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Introduction
Ahmed Hassan Awadallah, Yu Su, Huan Sun, Wen-tau Yih

Natural language interfaces (NLIs) have been the "holy grail" of human-computer interaction and
information search for decades. However, early attempts in building NLIs to databases did not achieve the
expected success due to limitations in language understanding capability, extensibility and explainability,
among others. The last 5 years have seen a major resurgence of NLIs in the form of virtual assistants,
dialogue systems, and semantic parsing and question answering systems. The horizon of NLIs has also
been significantly expanding beyond databases to, e.g., knowledge bases, robots, Internet of Things, Web
service APIs, and more.

This has been driven by a number of profound revolutions: (1) In the big data era, and as digitalization
continues to grow, there is a rapidly growing demand for interfaces that connect users to the ever-
expanding data sources, services and devices in the computing world. NLIs represent a very promising
technology to accomplish that as they provide users with a unified way to interact with the entire
computing world using language, their natural way of communication, and (2) the renaissance and
development of deep learning have brought us from rule and feature engineering to a world of neural
architecture and data engineering, promising better language understanding, adaptability and scalability.
As a result, many commercial systems like Amazon Alexa, Apple Siri, and Microsoft Cortana, as well
as academic studies on NLIs to a wide range of backends have emerged in recent years.

Many research communities have been advancing NLI technologies in recent years: NLP and machine
learning, data management and databases, programming language, human-machine interaction, among
others. This workshop aims to bring together researchers and practitioners from related communities to
review the recent advances and revisit the challenges that led to the failure of earlier NLI systems, and
discuss what the remaining challenges are and what to expect in the short- and long-term future.

This workshop is featured by a strong, diverse lineup of invited speakers: Monica Lam’s research
on virtual assistants stems from a programming language perspective and emphasizes openness and
privacy, Percy Liang is a leading researcher on natural language interaction and machine learning, and
is also leading Microsoft’s development of next-generation conversation systems, H V Jagadish is a
pioneer on database usability and NLIs to databases, Joyce Chai has made fundamental contributions to
human-robot interaction, Luke Zettlemoyer is a world-renowned expert in semantic parsing, question
answering, and natural language processing in general, and Imed Zitouni is an industrial leader on
conversational AI with decades of experience at IBM, Microsoft, and Google. The program is also
featured by many innovative and forward-looking papers that explore different aspects of NLIs, ranging
from compositionality to personalization to data to generation to deployment and interactive learning.
We warmly welcome everyone to the workshop, and hope you will enjoy the rich program that covers
the past, the present, and the future of NLIs from different research communities.
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Abstract

Knowledge-based question answering (KB-
QA) has long focused on simple questions
that can be answered from a single knowl-
edge source, a manually curated or an auto-
matically extracted KB. In this work, we look
at answering complex questions which often
require combining information from multiple
sources. We present a novel KB-QA system,
MULTIQUE, which can map a complex ques-
tion to a complex query pattern using a se-
quence of simple queries each targeted at a
specific KB. It finds simple queries using a
neural-network based model capable of col-
lective inference over textual relations in ex-
tracted KB and ontological relations in curated
KB. Experiments show that our proposed sys-
tem outperforms previous KB-QA systems on
benchmark datasets, ComplexWebQuestions
and WebQuestionsSP.

1 Introduction

Knowledge-based question answering (KB-QA)
computes answers to natural language questions
based on a knowledge base. Some systems use
a curated KB (Bollacker et al., 2008), and oth-
ers use an extracted KB (Fader et al., 2014). The
choice of the KB depends on its coverage and
knowledge representation: a curated KB uses on-
tological relations but has limited coverage, while
an extracted KB offers broad coverage with tex-
tual relations. Commonly, a KB-QA system finds
answers by mapping the question to a structured
query over the KB. For instance, example question
1 in Fig. 1 can be answered with a query (Rihanna,
place of birth, ?) over a curated KB or (Rihanna,
‘was born in’, ?) over an extracted KB.

Most existing systems focus on simple ques-
tions answerable with a single KB. Limited efforts
have been spent to support complex questions that

∗ NB and XZ contributed equally to this work.

2. What college did the author of ‘The Hobbit’ attend?
nesting

3. Which Portuguese speaking countries import fish from Brazil?
conjunction

1. Where was Rihanna born?
simple

Figure 1: Simple vs Complex questions.

require inference over multiple relations and enti-
ties. For instance, to answer question 2 in Fig. 1,
we need to infer relations corresponding to expres-
sions ‘author of’ and ‘attend’. In practice, a sin-
gle KB alone may not provide both high coverage
and ontological knowledge to answer such ques-
tions. A curated KB might provide information
about educational institutions, while an extracted
KB might contain information about authorship.
Leveraging multiple KBs to answer complex ques-
tions is an attractive approach but is seldom stud-
ied. Existing methods assume a simple abstrac-
tion (Fader et al., 2014) over the KBs and have
limited ability to aggregate facts across KBs.

We aim to integrate inference over curated and
extracted KBs for answering complex questions.
Combining information from multiple sources of-
fers two benefits: evidence scattered across multi-
ple KBs can be aggregated, and evidence from dif-
ferent KBs can be used to complement each other.
For instance, inference over ontological relation
book author can benefit from textual relation ‘is
written by’. On the other hand, evidence matching
‘attend’ may exclusively be in the curated KB.

Example 1 What college did the author of ’The
Hobbit’ attend?
Simple Queries:
G1: The Hobbit ‘is wrtten by’ ?a.
G2: ?b person.education ?c . ?c institution ?x.

Join: G = G1 join?a=?b G2

Evaluate: ans = University of Oxford

In this work, we propose a novel KB-QA sys-

1
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The Hobbit ?a
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?a The Hobbit
book_author

The Hobbit ?a
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✓
✓
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JRR Tolkien
person.education
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JRR Tolkien place_of_birth ?x

✓

The Hobbit ?x

“is written by” person.education

institution The Hobbit ?x

book_author person.education

institution

Figure 2: Partial queries and derivations.

tem, MULTIQUE, which constructs query patterns
to answer complex questions from simple queries
each targeting a specific KB. We build upon recent
work on semantic parsing using neural network
models (Bao et al., 2016; Yih et al., 2015) to learn
the simple queries for complex questions. These
methods follow an enumerate-encode-compare
approach, where candidate queries are first col-
lected and encoded as semantic vectors, which are
then compared to the vector representation of the
question. The candidate with the highest semantic
similarity is then executed over the KB. We pro-
pose two key modifications to adapt these mod-
els to leverage information from multiple KBs and
support complex questions. First, to enable col-
lective inference over ontological and textual rela-
tions from the KBs, we align the different relation
forms and learn unified semantic representations.
Second, due to the lack of availability of fully-
annotated queries to train the model, we learn with
implicit supervision signals in the form of answers
for questions. Our main contributions are:
• We propose a novel KB-QA system, MULTI-

QUE, that combines information from curated
and extracted knowledge bases to answer com-
plex questions. To the best of our knowledge,
this is the first attempt to answer complex ques-
tions from multiple knowledge sources.
• To leverage information from multiple KBs, we

construct query patterns for complex questions
using simple queries each targeting a specific
KB. (Section 3 and 5).
• We propose a neural-network based model that

aligns diverse relation forms from multiple KBs
for collective inference. The model learns to
score simple queries using implicit supervision
from answers to complex questions (Section 4).
• We provide extensive evaluation on benchmarks

demonstrating the effectiveness of proposed

question

Candidates Generation extracted KB

Scoring and Evaluation

Query Composition

Composition Tree

curated KB

Partial Queries

answers

derivations

Ranker

best query

Figure 3: System Architecture

techniques on questions of varying complexity
and KBs of different completeness (Section 6).

