement learning for open-
domain dialog. arXiv preprint arXiv:1909.07547.

Chinnadhurai Sankar, Sandeep Subramanian, Christo-
pher Pal, Sarath Chandar, and Yoshua Bengio. 2019.
Do neural dialog systems use the conversation his-
tory effectively? an empirical study. arXiv preprint
arXiv:1906.01603.

Shane Storks, Qiaozi Gao, and Joyce Y Chai. 2019.
Commonsense reasoning for natural language under-
standing: A survey of benchmarks, resources, and
approaches. arXiv preprint arXiv:1904.01172.

Sanjay Subramanian, Sameer Singh, and Matt Gardner.
2019. Analyzing compositionality of visual ques-
tion answering. Visually Grounded Interaction and
Language Workshop.

I Sutskever, O Vinyals, and QV Le. 2014. Sequence to
sequence learning with neural networks. Advances
in NIPS.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. 2019. Super-
glue: A stickier benchmark for general-purpose
language understanding systems. arXiv preprint
arXiv:1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Tong Wang, Ping Chen, John Rochford, and Jipeng
Qiang. 2016. Text simplification using neural ma-
chine translation. In Thirtieth AAAI Conference on
Artificial Intelligence.

Sean Welleck, Jason Weston, Arthur Szlam, and
Kyunghyun Cho. 2018. Dialogue natural language
inference. arXiv preprint arXiv:1811.00671.

Xu, Wu, and Wu. 2018. Towards explainable and con-
trollable open domain dialogue generation with dia-
logue acts. arXiv:1807.07255.

Yazhou Zhang, Lingling Song, Dawei Song, Peng
Guo, Junwei Zhang, and Peng Zhang. 2019. Sce-
nariosa: A large scale conversational database
for interactive sentiment analysis. arXiv preprint
arXiv:1907.05562.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi.
2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoen-
coders. In ACL (Volume 1: Long Papers), pages
654–664.

141



A Supplemental Material

A.1 Training Details
For the small RNN trained from scratch, we used
a 2-layer encoder, 2-layer decoder network with
bidirectional LSTM units with a hidden size of 256
and a word embedding size of 128. For the small
RNN with attention, we used the same architecture
but also added multiplicative attention (Luong et al.,
2015). We set dropout to 0.3 and used a batch size
of 64. We used an Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 0.005, inverse
square root decay, and 4000 warm-up updates.

For the small Transformer, we used a 2-layer en-
coder, 2-layer decoder network with an embedding
size of 400, 8 attention heads, and a feedforward
network size of 300. We set dropout to 0.3 and used
a batch size of 64. We used an Adam optimizer
with a learning rate of 0.001, inverse square root
decay, and 6000 warm-up updates.

For the large RNN pretrained on Wikitext-103
(Merity, 2016), we used a 2-layer encoder, 2-layer
decoder network with bidirectional LSTM units
with a hidden size of 1024 and a word embeddings
size of 300. For the large RNN with attention, we
used the same architecture but also included multi-
plicative attention. We set dropout to 0.3 and used
a batch size of 40. We used an Adam optimizer
with a learning rate of 0.005, inverse square root
decay, and 4000 warm-up updates.

For the large Transformer we used a 2-layer en-
coder, 2-layer decoder network with an embedding
size of 768, 12 attention heads, and a feedforward
network size of 2048. We set dropout to 0.1 and
used a batch size of 32. We used an Adam opti-
mizer with a learning rate of 0.001, inverse square
root decay, and 4000 warm-up updates.

A.2 Probing Tasks Examples
Table 7 below, lists all the probing tasks and pro-
vides examples from each task. We also include
the possible classes and training set sizes.
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Dataset |Train| Example Classes Label

TREC 5.5K [Usr1]: Why do heavier objects travel downhill
faster?

entity, number
description,
location, . . .

description

Dialogue
NLI

310K
[Usr1]: I go to college part time.
[Usr2]: You are a recent college graduate look-
ing for a job.

entail,
contradict,
neutral

contradict

MultiWOZ 8.5K

[Usr1]: I need to book a hotel.
[Usr2]: I can help you with that. What is your
price range?
[Usr1]: That doesn’t matter as long as it has free
wifi and parking.

hotel-inform,
taxi-request,
general-thank,
. . .

hotel-
inform

Schema-
Guided

16K
[Usr1]: Help me find a restaurant.
[Usr2]: Which city are you looking in?
[Usr1]: Cupertino, please.

find-restaurant,
get-ride,
reserve-flight,
. . .

find-
restaurant

SNIPS 14K [Usr1]: I want to see Outcast.

search-screening,
play-music,
get-weather,
. . .

search-
screening

Winograd
NLI

0.6K
[User1]: John couldn’t see the stage with Billy
in front of him because he is so tall.
[User2]: John is so tall.

entail,
contradict

contradict

ScenrioSA 1.9K
[Usr1]: Thank you for coming, officer.
[Usr2]: What seems to be the problem?
[Usr1]: I was in school all day and came home
to a burglarized apartment.

positive,
negative,
neutral

negative

DailyDialog
Topic

0.9K

[Usr1]: I think Yoga is suitable for me.
[Usr2]: Why?
[Usr1]: Because it doesn’t require a lot of en-
ergy.
[Usr2]: But I see people sweat a lot doing Yoga
too.

ordinary life,
work, school,
tourism, politics,
relationship, ...

ordinary
life

Table 7: Examples from the selected probing tasks.
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