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Abstract
Building conversational systems in new do-
mains and with added functionality requires
resource-efficient models that work under low-
data regimes (i.e., in few-shot setups). Moti-
vated by these requirements, we introduce in-
tent detection methods backed by pretrained
dual sentence encoders such as USE and Con-
veRT. We demonstrate the usefulness and wide
applicability of the proposed intent detectors,
showing that: 1) they outperform intent detec-
tors based on fine-tuning the full BERT-Large
model or using BERT as a fixed black-box
encoder on three diverse intent detection data
sets; 2) the gains are especially pronounced in
few-shot setups (i.e., with only 10 or 30 anno-
tated examples per intent); 3) our intent detec-
tors can be trained in a matter of minutes on a
single CPU; and 4) they are stable across dif-
ferent hyperparameter settings. In hope of fa-
cilitating and democratizing research focused
on intention detection, we release our code, as
well as a new challenging single-domain intent
detection dataset comprising 13,083 annotated
examples over 77 intents.

1 Introduction

Task-oriented conversational systems allow users
to interact with computer applications through con-
versation in order to solve a particular task with
well-defined semantics, such as booking restau-
rants, hotels and flights (Hemphill et al., 1990;
Williams, 2012; El Asri et al., 2017), providing
tourist information (Budzianowski et al., 2018), or
automating customer support (Xu et al., 2017).

Intent detection is a vital component of any task-
oriented conversational system (Hemphill et al.,
1990; Coucke et al., 2018). In order to understand
the user’s current goal, the system must leverage its
intent detector to classify the user’s utterance (pro-
vided in varied natural language) into one of several

∗Equal contribution. TT is now at the Oxford University.

predefined classes, that is, intents.1 Scaling intent
detectors (as well as conversational systems in gen-
eral) to support new target domains and tasks is
a very challenging and resource-intensive process
(Wen et al., 2017; Rastogi et al., 2019). The need
for expert domain knowledge and domain-specific
labeled data still impedes quick and wide deploy-
ment of intent detectors. In other words, one crucial
challenge is enabling effective intent detection in
low-data scenarios typically met in commercial
systems, with only several examples available per
intent (i.e., the so-called few-shot learning setups).

Transfer learning on top of pretrained sentence
encoders (Devlin et al., 2019; Liu et al., 2019b,
inter alia) has now established as the mainstay
paradigm aiming to mitigate the bottleneck with
scarce in-domain data. However, directly applying
the omnipresent sentence encoders such as BERT
to intent detection may be sub-optimal. 1) As
shown by Henderson et al. (2019b), pretraining
on a general language-modeling (LM) objective
for conversational tasks is less effective than con-
versational pretraining based on the response se-
lection task and conversational data (Henderson
et al., 2019c; Mehri et al., 2019). 2) Fine-tuning
BERT and its variants is very resource-intensive as
it assumes the adaptation of the full large model.
Moreover, in few-shot setups fine-tuning may re-
sult in overfitting. From a commercial perspective,
these properties lead to extremely slow, cumber-
some, and expensive development cycles.

Therefore, in this work we propose to use ef-
ficient dual sentence encoders such as Universal
Sentence Encoder (USE) (Cer et al., 2018) and
ConveRT (Henderson et al., 2019b) to support in-
tent detection. These models are in fact neural

1For instance, in the e-banking domain intents can be lost
card or failed top-up (see Table 2). The importance of intent
detection is also illustrated by the fact that getting the intent
wrong is the first point of failure of any conversational agent.
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architectures tailored for modeling sentence pairs
(Henderson et al., 2019c; Humeau et al., 2020), and
are trained on a conversational response selection
task. As such, they inherently encapsulate conver-
sational knowledge needed for (few-shot) intent de-
tection. We discuss their advantage over LM-based
encoders, and empirically validate the usefulness
of conversational pretraining for intent detection.
We show that intent detectors based on fixed USE
and ConveRT encodings outperform BERT-backed
intent detectors across the board on three diverse
intent detection datasets, with prominent gains es-
pecially in few-shot scenarios. Another advantage
of dual models is their compactness:2 we demon-
strate that our state-of-the-art USE+ConveRT intent
detectors can be trained even on a regular laptop’s
CPU in only several minutes.

We also show that intent classifiers based on
dual sentence encoders are largely invariant to hy-
perparameter changes. This finding is extremely
important for real-life low-data regimes: due to the
invariance, the expensive hyperparameter tuning
step can be bypassed, and a limited number of an-
notated examples can be used directly as additional
training data (instead of held-out validation data).