2 Task and Overview

Our goal is to map a complex question Q to a
query G, which can be executed against a com-
bination of curated KB Kc and extracted KB Ko.
Knowledge Bases. The background knowledge
source K=

⋃{Kc, Ko} is denoted as K=(V, E ,R),
where V is the set of entities and E is a set of triples
(s, r, o). A triple denotes a relation r ∈ R between
subject s ∈ V and object o ∈ V . The relation set
R is a collection of ontological relations Ro from
Kc and textual relations Rt from Ko. A higher
order relation is expressed using multiple triples
connected using a special CVT node.

Complex Question, Q corresponds to a query G
which has more than one relation and a single
query focus ?x. G is a sequence of partial queries
G = (G1, G2, .., Go) connected via different join
conditions. A partial query has four basic ele-
ments: a seed entity sr is the root of the query, a
variable node ov corresponds to an answer to the
query, a main relation path (sr, p, ov) is the path
that links sr to ov by one or two edges from either
Ro or Rt, and constraints take the form of an en-
tity linked to the main relation by a relation c. By
definition, each partial query targets a specific KB.

A composition tree C describes how the query
G is constructed and evaluated given the partial
queries. It includes two functions, simQA and join.
simQA is the model for finding simple queries. It
enumerates candidates for a simple query, encodes
and compares them with the question representa-
tion, and evaluates the best candidate. join de-
scribes how to join two partial queries i.e. whether
they share the query focus or another variable
node. Fig. 2 shows the partial queries and com-
position tree for the running example 1.
Overview. Given a complex input question, the
task is to first compute a composition tree that de-
scribes how to break down the inference into sim-
ple partial queries. We then have to gather can-
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main relation path and constraints

derivations

s1 The Hobbit

seed entity

s2
The Hobbit ?x

“written by”

s4
The Hobbit ?x

book.author

main relation path and constraints

s5 JJR Tolkien

s6 1937
s3

The Hobbit ?x

publication.book publication.year

s7
JJR Tolkien college is_a

?xeducation institution s8
The Hobbit

“written by”

?x

is_a

school

?ieeducation

institution

seed entity

transition

Figure 4: Example Candidate Generation for the running example 1.

didates for each partial query from both curated
and extracted KBs. For each candidate, we have
to measure its semantic similarity to the question
using a neural-network based model that should
be capable of inference over different forms of re-
lations. We then have to join the different partial
queries to find the complex query for the question.
Since there can be multiple ways to answer a com-
plex question, we derive several full query deriva-
tions. We rank them based on the semantic sim-
ilarity scores of their partial queries, query struc-
ture and entity linking scores. We execute the best
derivation over the multiple KBs. Fig. 3 shows the
architecture of our proposed system, MULTIQUE.

3 Partial Query Candidate Generation

We first describe how we find candidates for par-
tial queries given an input question. We use a
staged generation method with staged states and
actions. Compared to previous methods (Yih et al.,
2015; Luo et al., 2018) which assume a question
has one main relation, our strategy can handle
complex questions which have multiple main re-
lations (and hence partial queries). We include a
new action At that denotes the end of the search
for a partial query and transition to a state St. State
St refers back to the composition tree to deter-
mine the join condition between the current par-
tial query and the next query. If they share an
answer node, candidate generation for the sub-
sequent query can resume independently. Other-
wise, it waits for the answers to the current query.

We generate (entity, mention) pairs for a ques-
tion using entity linking (Bast and Haussmann,
2015) and then find elements for query candidates.
Fig. 4 depicts our staged generation process.
Identify seed entity. The seed sr for a partial
query is a linked entity in the question or an an-
swer of a previously evaluated partial query.
Identify main relation path. Given a seed entity,
we consider all 1-hop and 2-hop paths p. These
include both ontological and textual relations. The
other end of the path is the variable node ov.

Identify constraints. We next find entity and type
constraints. We consider entities that can be con-
nected using constraint relations is a relations1 to
the variable node ov. We also consider entities
connected to the variables on the relation path via
a single relation. We consider all subsets of con-
straints to enable queries with multiple constraints.
Transition to next partial query. Once candi-
dates of a partial query Gi are collected, we re-
fer to the composition tree to determine the start
state of the next partial queryGi+1. If the next op-
eration is simQA, we compute the semantic simi-
larity of the candidates of Gi using our semantic
matching model and evaluate K-best candidates.
The answers form the seed for collecting candi-
dates for Gi+1. Otherwise, candidate generation
resumes with non-overlapping entity links in Gi.

4 Semantic Matching

We now describe our neural-network based model
which infers over different relation forms and
computes the semantic similarity of a partial query
candidate to the question.

4.1 Model Architecture

Fig. 5 shows the architecture of our model. To en-
code the question, we replace all seed (constraint)
entity mentions used in the query by dummy to-
kens wE (wC). To encode the partial query, we
consider its query elements, namely the main rela-
tion path and constraint relations. Given the vector
representations q for the question Q and g for the
partial query Gi, we concatenate them and feed a
multi-layer perceptron (MLP). The MLP outputs
a scalar which we use as the semantic similarity
Ssem(Q,Gi). We describe in detail the encod-
ing methods for the question and different relation
forms in the main relation path. We also describe
other design elements and the learning objective.

Encoding question. We encode a question Q us-
ing its token sequence and dependency structure.

1common.topic.notable types,common.topic.notable for
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Figure 5: Semantic Matching Model

Since a complex question tends to be long, encod-
ing its dependency tree captures any long-range
dependencies. Let 〈w1, w2, . . . , wn〉 be the tokens
inQ, where seed (constraint) entity mentions have
been replaced with wE (wC). We map the tokens
to vectors 〈qw1 , qw2 , . . . , qwn 〉 using an embedding
matrix Ew and use an LSTM to encode the se-
quence to a latent vector qw. Similarly, we encode
the dependency tree into a latent vector qdep.

Encoding main relation path. The main relation
path can have different forms, a textual relation
from Ko or an ontological relation from Kc. In
order to collectively infer over them in the same
space, we first align the textual relations to onto-
logical relations. For instance, we find textual re-
lations‘is author of’, ‘written by’ can be aligned
to ontological relation book.author. We describe
how we derive the relation alignments in Sec. 4.2.
Given a relation alignment, we encode each rela-
tion form i in the alignment to a latent vector ri.
We apply a max pooling over the latent vectors
of different relations in the alignment to obtain
a unified semantic representation over the differ-
ent relation forms. Doing so enables the model to
learn better representations of an ontological rela-
tion which has complementary textual relations.

To encode each relation form into vector ri, we
consider both sequence of tokens and ids (Luo
et al., 2018). For instance, the id sequence of the
relation in Fig. 5 is {book author}, while its token
sequence is {‘book’, ‘author’}. We embed the to-
kens into vectors using an embedding matrix and
use average embedding rw as the token-level rep-
resentation. We translate the relation directly us-
ing another embedding matrixEr of relation paths
to derive its id-level representation ridi . The vector
representation of a path then is ri = [rwi ; r

id
i ].

Encoding constraints. Similarly, we encode the
constraint relations ci in by combining its token-
level representation cwi and id-level representation
cidi . Given the unified vector representation of a re-
lation path, and the latent vectors of the constraint
relations, we apply max pooling to obtain the com-
positional semantic representation g of the query.

Attention mechanism. Simple questions contain
expressions for matching one main relation path.
A complex question, however, has expressions for
matching multiple relation paths, which could in-
terfere with each other. For instance, words ‘col-
lege’ and ‘attend’ can distract the matching of the
phrase ‘author of’ to the relation book.author. We
mitigate this issue by improving the question rep-
resentation using an attention mechanism (Luong
et al., 2015). The idea is to learn to emphasize
parts of the question that are relevant to a con-
text derived using the partial query vector g. For-
mally, given all hidden vectors ht at time step
t ∈ {1, 2, . . . , n} of the token-level representation
of the question, we derive a context vector c as the
weighted sum of all the hidden states:

c =
n∑

t=1

αtht

where αt corresponds to an attention weight. The
attention weights are computed as:

α = softmax(Wtanh(Wqq
w +Wgg))

whereW,Wg,Wq are network parameters. The at-
tention weights indicate how much the model fo-
cuses on each token given a partial query.

Objective function. We concatenate the context
vector c, question dependency vector qdep and
query vector g and feed to a multi-layer perceptron
(MLP). It is a feed-forward neural network with

4



two hidden layers and a scalar output neuron indi-
cating the semantic similarity score Ssem(q,Gi).
We train the model using cross entropy loss,

loss = ylog(Ssem) + (1− y)log(1− Ssem)

where y ∈ {0, 1} is a label indicating whether Gi

is correct or not. Training the model requires a)
an alignment of equivalent relation forms, and b)
examples (question, partial query) pairs. We de-
scribe how we generate them given QA pairs.

4.2 Relation Alignment
An open KB has a huge vocabulary of relations.
Aligning the textual relations to ontological re-
lations for collective inference can become chal-
lenging if the textual relations are not canonical-
ized. We, first learn embeddings for the textual
relations and cluster them to obtain canonicalized
relation clusters (Vashishth et al., 2018). For in-
stance, a cluster can include both ‘is author of’
and ‘authored’. We use the canonicalized textual
relations to derive an alignment to the ontological
relations. We derive this alignment based on the
support entity pairs (s, o) for a pair of ontological
relation and canonicalized textual relation. For in-
stance, relations ‘is author of’ and book.author in
our example question will share more entities than
relations ‘is author of’ and education.institution.
The alignment is based on a support threshold i.e.
minimum number of support entity pairs for a pair
of relations. In our experiments, we set the thresh-
old to 5 to avoid sparse and noisy signals in the
alignment.

4.3 Implicit Supervision
Obtaining questions with fully-annotated queries
is expensive, especially when queries are complex.
In contrast, obtaining answers is easier. In such
a setting, the quality of a query candidate is of-
ten measured indirectly by computing the F1 score
of its answers to the labeled answers (Peng et al.,
2017a). However, for complex questions, answers
to the partial queries may have little or no overlap
with the labeled answers. We, therefore, adopt an
alternative scoring strategy where we estimate the
quality of a partial query as the best F1 score of all
its full query derivations. Formally, we compute a
score V (G

(k)
i ) for a partial query as:

V (G
(k)
i ) = max

i≤t≤n−1
F1(D

(k)
t+1)

where Dt denotes the derivation at level t and n

denotes the number of partial queries.

Such implicit supervision can be susceptible to
spurious derivations which happen to evaluate to
the correct answers but do not capture the seman-
tic meaning of a question. We, thus, consider ad-
ditional priors to promote true positive and false
negative examples in the training data. We use
L(Q,G

(k)
i ) as the ratio of number of words in the

relations ofG(k)
i that are mentioned in the question

Q. We also use C(Q,G(k)
i ) as the fraction of re-

lation words that hit a small hand-crafted lexicon
of co-occurring relation and question words. We
estimate the quality of a candidate as: V (G

(k)
i ) +

γ L(Q,G
(k)
i ) + δ C(Q,G

(k)
i ). We consider a can-

didate a positive example if its score is larger than
a threshold (0.5) and negative otherwise.

5 Query Composition

In this work, we focus on constructing complex
queries using a sequence of simple partial queries,
each with one main relation path. Since the orig-
inal question does not have to be chunked into
simple questions, constructing composition trees
for such questions is fairly simple. Heuristi-
cally, a composition tree can simply be derived
by estimating the number of main relations (verb
phrases) in the question and the dependency be-
tween them (subordinating or coordinating). We
use a more sophisticated model (Talmor and Be-
rant, 2018) to derive the composition tree. The
post-order traversal of the tree yields the order in
which partial queries should be executed.

Given a computation tree, we adopt a beam
search and evaluate best k candidates for a partial
query at each level. This helps maintain tractabil-
ity in the large space of possible complex query
derivations. The semantic matching model only
independently scores the partial queries and not
complete derivations. We, thus, need to find the
best derivation that captures the meaning of the
complex input question. To determine the best
derivation, we aggregate the scores over the par-
tial queries and consider additional features such
as entities and structure of the query. We train
a log-linear model on a set of (question-answer)
pairs using features such as semantic similarity
scores, entity linking scores, number of constraints
in the query, number of variables, number of rela-
tions and number of answer entities. Given the
best scoring derivation, we translate it to a KB
query and evaluate it to return answers to the ques-
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tion. Such an approach has been shown to be suc-
cessful in answering complex questions over a sin-
gle knowledge base (Bhutani et al., 2019). In this
work, we extend that approach to scenarios when
multiple KBs are available.

6 Experiments

We present experiments that show MULTIQUE

outperforms existing KB-QA systems on complex
questions. Our approach to construct queries from
simple queries and aggregate multiple KBs is su-
perior to methods which map questions directly to
queries and use raw text instead.

6.1 Experimental Setup

Datasets. We use two benchmark QA datasets:
• CompQWeb (Talmor and Berant, 2018): A

recent dataset with highly complex questions
with compositions, conjunctions, superlatives
and comparatives. It contains 34,689 questions,
split into 27,734 train, 3,480 dev and 3,475 test
cases. For simplicity of evaluation, we only re-
serve questions with compositions and conjunc-
tions (90% of the dataset).
• WebQSP (Yih et al., 2016): It contains 4,737

questions split into 3,098 train and 1,639 test
cases. Most of the questions are simple; only
4% questions have multiple constraints (Yin
et al., 2015). We evaluate on this dataset to
demonstrate our proposed methods are effective
on questions of varying complexity.

Knowledge Bases. We use the Freebase2 dump as
the curated KB. We construct an extracted KB us-
ing StanfordOpenIE (Angeli et al., 2015) over the
snippets released by (Talmor and Berant, 2018) for
CompQWeb and (Sun et al., 2018) for WebQSP.
Evaluation Metric. We report averaged F1 scores
of the predicted answers. We additionally com-
pute precision@1 as the fraction of questions that
were answered with the exact gold answer.
Baseline systems. We compare against two sys-
tems that can handle multiple knowledge sources.
• GraftNet+ (Sun et al., 2018): Given a ques-

tion, it identifies a KB subgraph potentially con-
taining the answer, annotates it with text and
performs a binary classification over the nodes
in the subgraph to identify the answer node(s).
We point that it collects subgraphs using 2-hop
paths from a seed entity. Since this cannot scale

2http://commondatastorage.googleapis.com/freebase-
public/rdf/freebase-rdf-2015-08-02-00-00.gz

for complex questions which can have arbitrary
length paths, we follow our query composition
strategy to generate subgraphs. We annotate
the subgraphs with snippets released with the
datasets. We call this approach GraftNet+.
• OQA (Fader et al., 2014): It is the first KB-QA

system to combine curated KB and extracted
KB. It uses a cascade of operators to paraphrase
and parse questions to queries, and to rewrite
and execute queries. It does not generate a uni-
fied representation of relation forms across the
KBs. For comparison, we augment its knowl-
edge source with our extracted KB and evaluate
the model released by the authors.

Several other KB-QA systems (Cui et al., 2017;
Abujabal et al., 2017; Bao et al., 2016) use only
Freebase and handle simple questions with a few
constraints. SplitQA (Talmor and Berant, 2018)
and MHQA (Song et al., 2018) handle complex
questions, but use web as the knowledge source.
Implementation Details. We used NVIDIA
GeForce GTX 1080 Ti GPU for our experiments.
We initialize word embeddings using GloVe (Pen-
nington et al., 2014) word vectors of dimension
300. We use BiLSTMs to encode the question to-
ken and dependency sequences. We use 1024 as
the size of hidden layer of MLP and sigmoid as
the activation function.