Another contribution of this work is a new and
challenging intent detection dataset in the banking
domain, dubbed BANKING77. It follows the very
recent endeavor of procuring high-quality intent de-
tection data (Liu et al., 2019a; Larson et al., 2019),
but is very different in nature than the other datasets.
Unlike prior work which scatters a set of coarse-
grained intents across a multitude of domains (i.e.,
10+ domains, see Table 1 later), we present a chal-
lenging single-domain dataset comprising 13,083
examples over 77 fine-grained intents. We release
the code as part of the growing PolyAI’s repos-
itory: github.com/PolyAI-LDN/polyai-models.
The BANKING77 dataset is available at: github.

com/PolyAI-LDN/task-specific-datasets.

2 Methodology: Intent Detection with
Dual Sentence Encoders

Pretrained Sentence Encoders. Large-scale pre-
trained models have benefited a wide spectrum of
NLP applications immensely (Devlin et al., 2019;
Liu et al., 2019b; Radford et al., 2019). Their core
strength lies in the fact that, through consuming
large general-purpose corpora during pretraining,

2For instance, ConveRT is only 59MB in size, pretrained
in less than a day on 12 GPUs (Henderson et al., 2019b).

they require smaller amounts of domain-specific
training data to adapt to a particular task and/or
domain (Ruder et al., 2019). The adaptation is
typically achieved by adding a task-specific out-
put layer to a large pretrained sentence encoder,
and then fine-tuning the entire model (Devlin et al.,
2019). However, the fine-tuning process is com-
putationally intensive (Zafrir et al., 2019; Hender-
son et al., 2019b), and still requires sufficient task-
specific data (Arase and Tsujii, 2019; Sanh et al.,
2019). As such, the standard full fine-tuning ap-
proach is both unsustainable in terms of resource
consumption (Strubell et al., 2019), as well as sub-
optimal for few-shot scenarios.

Dual Sentence Encoders and Conversational
Pretraining. A recent branch of sentence encoders
moves beyond the standard LM-based pretrain-
ing objective, and proposes an alternative objec-
tive: conversational response selection, typically
on Reddit data (Al-Rfou et al., 2016; Henderson
et al., 2019a). As empirically validated by Hen-
derson et al. (2019c); Mehri et al. (2019), conver-
sational (instead of LM-based) pretraining aligns
better with conversational tasks such as dialog act
prediction or next utterance generation.

Pretraining on response selection also allows
for the use of efficient dual models: the neural
response selection architectures are instantiated as
dual-encoder networks that learn the interaction
between inputs/contexts and their relevant (follow-
up) responses. Through such response selection
pretraining regimes they organically encode useful
conversational cues in their representations.

In this work, we propose to use such efficient
conversational dual models as the main source of
(general-purpose) conversational knowledge to in-
form domain-specific intent detectors. We empiri-
cally demonstrate their benefits over other standard
sentence encoders such as BERT in terms of 1) per-
formance, 2) efficiency, and 3) applicability in few-
shot scenarios. We focus on two prominent dual
models trained on the response selection task: Uni-
versal Sentence Encoder (USE) (Cer et al., 2018),
and Conversational Representations from Trans-
formers (ConveRT) (Henderson et al., 2019b). For
further technical details regarding the two models,
we refer the interested reader to the original work.

Intent Detection with dual Encoders. We imple-
ment a simple yet effective model (see §5 later)
for intent detection which is based on the two dual
models. Unlike with BERT, we do not fine-tune

github.com/PolyAI-LDN/polyai-models
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the entire model, but use fixed sentence represen-
tations encoded by USE and ConveRT. We simply
stack a Multi-Layer Perceptron (MLP) with a sin-
gle hidden layer with ReLU non-linear activations
(Maas et al., 2013) on top of the fixed representa-
tions, followed by a softmax layer for multi-class
classification. This simple formulation also allows
us to experiment with the combination of USE and
ConveRT representations: we can feed the concate-
nated vectors to the same classification architecture
without any further adjustment.

3 New Dataset: BANKING77

In spite of the crucial role of intent detection in any
task-oriented conversational system, publicly avail-
able intent detection datasets are still few and far
between, even for English. The previous standard
datasets such as Web Apps, Ask Ubuntu, the Chat-
bot Corpus (Braun et al., 2017) or SNIPS (Coucke
et al., 2018) are limited to only a small number
of classes (< 10), which oversimplifies the intent
detection task and does not emulate the true envi-
ronment of commercial systems. Therefore, more
recent work has recognized the need for improved
and more challenging intent detection datasets. 1)
The dataset of Liu et al. (2019a), dubbed HWU64,
contains 25,716 examples for 64 intents in 21 do-
mains. 2) The dataset of Larson et al. (2019),
dubbed CLINC150, spans 150 intents and 23,700
examples across 10 domains.