6.2 Results and Discussion

We evaluate several configurations. We consider
candidates from curated KB as the only available
knowledge source to answer questions and use it
as a baseline (cKB-only). To demonstrate that in-
ference over curated KB can benefit from open
KB, we consider diverse relation forms of curated
KB facts from open KB (cKB+oKB). Lastly, we
downsample the curated KB candidates to 90%,
75% and 50% to simulate incompleteness in KB.
Effectiveness on complex questions. Our pro-
posed system outperforms existing approaches on
answering complex questions (Table 1). Even
though both MULTIQUE and GraftNet+ use the
same information sources, our semantic matching
model outperforms node classification. Also, us-
ing extracted facts instead of raw text enables us
to exploit the relations between entities in the text.
We also achieve significantly higher F1 than OQA
that uses multiple KB but relies on templates for
parsing questions to queries directly and does not
deeply integrate information from multiple KBs.
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Method CompQWeb WebQSP

MULTIQUE (cKB-only) 31.24/37.61 61.16/69.84
MULTIQUE (cKB+oKB) 34.62/41.23 57.49/67.51

MULTIQUE (90%cKB+oKB) 27.15/30.21 55.47/65.42
MULTIQUE (75%cKB+oKB) 25.54/28.09 50.64/60.17
MULTIQUE (50%cKB+oKB) 18.57/20.51 41.72/50.82

GraftNet+ (Sun et al., 2018) 31.96/44.78 57.21/68.98
OQA (Fader et al., 2014) 0.42/42.85 21.78/32.63
SplitQA(Talmor and Berant, 2018) -/27.50 -
MHQA (Song et al., 2018) -/30.10 -

Table 1: Average F1 / precision@1 of baseline systems
and MULTIQUE in different configurations.

In contrast, we can construct complex query pat-
terns from simple queries, and can infer over di-
verse relation forms in the KB facts. SplitQA (Tal-
mor and Berant, 2018) and MHQA (Song et al.,
2018) use a similar approach to answer complex
questions using a sequence of simpler questions,
but rely solely on noisy web data. Clearly, by com-
bining the knowledge from curated KB, we can
answer complex questions more reliably.
Effectiveness on simple questions. An evalua-
tion on simpler questions demonstrates that MUL-
TIQUE can adapt to questions of varying complex-
ity. We achieve the comparable F1 score on the
as other KB-QA systems that adopt an enumerate-
encode-compare strategy. STAGG (Yih et al.,
2015), a popular KB-QA system uses a similar
approach for candidate generation but improves
the results using feature engineering and by aug-
menting entity linking with external knowledge
and only uses curated KB. MULTIQUE uses multi-
ple KBs, and can be integrated with a better entity
linking and scoring scheme for derivations.
KB completeness. Our results show that includ-
ing information from extracted KB helps improve
inference over ontological relations and facts for
complex questions (as indicated by 3.38 F1 gain
in cKB+oKB). It instead hurts the performance on
WebQSP dataset. This can be attributed to the cov-
erage of the accompanying textual data sources of
the two datasets. We found that for only 26% of
the questions in WebQSP, an extracted fact could
be aligned with a curated KB candidate. In con-
trast, there were 55% such questions in the Com-
pQWeb. This illustrates that considering irrele-
vant, noisy facts does not benefit when curated KB
is complete. Such issues can be mitigated by using
a more robust retrieval mechanism for text snip-
pets or facts from extracted KB.

A KB-QA system must rely on an extracted

Setup CompQWeb WebQSP

No constraints 31.23/37.87 52.53/60.84
No attention 26.92/31.24 40.29/51.86
No re-ranking 29.39/36.14 55.13/62.78
No prior 30.88/36.68 57.54/64.63

Table 2: Ablation results, average F1 / precision@1, of
MULTIQUE (cKB+oKB).

KB when curated KB is incomplete. This is re-
flected in the dramatic increase in the percent-
age of hybrid queries when curated KB candidates
were downsampled (e.g., from 17% to 40% at 90%
completeness). As expected, the overall F1 drops
because the precise curated KB facts become un-
available. Despite the noise in extracted KBs, we
found 5-15% of the hybrid queries found a cor-
rect answer. Surprisingly, we find 55% of the
queries changed when the KB is downsampled to
90%, but 89% of them did not hurt the average F1.
This indicates that the system could find alterna-
tive queries when KB candidates are dropped.
Ablation Study. Queries for complex questions
often have additional constraints on the main re-
lation path. 35% of the queries in CompQWeb
had at least one constraint, while most of the
queries (85%) in WebQSP are simple. Ignoring
constraints in candidate generation and in seman-
tic matching drops the overall F1 score by 9.8%
(8.6%) on CompQWeb (WebQSP) (see Table 2).
Complex questions also are long and contain ex-
pressions for matching different relation paths. In-
cluding the attention mechanism helps focus on
relevant parts of the question and improves the re-
lation inference. We found F1 drops significantly
on CompQWeb when attention is disabled.

Re-ranking complete query derivations by ad-
ditionally considering entity linking scores and
query structure consistently helps find better
queries. We examined the quality of top-k query
derivations (see Table 3). For a large majority of
the questions, query with the highest F1 score was
among the top-10 candidates. A better re-ranking
model, thus, could help achieve higher F1 score.
We also observed that incorporating prior domain
knowledge in deriving labels for partial queries at
training was useful for complex questions.
Qualitative Analysis. The datasets also provide
queries over Freebase. We used them to analyze
the quality of our training data and the queries gen-
erated by our system. We derive labels for each
partial query candidate by comparing it to the la-
beled query. On an average, 4 candidates per ques-
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CompQWeb WebQSP
% Avg. best F1 % Avg. best F1

Top-1 35.11 34.62 69.12 57.49
Top-2 39.73 37.02 76.21 63.74
Top-5 51.12 42.08 85.05 70.00
Top-10 59.19 46.39 89.63 73.37

Table 3: Percentage of questions with the highest F1

score in the top-k derivations, and the average best F1.

tion were labeled correct. We then compare them
with the labels derived using implicit supervision.
We found on average 3.06 partial queries were true
positives and 103.08 were true negatives, with few
false positives (1.72) and false negatives (0.78).

We further examined if the queries which
achieve a non-zero F1 were spurious. We com-
pared the query components (entities, relations,
filter clauses, ordering constraints) of such queries
with labeled queries. We found high precision
(81.89%) and recall (76.19%) of query compo-
nents, indicating the queries were indeed precise.
Error Analysis. We randomly sampled 50 ques-
tions which achieve low F1 score (< 0.1) and an-
alyzed the queries manually. We found 38% er-
rors were made because of incorrect entities in the
query. 92% of the entity linking errors were made
at the first partial query. These errors get propa-
gated because we find candidate queries using a
staged generation. A better entity linking system
can help boost the overall performance. 12% of
the queries had an incorrect curated KB relation
and 18% of the queries had an incorrect extracted
KB relation. In a large fraction of cases (32%) the
predicted and true relation paths were ambiguous
given the question (e.g., kingdom.rulers vs gov-
ernment for “Which queen presides over the lo-
cation...”). This indicates that relation inference is
difficult for highly similar relation forms.
Future Work. Future KB-QA systems targeting
multiple KBs should address two key challenges.
They should model whether a simple query is an-
swerable from a given a KB or not. It should query
the reliable, extracted KBs only when the curated
KB lacks sufficient evidence. This could help im-
prove overall precision. Second, while resolving
multiple query components simultaneous is bene-
ficial, the inference could be improved if the ques-
tion representation reflected all prior inferences.

7 Related Work

KB-QA methods can be broadly classified into:

retrieval-based methods, template-based methods
and semantic parsing-based methods. Retrieval-
based methods use relation extraction (Feng et al.,
2016) or distributed representations (Bordes et al.,
2014; Xu et al., 2016) to identify answers from
the KB but cannot handle questions where mul-
tiple entities and relations have to be identified
and aggregated. Template-based methods rely
on manually-crafted templates which can encode
very complex query logic (Unger et al., 2012; Zou
et al., 2014), but suffer from the limited coverage
of templates. Our approach is inspired by (Abu-
jabal et al., 2017), which decomposes complex
questions to simple questions answerable from
simple templates. However, we learn solely from
question-answer pairs and leverage multiple KBs.

Modern KB-QA systems use neural network
models for semantic matching. These use an
encode-compare approach (Luo et al., 2018; Yih
et al., 2015; Yu et al., 2017), wherein continu-
ous representations of question and query candi-
dates are compared to pick a candidate which is
executed to find answers. These methods require
question-answer pairs as training data and focus
on a single knowledge source. Combining multi-
ple knowledge sources in KB-QA has been studied
before, but predominantly for textual data. (Das
et al., 2017b) uses memory networks and universal
schema to support inference on the union of KB
and text. (Sun et al., 2018) enriches KB subgraphs
with entity links from text documents and formu-
lates KB-QA as a node classification task. The key
limitations for these methods are that a) they can-
not handle highly compositional questions and b)
they ignore the relational structure between the en-
tities in the text. Our proposed system additionally
uses an extracted KB that explicitly models the re-
lations between entities and can compose complex
queries from simple queries.

We formulate complex query construction as a
search problem. This is broadly related to struc-
tured output prediction (Peng et al., 2017b) and
path finding (Xiong et al., 2017; Das et al., 2017a)
methods which learn to navigate the search space
using supervision from question-answer pairs.
These methods are effective for answering simple
questions because the search space is small and
the rewards to guide the search can be estimated
reliably. We extend the ideas of learning from im-
plicit supervision (Liang et al., 2016) and inte-
grate it with partial query evaluation and priors to
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preserve the supervision signals.

8 Conclusion

We have presented a new KB-QA system that uses
both curated and extracted KBs to answer com-
plex questions. It composes complex queries us-
ing simpler queries each targeting a KB. It in-
tegrates an enumerate-encode-compare approach
and a novel neural-network based semantic match-
ing model to find partial queries. Our system
outperforms existing state-of-the-art systems on
highly compositional questions, while achieving
comparable performance on simple questions.
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Abstract
Data augmentation methods are commonly
used in computer vision and speech. However,
in domains dealing with textual data, such
techniques are not that common. Most of the
existing methods rely on rephrasing, i.e. new
sentences are generated by changing a source
sentence, preserving its meaning. We argue
that in tasks with opposable classes (such as
“Positive” and “Negative” in sentiment analy-
sis), it might be beneficial to also “invert” the
source sentence, reversing its meaning, to gen-
erate examples of the opposing class. Meth-
ods that use somewhat similar intuition exist
in the space of adversarial learning, but are not
always applicable to text classification (in our
experiments, some of them were even detri-
mental to the resulting classifier accuracy). We
propose and evaluate two reversal-based meth-
ods on an NLI task of recognising a type of a
simple logical expression from its description
in plain-text form. After gathering a dataset
on MTurk, we show that a simple heuristic
using notion of negating the main verb has
potential not only on its own, but that it can
also boost existing state-of-the-art rephrasing-
based approaches.

1 Introduction

In natural language processing (NLP), the high
performance of a machine learning solution often
depends on the quality and quantity of training
data, but its collection is not always trivial (Wei
and Zou, 2019). For some tasks, such as sentiment
analysis, extensive corpora already exist, and can
be used at least as a starting point. However, in the
area of natural language interfaces (NLIs), tasks
are often very specific, and training data often has
to be collected from scratch, which can be a major
limiting factor.

Data augmentation is a family of techniques that
take an initial dataset (often limited in size) and

automatically generate more examples, with the
hope that they will introduce some realistic vari-
ability, thus reducing reliance on possibly costly
and time-consuming data collection.

In some areas, good data augmentation ap-
proaches are available and widely used. For in-
stance, to augment an image, one can scale it (Le-
cun et al., 1998) or crop it (Szegedy et al., 2015).
Data augmentation is not limited just to computer
graphics. For instance, Lee et al. (2005) proposed
an augmentation approach for a more narrow area
of schema matching. However, in NLP, usage of
data augmentation is somewhat limited (Kobayashi,
2018). Currently, it is a very active area of research,
and multiple different approaches are used. Almost
all of them, however, rely on the same fundamental
principle: to augment a sentence, generate sen-
tences that have the same meaning, but use slightly
different phrasing.

One of the limitations of such “rephrasing-based”
approaches is that when applied to a sentence la-
belled with a certain class label, they can only gen-
erate sentences that belong to the same class. For
instance, Wang and Yang (2015) proposed to re-
place certain words in a sentence with their syn-
onyms. Applying such an approach to a positive
review “This is a good movie” can result in “This is
a fantastic movie”, “This is a good film” and so on,
but all of them will still be positive reviews. In this
paper, we propose a different approach: instead of
preserving the meaning of the sentence intact, we
attempt to reverse its meaning, so that the “oppo-
site” class can also benefit from data augmentation.
To the best of our knowledge, limited attention has
been paid to investigating such approaches, with
the exception of few papers in the domain of adver-
sarial learning (Jia and Liang 2017, Niu and Bansal
2018).

Reversing polarity of a free-text snippet, such as
a movie review or a tweet, can be challenging and
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Pair Classes Sentence example Expression example Count

Particular value
= X must be ten characters LENGTH(X) = 10 93
!= X can not be 2 X 6= 2 126

Inequality
< X shall not exceed 0 X ≤ 0 239
> X is longer than 10 LENGTH(X) > 10 320

Null check
IS NULL X is blank X IS NULL 36
NOT NULL X cannot be missing X IS NOT NULL 37

Total 851

Table 1: Details of the dataset collected on MTurk for classifying the type of a logical expression, based on its
textual description. Classes are divided into three pairs, and classes in the same pair are exact opposites of each
other. I.e. negating a sentence belonging to one class should almost always result in a sentence belonging to the
other class in the same pair.

even impossible, if done automatically. In this pre-
liminary investigation we are limiting ourselves to
short, relatively technical sentences, which are very
common in NLI space. Using reversal of meaning
for data augmentation can be useful for the tasks
which have “naturally opposable” classes, for in-
stance, in voice assistant dealing with opposite ac-
tions (“Set the alarm for 7am” vs. “Unset the alarm
for 7am” or “Turn the volume down” vs. “Turn the
volume up”).

Our motivating example is understanding a logi-
cal statement, expressed as a short sentence in nat-
ural language. We were dealing with the first step
of this task, recognising one of six statement types,
which constitute three “naturally opposable” pairs.
One of such pairs is “Equal”/“Not equal”. By tak-
ing an example that belongs to “Equal” class such
as “X is equal to two”, we can reverse its mean-
ing to “X is not equal to two”, and in such way
augment “Not equal” class as well. As far as we
know, it is the first attempt to use such a technique
for textual data augmentation in text classification
tasks.

The main contributions of this paper are the fol-
lowing:

1. Dataset for a task of classifying type of logical
statement, gathered on MTurk platform and
consisting of 851 sentences, belonging to six
classes.

2. Preliminary investigation of two approaches—
Main verb inversion and Adjective and adverb
antonymy—for performing textual data aug-
mentation for tasks with “naturally opposable”
classes. Our evaluation strongly suggests that
Main verb inversion can increase the perfor-
mance of a classifier and can also generate

data, which cannot be acquired by using state-
of-the-art rephrasing-based approaches.

The rest of the paper is structured as follows. In
Section 2, we outline the task and describe data col-
lection. Section 3 follows with an overview of re-
lated research. Section 4 describes our approaches
in detail, and is followed by Section 5 outlining our
evaluation methodology. Experimental results are
discussed in Section 6, while Section 7 concludes
the paper and proposes directions for future work.

2 Task and data collection

The motivational application behind our experi-
ments is the task of translating a sentence in natural
language into a logical expression that otherwise
would have to be specified using complex and not
very user-friendly language, such as SQL (or a for-
mula editor in a tool such as Excel). This task can
be solved in different ways, and some of them rely
on inferring statement type (or its intent) as the first
step.

We were concerned with six such types that were
divided into three pairs, where classes in each pair
are exact opposites. It means that if the meaning
of a sentence from one pair class is reversed, we
get a sentence that belongs to the second class in
the same pair. An overview of all classes with
examples is given in Table 1. We were interested
in 31 logical expressions, some examples of which
are listed in Expression example column.