However, the two recent English datasets are
multi-domain, and the examples per each domain
may not sufficiently capture the full complexity of
each domain as encountered “in the wild”. There-
fore, to complement the recent effort on data collec-
tion for intent detection, we propose a new single-
domain dataset: it provides a very fine-grained
set of intents in a banking domain, not present in
HWU64 and CLINC150. The new BANKING77
dataset comprises 13,083 customer service queries
labeled with 77 intents. Its focus on fine-grained
single-domain intent detection makes it comple-
mentary to the two other datasets: we believe
that any comprehensive intent detection evaluation
should involve both coarser-grained multi-domain
datasets such as HWU64 and CLINC150, and a fine-
grained single-domain dataset such as BANKING77.
The data statistics are summarized in Table 1.

The single-domain focus of BANKING77 with a
large number of intents makes it more challenging.
Some intent categories partially overlap with others,

Dataset Intents Examples Domains

HWU64 64 25,716 21
CLINC150 150 23,700 10

BANKING77 (ours) 77 13,083 1

Table 1: Intent detection datasets: key statistics.

which requires fine-grained decisions, see Table 2
(e.g., reverted top-up vs. failed top-up). Further-
more, as other examples from Table 2 suggest, it
is not always possible to rely on the semantics of
individual words to capture the correct intent.3

4 Experimental Setup

Few-Shot Setups. We conduct all experiments
on the three intent detection datasets described in
§3. We are interested in wide-scale few-shot intent
classification in particular: we argue that this setup
most closely resembles the development process of
a commercial conversational system, which typi-
cally starts with only a small number of data points
when expanding to a new domain or task. We sim-
ulate such low-data settings by sampling smaller
subsets from the full data. We experiment with
setups where only 10 or 30 examples are available
for each intent, while we use the same standard test
sets for each experimental run.4

MLP Design. Unless stated otherwise (e.g., in
experiments where we explicitly vary hyperparam-
eters), for the MLP classifier, we use a single 512-
dimensional hidden layer. We train with stochastic
gradient descent (SGD), with the learning rate of
0.7 and linear decay. We rely on very aggressive
dropout (0.75) and train for 500 iterations to reach
convergence. We show how this training regime
can improve the model’s generalization capabil-
ity, and we also probe its (in)susceptibility to di-
verse hyperparameter setups later in §5. Low-data
settings are balanced, which is especially easy to
guarantee in few-shot scenarios.

Models in Comparison. We compare intent detec-
tors supported by the following pretrained sentence
encoders. First, in the BERT-FIXED model we use
pretrained BERT in the same way as dual encoders,
in the so-called feature mode: we treat BERT as a
black-box fixed encoder and use it to compute en-
codings/features for training the classifier.5 We use

3The examples in BANKING77 are also longer on average
(12 words) than in HWU64 (7 words) or CLINC150 (8).

4For reproducibility, we release all training subsets.
5We have also experimented with ELMo embeddings (Pe-
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Intent Class Example Utterance

Card Lost Could you assist me in finding my lost card?
Link to Existing Card I found my lost card. Am I still able to use it?
Reverted Top-up Hey, I thought my topup was all done but now the money is gone again – what’s up with that?
Failed Top-up Tell me why my topup wouldn’t go through?

Table 2: Intent classes and example utterances from BANKING77.

BANKING77 CLINC150 HWU64

Model 10 30 Full 10 30 Full 10 30 Full

BERT-FIXED 67.55 80.07 87.19 80.16 87.99 91.79 72.61 79.78 85.77
BERT-TUNED 83.42 90.03 93.66 91.93 95.49 96.93 84.86 88.27 92.10
USE 84.23 89.74 92.81 90.85 93.98 95.06 83.75 89.03 91.25
CONVERT 83.32 89.37 93.01 92.62 95.78 97.16 82.65 87.88 91.24
USE+CONVERT 85.19 90.57 93.36 93.26 96.13 97.16 85.83 90.16 92.62

Table 3: Accuracy scores (×100%) on all three intent detection data sets with varying number of training examples
(10 examples per intent; 30 examples per intent; Full training data). The peak scores per column are in bold.

the mean-pooled “sequence ouput” (i.e., the pooled
mean of the sub-word embeddings) as the sen-
tence representation.6 In the BERT-TUNED model,
we rely on the standard BERT-based fine-tuning
regime for classification tasks (Devlin et al., 2019)
which adapts the full model. We train a softmax
layer on top of the [CLS] token output. We use the
Adam optimizer with weight decay and a learning
rate of 4 × 10−4. For low-data (10 examples per
intent), mid-data (30 examples) and full-data set-
tings we train for 50, 18, and 5 epochs, respectively,
which is sufficient for the model to converge, while
avoiding overfitting or catastrophic forgetting.

We use the two publicly available pretrained dual
encoders: 1) the multilingual large variant of USE

(Yang et al., 2019),7 and 2) the single-context CON-
VERT model trained on the full 2015-2019 Reddit
data comprising 654M (context, response) training
pairs (Henderson et al., 2019b).8 In all experimen-
tal runs, we compare against the pretrained cased
BERT-large model: 24 Transformer layers, em-
bedding dimensionality 1024, and a total of 340M
parameters. Note that e.g. ConveRT is much lighter
in its design and is also pretrained more quickly
than BERT (Henderson et al., 2019b): it relies on 6
Transfomer layers with embedding dimensionality
of 512. We report accuracy as the main evaluation
measure for all experimental runs.

ters et al., 2018) in the same feature mode, but they are consis-
tently outperformed by all other models in comparison.

6This performed slightly better than using the [CLS] token
embedding as sentence representation.

7https://tfhub.dev/google/universal-sentence-encoder-
multilingual-large/1

8https://github.com/PolyAI-LDN/polyai-models

5 Results and Discussion

Table 3 summarizes the main results; we show the
accuracy scores of all models on all three datasets,
and for different training data setups. As one cru-
cial finding, we report competitive performance of
intent detectors based on the two dual models, and
their relative performance seems to also depend on
the dataset at hand: USE has a slight edge over
CONVERT on HWU64, but the opposite holds on
CLINC150. The design based on fixed sentence
representations, however, allows for the straight-
forward combination of USE and CONVERT. The
results suggest that the two dual models in fact cap-
ture complementary information, as the combined
USE+CONVERT-based intent detectors result in
peak performance across the board. As discussed
later, due to its pretraining objective, BERT is com-
petitive only in its fine-tuning mode of usage, and
cannot match other two sentence encoders in the
feature-based (i.e., fixed) usage mode.

Few-Shot Scenarios. The focus of this work is on
low-data few-shot scenarios often met in produc-
tion, where only a handful of annotated examples
per intent are available. The usefulness of dual
sentence encoders comes to the fore especially in
this setup: 1) the results indicate gains over the
fine-tuned BERT model especially for few-shot
scenarios, and the gains are more pronounced in
our “fewest-shot” setup (with only 10 annotated
examples per intent). The respective improvements
of USE+CONVERT over BERT-TUNED are +1.77,
+1.33, and +0.97 for BANKING77, CLINC150, and
HWU64 (10 examples per intent), and we also see
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BANKING77 CLINC150 HWU64

Model 10 Full 10 Full 10 Full

BERT-FIXED 64.9 (67.8) [57.0] 86.2 (88.4) [74.9] 78.1 (80.6) [70.2] 91.2 (92.6) [84.7] 71.5 (72.8) [68.0] 85.9 (86.8) [81.5]
USE 83.9 (84.4) [83.0] 92.6 (92.9) [91.4] 90.6 (91.0) [89.9] 95.0 (95.3) [93.9] 83.6 (83.9) [83.0] 91.6 (92.1) [90.7]
CONVERT 83.1 (83.4) [82.4] 92.6 (93.0) [91.6] 92.4 (92.8) [92.0] 97.1 (97.2) [96.3] 82.5 (83.1) [82.0] 91.3 (91.6) [90.8]
USE+CONVERT 85.2 (85.5) [84.8] 93.3 (93.5) [92.8] 93.2 (93.5) [92.8] 97.0 (97.2) [96.5] 85.9 (86.2) [85.7] 92.5 (92.8) [91.6]

Table 4: Variation in accuracy scores (×100%) with different hyperparameter regimes for all the models in com-
parison and on all three datasets. 10 again means 10 training examples per intent as opposed to Full training data.
The scores are provided as avg (max) [min]: avg is the average over all runs with different hyperparameter settings
for each encoder model and each setup, max and min are the respective maximum and minimum scores.