A variety of free-text phrases can be used to
describe the same logical expression. For instance,
“X IS NULL” can be phrased as “X is blank”,
“X should not be empty”, “X should be populated
in all cases” and so on. We wanted to get a reliable
expression type detector that would be robust to
such examples of language variability.
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We collected the data on Amazon Mechanical
Turk platform. A single HIT presented a logi-
cal statement (such as “LENGTH(X) > 0” or
“X < 0”), and a turker had to provide four signifi-
cantly different phrases, that describe the logic in
natural language.

First, we performed a quick pilot collection to
make sure that our instructions and setup make
sense, involving only Master turkers. No problems
were encountered, so we proceeded with the main
data collection, involving only turkers with accep-
tance rate on previous tasks of at least 60%. Each
HIT was completed by at least 10 workers, and we
paid $0.20 for every successful completion1.

We had to reject about 35% of submitted HITs
due to imprecise or spammy answers. Additionally,
some of the accepted answers were same, for in-
stance, expression “X IS NULL” was often tran-
scribed as “X must be empty”. After eliminating
such duplicates, we got a dataset of 851 sentences,
achieving good balance inside each pair of classes.
The resulting dataset is publicly available online2.

Next section describes existing data augmenta-
tion methods. We discuss methods that try to pre-
serve the meaning of the original sentence (majority
of them), as well as few exceptions.

3 Related research

Textual data augmentation was used in a number
of different areas, including text classification (Wei
and Zou, 2019), textual (Yu et al., 2018) or visual
question answering (Kafle et al., 2017), reading
comprehension systems (Jia and Liang, 2017) and
machine translation (Fadaee et al., 2017, Gao et al.,
2019). In fields like computer vision or speech,
there are well-established methods that work across
many applications, such as introducing random
noise into an audio clip or cropping an image. How-
ever, according to Kobayashi (2018), in the field
of NLP, it is very difficult to come up with an ap-
proach that would be easily applicable to various
tasks. It can explain existence of a variety of aug-
mentation strategies, most of which can be broadly
categorised into two big categories: strategies that
rephrase a sentence preserving its original meaning,
and strategies that deliberately change the meaning
of a sentence.

1Median completion time for a HIT was 204 seconds.
2https://github.com/

alexey-tarasov-irl/acl2020_nli_workshop

3.1 “Preserve the meaning” augmentation
All these approaches attempt rephrasing a sentence,
while keeping its original semantics. It can be done
in a variety of ways:

1. Generative approaches employ a deep gen-
erative model (Bowman et al., 2016, Hu et al.,
2017) to generate sentences with desired at-
tributes from a continuous space. According
to Wu et al. (2019), they often generate sen-
tences that aren’t readable and do not corre-
spond to the desired class labels.

2. Random permutation: new sentences are
generated by applying a very simple ran-
domised heuristic to a source sentence, such
as deleting (Iyyer et al., 2015, Wei and Zou,
2019, Xie et al., 2017) or swapping words
(Artetxe et al., 2018, Niu and Bansal, 2018).

3. Backtranslation: a source sentence is trans-
lated into a different language (pivotal lan-
guage), and then the result is translated back
into the language of the source sentence (Sen-
nrich et al., 2016, Yu et al., 2018). For ex-
ample, using German as pivotal language can
result in a sequence like “X is lower than 0”
:“X ist kleiner als 0” :“X is less than 0”.

4. Synonym usage: very commonly used strate-
gies which usually involve selecting a word
in a source sentence and then replacing it
with a synonym. Sometimes words to be re-
placed are chosen randomly (Wei and Zou,
2019), while other researchers impose some
limitations, such as only changing the head-
word (Kolomiyets et al., 2011). Ways to
find synonyms range from relatively low-tech,
such as using WordNet synsets (Wei and Zou,
2019, Zhang et al., 2015), to much more ad-
vanced approaches involving word embed-
dings (Wang and Yang, 2015) or bi-directional
deep learning models (Kobayashi, 2018, Wu
et al., 2019).

All these strategies have their own advantages
and drawbacks, so many text augmentation ap-
proaches use a hybrid strategy, such as Easy Data
Augmentation (EDA) by Wei and Zou (2019). It
uses a combination of random permutation strate-
gies and synonyms. One of its parameters naug is
the maximum number of new sentences to generate
per each source sentence. It is a recent and simple
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algorithm that embodies a lot of very commonly
used text augmentation techniques. The results of
Wei and Zou (2019) indicate that it achieves perfor-
mance similar to much more complex algorithms,
but is much quicker and doesn’t rely on external
dataset or language models.

3.2 “Change the meaning” augmentation

In some applications, it might be beneficial to delib-
erately change the meaning of a sentence, instead
of preserving it. It is often done in the domain of
adversarial learning for two purposes:

• Purpose #1: investigate whether a model can
be confused by deliberately misleading data.

• Purpose #2: make the model robust against
such adversarial attacks.

Niu and Bansal (2018) used dialogue models
to predict the next turn, based on current con-
text. They used reversal of meaning as a way to
strengthen the model, making it more robust to
changes in phrases that are very subtle yet change
the meaning completely. They investigated two
strategies3:

1. Add negation: for the first verb4 in the sen-
tence (going left to right), that doesn’t have
an outgoing neg arc in the dependency graph,
the negation is artificially added. If no nega-
tion is detected, the original sentence is re-
turned as augmented sentence (i.e. the ap-
proach always returns one sentence per each
source sentence, effectively doubling the size
of the original set).

2. Antonym: all words in the original sentence
are picked one by one, going left to right5. For
each such word, all synsets that have it are
extracted, and all words in those synsets are
explored for antonyms. The original word in
the sentence is replaced by a random antonym
from that set, and the process is over once one
word in the original sentence is successfully

3The original paper offers a limited description of the
approaches, so we relied on the accompanying source
code located at https://github.com/WolfNiu/
AdversarialDialogue.

4TreeBank POS. tags VB, VBD, VBG, VBN, VBP, VBZ.
5The paper states that it happens only for verbs, nouns,

adjectives and adverbs, but the accompanying code actually
just goes through all words, using part-of-speech only while
searching for suitable synsets.

replaced6. Thus, this strategy can increase the
size of the dataset by 100% at the most.

Both approaches have been tested in four differ-
ent conditions, varying datasets used for training
and testing:

1. Original train, original test: the perfor-
mance of the system on original test data,
when no augmentation was performed.

2. Original train, augmented test: investiga-
tion into whether the system is robust enough
to handle adversarial inputs (purpose #1 men-
tioned above).

3. Augmented train, augmented test: experi-
ment to prove that augmenting training data
with adversarial sentences makes the system
more robust (purpose #2 above).

4. Augmented train, original test: checking
whether augmenting training data helps with
the model doing better on “usual”, non-
adversarial data.

In our setup, we were looking into augmenting
training data, in order to make the classifier perform
better on original data (Condition #4). However,
Niu and Bansal (2018) failed to achieve statistically
significant increase in #4, which suggests that both
Add negation and Antonym might not be beneficial
for our task.

Another augmentation approach that deliberately
changes the meaning was proposed and evaluated
by Jia and Liang (2017), for question answering
systems. Their goal was not to make them more
robust, but to show how easy it can be to confuse
them. For each question in a corpus, they attempted
to generate an adversarial sentence by replacing
nouns and adjectives with antonyms from WordNet
(very similar to Antonym by Niu and Bansal 2018),
and change named entities and numbers to the near-
est word in GloVe word vector space. For instance,
“What ABC division handles domestic television
distribution?” would become “What NBC [ABC
replaced by a nearby word NBC] division handles

6In the original paper, each selected antonym had to also
be present somewhere in the training corpus, usually, in a
different sentence. It might be feasible if a large dataset is
available, but in our case it would have resulted in almost
no new sentences introduced. This is why we relaxed this
condition in our experiments, and let Antonyms use antonyms,
even if they are not present in any sentence in the dataset.
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foreign [WordNet antonym to ’domestic’] televi-
sion distribution?” Then, they generated a fake
answer, which couldn’t possibly be the right an-
swer for this adversarial question. The experiments
in the paper show that question answering systems
can be easily fooled and often would produce that
fake answer.