Encoder CPU GPU

BERT (Large) 2.4 235.9
USE 53.5 785.4
CONVERT 58.3 866.7

Table 5: Average number of sentences encoded per sec-
ond with the three sentence encoders. The data is fed
to each encoder in batches of 15 sentences.

Classifer CPU GPU TPU

BERT-TUNED n/a n/a 567s
USE 65s 57s n/a
CONVERT 73s 53s n/a

Table 6: Time to train and evaluate an intent classifica-
tion model based on two dual models and fine-tuning
BERT on BANKING77 in a few-shot scenario with 10
examples per intent. The CPU is a 2.3 GHz Dual-Core
Intel Core i5. The GPU is a GeForce RTX 2080 Ti, 11
GB. The TPU is a v2-8, 8 cores, 64 GB.

better results with the combined model when 30 ex-
amples per intent are available on all three datasets.
Overall, this proves the suitability of dual sentence
encoders for the few-shot intent classification task.

Invariance to Hyperparameters. A prominent
risk in few-shot setups concerns overfitting to small
data sets (Srivastava et al., 2014; Olson et al., 2018).
Another issue concerns the sheer lack of training
data, which gets even more pronounced if a sub-
set of the (already scarce) data must be reserved
for validation and hyper-parameter tuning. There-
fore, a desirable property of any few-shot intent
detector is its invariance to hyperparameters and,
consequently, its off-the-shelf usage without fur-
ther tuning on the validation set. This effectively
means that one could use all available annotated ex-
amples directly for training. In order to increase the
reliability of the intent detectors and prevent over-
fitting in few-shot scenarios, we suggest to use the
aggressive dropout regularization (i.e., the dropout
rate is 0.75), and a very large number of iterations

(500), see §4.
We now demonstrate that the intent detectors

based on dual encoders are very robust with re-
spect to different hyper-parameter choices, start-
ing from this basic assumption that a high number
of iterations and high dropout rates r are needed.
For each classifier, we fix the base/pivot config-
uration from §4: the number of hidden layers is
H = 1, its dimensionality is h = 512, the SGD op-
timizer is used with the learning rate of 0.75. Start-
ing from the pivot configuration, we create other
configurations by altering one hyper-parameter at
the time from the pivot. We probe the follow-
ing values: r = {0.75, 0.5, 0.25}, H = {0, 1, 2},
h = {128, 256, 512, 1024}, and we also try out all
the configurations with another optimizer: Adam
with the linearly decaying learning rate of 4×10−4.

The results with all hyperparameter configs are
summarized in Table 4. They suggest that intent
detectors based on dual models are indeed very
robust. Importantly, we do not observe any experi-
mental run which results in substantially lower per-
formance with these models. In general, the peak
scores with dual-based models are reported with
higher r rates (0.75), and with larger hidden layer
sizes h (1,024). On the other side of the spectrum
are variants with lower r rates (0.25) and smaller
h-s (128). However, the fluctuation in scores is not
large, as illustrated by the results in Table 4. This
finding does not hold for BERT-FIXED where in
Table 4 we do observe “outlier” runs with substan-
tially lower performance compared to its peak and
average scores. Finally, it is also important to note
BERT-TUNED does not converge to a good solution
for 2% of the runs with different seeds, and such
runs are not included in the final reported numbers
with that baseline in Table 3.

Resource Efficiency. Besides strong performance
established in Table 3 and increased stability (see
Table 4), another advantage of the two dual models
is their encoding efficiency. In Table 5 we report
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the average times needed by each fixed encoder
to encode sentences fed in the batches of size 15
on both CPU (2.3 GHz Dual-Core Intel Core i5)
and GPU (GeForce RTX 2080 Ti, 11 GB). The
encoding times reveal that BERT, when used as a
sentence encoder, is around 20 times slower on the
CPU and roughly 3 times slower on the GPU.9

Furthermore, in Table 6 we present the time re-
quired to train and evaluate an intent classification
model for BANKING77 in the lowest-data regime
(10 instances per intent).10 Note that the time reduc-
tion on GPU over CPU for the few-shot scenario is
mostly due to the reduced encoding time on GPU
(see Table 5 again). However, when operating in
the Full data regime, the benefits of GPU training
vanish: using a neural net with a single hidden layer
the overhead of the GPU usage is higher than the
speed-up achieved due to faster encoding and net-
work computations. Crucially, the reported training
and execution times clearly indicate that effective
intent detectors based on pretrained dual models
can be constructed even without large resource de-
mands and can run even on CPUs, without huge
models that require GPUs or TPUs. In sum, we
hope that our findings related to improved resource
efficiency of dual models, as well as the shared
code will facilitate further and wider research fo-
cused on the intent classification task.