Work by Kaushik et al. (2020) serves as good
evidence that inverting sentence meaning can be
beneficial for text classification, both in terms of
overall accuracy and robustness to adversarial data.
However, instead of using automated rules, they
asked crowdsourced workers to revert the mean-
ing of a movie review, so that the document still
remains coherent and a minimum of modifications
is made.

To the best of our knowledge, automated meth-
ods from this subsection have never been applied
to text classification tasks. Next section covers two
approaches we propose in this paper.

4 Our approaches

Approach by Jia and Liang (2017), described in the
previous section, is not directly applicable to our
task, as replacing nouns and numbers won’t result
in effective negation of sentences in our dataset.
The only useful aspect—antonyms of adjectives—
is also present in paper by Niu and Bansal (2018),
which also contains other useful insights.

We propose two approaches, that enhance Add
negation and Antonym by Niu and Bansal (2018)
described in Section 3.2:

1. Main verb inversion (enhancement of Add
negation): similarly to Add negation, we add nega-
tion if it’s not there, but in addition we also remove
it if it is present.

2. Adjective and adverb antonymy (enhance-
ment of Antonym): in our experience, Antonym of-
ten produced sentences that did not make grammat-
ical sense, sentences with grammatical mistakes
or sentences that were not proper negations of the
original sentence. Table 2 provides a few examples
of such issues. The most common root causes of
such issues are the following:

1. Some antonyms selected from WordNet be-
longed to the wrong synset of the verb that
was picked for replacement. For instance, the
verb “can” is not only a modal verb, but is
also an informal US expression for remov-
ing someone from their job. This is why for
“can”, in sentences like “X can be negative”,

Antonym picked the synset with the words
“fire” and “give notice”. The synset has “hire”
as antonym, and that is the word that made
its way into the augmented sentence (“X hire
be positive”), which didn’t make sense. Simi-
lar behaviour was observed for other common
words such as “will”.

2. When the adjective is replaced, its compar-
ative/superlative form is not preserved (e.g.
if “lower” is selected for replacement, it’s re-
placed with “high”, not “higher”).

3. Due to its left-to-right nature, Antonym often
picks an improper word for replacement. For
instance, in sentence “X is no bigger than 2”,
it can’t find any antonyms for “X” and “is”,
but picks “yes” as an antonym to “no”, which
results in “X is yes bigger than 2”.

It might seem that both Add negation and
Antonym by Niu and Bansal (2018) can result in
a dataset of much lower quality, compared to the
original. However, their intention was to pollute
a sentence enough to change its meaning in some
way, or make it incomprehensible, to deliberately
confuse dialogue systems. However, we are try-
ing to achieve something much more complicated.
In our task, it’s not enough to break the meaning
of a sentence. We aim for coming up with valid
sentences that properly negate the source sentence.

This is why our main assumption is that not pro-
ducing a sentence at all is better than producing a
sentence that doesn’t make sense. We only replace
adverbs and adjectives, and only if it’s the only
adverb/adjective in the sentence, and it is directly
connected to the root. For each such sentence, we
produce a new sentence for each antonym found
in WordNet, and preserve comparative/superlative
adjective forms.

5 Experiment methodology

The goal of our experiments was to investigate
whether reversal-based data augmentation can
boost accuracy in text classification tasks. We were
concerned with two questions:

1. Is there a benefit in using reversal-based ap-
proaches, compared to not using data augmen-
tation at all (Experiment #1)?

2. Can reversal-based approaches be a useful
addition to already existing rephrasing-based
augmentation techniques (Experiment #2)?
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Source sentence A correct augmentation Augmentation by
Antonyms (Niu and Bansal, 2018)

X can be negative X can be positive X hire be positive
X must be lower than 0 X must be higher than 0 X must be high than 0
X is no bigger than 2 X is no smaller than 2 X is yes bigger than 2

Table 2: Examples where Antonym approach (Niu and Bansal, 2018) provided highly incorrect sentences (bold
text highlights mistakes that were made). See Section 4 for a detailed discussion.

5.1 Experiment #1: reversal-based
augmentation vs. no augmentation

We used a CNN7 proposed by Kim (2014), which
is commonly used for evaluating data augmenta-
tion approaches (Park and Ahn 2019, Wei and Zou
2019). We ran it separately for each augmenta-
tion approach, conducting 5-fold cross validation
augmenting only training data, leaving test parti-
tion intact. We allowed the training algorithm to
run for 50 epochs of batch gradient descent (batch
size = 64). A single sentence encoded using 50-
dimensional GloVe embeddings (Pennington et al.,
2014) was the input to the CNN (Sentence example
column from Table 1).

We benchmarked both of our reversal-based
augmentation approaches, proposed in Section 4,
against the following baselines:

1. No augmentation

2. Add negation (Niu and Bansal, 2018)

3. Antonym (Niu and Bansal, 2018)

Our dataset was well-balanced by design; how-
ever, in many real-life applications it might not be
the case. Potentially, augmentation approaches can
be especially beneficial if applied to underrepre-
sented classes. To simulate such a condition, in
each training split, before performing augmenta-
tion, we artificially removed a fraction of instances
belonging to classes “>”, “!=” and “IS NULL”
(leaving 25%, 50%, 75% intact) and only then
performed data augmentation. We also tested the
condition when no such undersampling was per-
formed, and 100% of instances of those classes
were retained.

Each experiment was conducted twenty-five
times to counteract multiple random factors present
in this setup, with average macro F1 reported as

7Parameters (tuned on the full dataset): three convolution
layers with window sizes of three, four and five (128 filters
each); dropout rate of 0.25; Adam optimizer (η = 0.001,
β1 = 0.9, β2 = 0.999).

performance metric. Wilcoxon test was used to
determine statistical significance of differences in
performance.

5.2 Experiment #2: reversal-based on top of
rephrasing-based

Even if reversal-based augmentation approaches
are useful on their own, it is possible that they
can’t bring additional benefit if a rephrasing-based
approach has already been used. To investigate this,
overall, we followed the same methodology as in
Experiment #1. Here is how we derived training
data for each experimental condition.

In each cross-fold validation split, we applied
EDA to training data8, with default values of all
parameters (including naug = 9). Then we ap-
plied an augmentation approach to the same train-
ing data, and merged its results with those coming
from EDA. As before, test splits were not aug-
mented, and we reported macro F1 score, averaged
across twenty five experiments.

If reversal-based augmentation approaches work,
CNN performance on such sets is expected to be
higher than on just EDA on its own. However,
performing EDA with naug = 9 and using it as a
baseline would not have been fair: EDA in con-
junction with any other augmentation approach is
expected to result in a bigger dataset than EDA on
its own. To make sure that any possible differences
in accuracies cannot be attributed to this, we ex-
perimentally found a value of naug = 11, which
guaranteed that the EDA baseline had a dataset,
which is larger than any other set, resulting from
applying augmentation.

6 Results

Results of Experiment #1 are given in Table 3. Both
approaches by Niu and Bansal (2018) exposed very
unreliable performance. In total, eight experiments
involved them (four undersampling scenarios mul-

8Using code from https://github.com/
jasonwei20/eda_nlp
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Augmentation approach Dataset Relative Artificial undersampling, F1
size change 25% 50% 75% 100%

No augmentation (baseline) 851 — 27.78 47.79 53.69 56.05
Antonym (Niu and Bansal, 2018) 1,591 +87% 42.24N 49.25 51.41H 54.16H
Adjective and adverb antonymy (ours) 1,173 +38% 32.20N 46.90 53.33 54.82
Add negation (Niu and Bansal, 2018) 1,702 +100% 45.20N 50.29N 52.87 53.18H
Main verb inversion (ours) 1,517 +78% 55.32N 61.59N 62.52N 63.57N

Table 3: Results of Experiment #1: no augmentation baseline is compared to four reversal-based augmentation
approaches. If an approach was significantly better than the baseline and another approach in the pair, its F1
is given in bold. H/N denote when approach was significantly worse/better than the baseline (Wilcoxon text,
p < 0.01). Relative change indicates how big was the resulting dataset after augmentation (e.g. +100% means that
it was twice the size of the original set).