Further Discussion. The results from Tables 3
and 4 show that transferring representations from
conversational pretraining based on the response
selection task (and conversational data) is useful for
conversational tasks such as intent detection. This
corroborates the main findings from prior work
(Humeau et al., 2020; Henderson et al., 2019b).
The results also suggest that using the current pre-
trained BERT as an off-the-shelf sentence encoder
is sub-optimal for an application such as intent
detection: BERT is much more powerful when
used in the fine-tuning mode instead of the less ex-
pensive “feature-based” mode (Peters et al., 2019).
This might be due to its pretraining LM objective:
while both USE and ConveRT are forced to rea-
son at the level of full sentences during the re-

9We provide a colab script to reproduce these experiments.
10Note that we cannot evaluate BERT-TUNED

on GPU as it runs out of memory. Similar prob-
lems were reported in prior work; see https:
//github.com/google-research/bert/blob/
master/README.md#squad-11 for a reference. USE
and CONVERT cannot be evaluated on TPUs as they currently
lack TPU-specific code.

sponse selection pretraining, BERT is primarily
a (local) language model. It seems that the next
sentence prediction objective is not sufficient to
learn a universal sentence encoder which can be ap-
plied off-the-shelf to unseen sentences in conversa-
tional tasks (Mehri et al., 2019). However, BERT’s
competitive performance in the fine-tuning mode,
at least in the Full data scenarios, suggests that it
still captures knowledge which is useful for intent
detection. Given strong performance of both fine-
tuned BERT and dual models in the intent detection
task, in future work we plan to investigate hybrid
strategies that combine dual sentence encoders and
LM-based encoders. Note that it is also possible to
combine BERT-FIXED with the two dual encoders,
but such ensembles, besides yielding reduced per-
formance, also substantially increase training times
(see again Table 5).

We also believe that further gains can be
achieved by increasing the overall size and depth
of dual models such as ConveRT, but this comes
at the expense of its efficiency and training speed:
note that the current architecture of ConveRT re-
lies on only 6 Transformer layers and embedding
dimensionality of 512 (cf., BERT-Large with 24
layers and 1024-dim embeddings).

6 Conclusion

We have presented intent classification models that
rely on sentence encoders which were pretrained
on a conversational response selection task. We
have demonstrated that using dual encoder models
such as USE and ConveRT yield state-of-the-art
intent classification results on three diverse intent
classification data sets in English. One of these
data sets is another contribution of this work: we
have proposed a fine-grained single-domain data
set spanning 13,083 annotated examples across 77
intents in the banking domain.

The gains with the proposed models over fully
fine-tuned BERT-based classifiers are especially
pronounced in few-shot scenarios, typically en-
countered in commercial systems, where only a
small set of annotated examples per intent can be
guaranteed. Crucially, we have shown that the pro-
posed intent classifiers are extremely lightweight
in terms of resources, which makes them widely
usable: they can be trained on a standard lap-
top’s CPU in several minutes. This property holds
promise to facilitate the development of intent clas-
sifiers even without access to large computational

https://github.com/google-research/bert/blob/master/README.md#squad-11
https://github.com/google-research/bert/blob/master/README.md#squad-11
https://github.com/google-research/bert/blob/master/README.md#squad-11
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resources, which in turn also increases equality and
fairness in research (Strubell et al., 2019).

In future work we will port the efficient intent de-
tectors based on dual encoders to other languages,
leveraging multilingual pretrained representations
(Chidambaram et al., 2019). This work has also
empirically validated that there is still ample room
for improvement in the intent detection task espe-
cially in low-data regimes. Therefore, similar to
recent work (Upadhyay et al., 2018; Khalil et al.,
2019; Liu et al., 2019c), we will also investigate
how to transfer intent detectors to low-resource
target languages in few-shot and zero-shot scenar-
ios. We also plan to extend the models to handle
out-of-scope prediction (Larson et al., 2019).

We have released the code and the data
sets online at: github.com/PolyAI-LDN/

polyai-models.
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Pei-Hao Su, Ivan Vulić, et al. 2019b. Con-
veRT: Efficient and accurate conversational rep-
resentations from transformers. arXiv preprint
arXiv:1911.03688.

Matthew Henderson, Ivan Vulić, Daniela Gerz, Iñigo
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