Augmentation approach Dataset Relative Artificial undersampling, F1
size change 25% 50% 75% 100%

EDA (Wei and Zou, 2019), naug = 11 10,212 +1,100% 51.72 64.20 68.42 70.02
EDA (Wei and Zou, 2019), naug = 9
+ Add negation (Niu and Bansal, 2018) 9,361 +1,000% 53.45 63.75 68.51 69.82
+ Main verb inversion (ours) 9,176 +978% 57.65N 67.36N 70.46N 72.06N

Table 4: Results of Experiment #2: EDA baseline is compared to EDA in conjunction with two verb-negation-
oriented approaches. If an approach was significantly better than the others, its F1 is given in bold. N denotes
approaches that were significantly better than EDA baseline (Wilcoxon test, p < 0.01). Relative change indicates
how big was the resulting dataset after augmentation.

tiplied by two approaches). In three out of eight,
they worsened the performance of the classifier,
in another two they didn’t make any difference,
and only in remaining three they made it signifi-
cantly better. In contrast, both Main verb inversion
and Adjective and adverb antonymy improved the
performance significantly in more than half of the
experiments, compared to no augmentation base-
line. Additionally, Main verb inversion consistently
showed results that were significantly better than
both the baseline and Add negation. Usage of Ad-
jective and adverb antonymy never harmed the per-
formance, but it also rarely improved it. This is
why we dropped both Antonym and Adjective and
adverb antonymy from Experiment #2.

In Experiment #2 (Table 4), Add negation (Niu
and Bansal, 2018) failed to improve the results of
plain EDA significantly. At the same time, our
Main verb inversion was significantly better than
EDA in all experiments, which strongly suggests
that it can derive data, not easily accessible by a
rephrasing-based approach, such as EDA.

Overall, the results allow us to recommend Main
verb inversion as a promising direction for textual
data augmentation in classification tasks. Com-

pared to no augmentation baseline, it improved
macro F1 by 7.53–27.54pp (or by 13.42–99.15%),
depending on how balanced the dataset is. Main
verb inversion was especially beneficial when used
to imbalanced datasets. When used on top of EDA,
Main verb inversion was able to improve the F1
score by 2.04–5.93pp (or 2.92–11.47%).

7 Conclusions and future work

In this paper we addressed a problem of detecting a
type of a logical statement from its textual descrip-
tion. We gathered our own task-specific dataset
on MTurk, and then tried to boost the accuracy
of the resulting classifier by applying textual data
augmentation. We used two approaches (Add nega-
tion and Antonym) by Niu and Bansal (2018) from
the current research in adversarial learning. In our
experiments, neither of them could show stable im-
provement over a no-augmentation baseline. Even
worse, often they had a detrimental effect on the
macro F1 score of the resulting classifier.

We proposed two approaches: Adjective and
adverb antonymy and Main verb inversion. The
former failed to expose any benefit in our experi-
ments; however, the latter consistently performed
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better than baselines. Despite its simplicity, it
could achieve significantly better results than the
no-augmentation baseline (improvement was rang-
ing from 13% to 99%). Main verb inversion also
showed the capability to introduce information into
the training set, which is not available to state-of-
the-art rephrasing-based approaches. A combina-
tion of EDA and Main verb inversion was 3–11%
better than EDA on its own.

Main verb inversion showed promising perfor-
mance, but it might be difficult to use it to negate
sentences, expressed in less technical language
(such as tweets or movie reviews). This is why
enhancing its capabilities to other application ar-
eas seems to us like the primary direction for
future work. It’s unlikely that it can become a
widely used cross-application approach in its cur-
rent shape, but we hope that our findings will be
thought-provoking for researchers who want to pur-
sue reversal-based augmentation further. One of
the possible improvements is to rely on a black-box
model instead of heuristic rules (e.g. a sequence-to-
sequence model that takes a sentence and returns
the corresponding inverted sentence).

While verb negation/inversion showed good per-
formance, approaches based on directly seeking
antonyms proved to be ineffective. It might be in-
teresting to investigate the reasons of their failure
in more detail.
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Abstract

In this paper, we detail novel strategies for in-
terpolating personalized language models and
methods to handle out-of-vocabulary (OOV)
tokens to improve personalized language mod-
els. Using publicly available data from Red-
dit, we demonstrate improvements in offline
metrics at the user level by interpolating a
global LSTM-based authoring model with a
user-personalized n-gram model. By optimiz-
ing this approach with a back-off to uniform
OOV penalty and the interpolation coefficient,
we observe that over 80% of users receive a
lift in perplexity, with an average of 5.2% in
perplexity lift per user. In doing this research
we extend previous work in building NLIs and
improve the robustness of metrics for down-
stream tasks.

1 Introduction

Natural language interfaces (NLIs) have become
a ubiquitous part of modern life. Such interfaces
are used to converse with personal assistants (e.g.,
Apple Siri, Amazon Alexa, Google Assistant, Mi-
crosoft Cortana), to search for and gather informa-
tion (Google, Bing), and to interact with others on
social media. One developing use case is to aid
the user during composition by suggesting words,
phrases, sentences, and even paragraphs that com-
plete the user’s thoughts (Radford et al., 2019).

Personalization of these interfaces is a natural
step forward in a world where the vocabulary, gram-
mar, and language can differ hugely user to user
(Ishikawa, 2015; Rabinovich et al., 2018). Nu-
merous works have described personalization in
NLIs in audio rendering devices (Morse, 2008),
digital assistants (Chen et al., 2014), telephone in-
terfaces (Partovi et al., 2005), etc. We explore an
approach for personalization of language models

* Indicates equal contributions

(LMs) for use in downstream NLIs on composition
assistance, and replicate previous work to show
that interpolating a global long short-term mem-
ory network (LSTM) model with user-personalized
n-gram models provides per-user performance im-
provements when compared with only a global
LSTM model (Chen et al., 2015, 2019). We extend
that work by providing new strategies to interpolate
the predictions of these two models. We evaluate
these strategies on a publicly available set of Red-
dit user comments and show that our interpolation
strategies deliver a 5.2% perplexity lift. Finally,
we describe methods for handling the crucial edge
case of out-of-vocabulary (OOV) tokens1.

Specifically, the contributions of this work are:

1. We evaluate several approaches to handle
OOV tokens, covering edge cases not dis-
cussed in the LM personalization literature.

2. We provide novel analysis and selection of in-
terpolation coefficients for combining global
models with user-personalized models.

3. We experimentally analyze trade-offs and
evaluate our personalization mechanisms on
public data, enabling replication by the re-
search community.

2 Related Work

Language modeling is a critical component for
many NLIs, and personalization is a natural di-
rection to improve these interfaces.

Several published works have explored personal-
ization of language models using historical search
queries (Jaech and Ostendorf, 2018), features gar-
nered from social graphs (Wen et al., 2012; Tseng

1To the best knowledge of the authors, these edge cases
are not clearly defined in the literature when combining two
LMs trained on two different datasets.
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et al., 2015; Lee et al., 2016), and transfer learn-
ing techniques (Yoon et al., 2017). Other work
has explored using profile information (location,
name, etc.) as additional features to condition
trained models (Shokouhi, 2013; Jaech and Os-
tendorf, 2018). Specifically, in the NLI domain,
Google Smart Compose (Chen et al., 2019) produc-
tized the approach described in (Chen et al., 2015)
by using a linear interpolation of a general back-
ground model and a personalized n-gram model to
personalize LM predictions in the email authoring
setting. We view our work as a natural extension
to this line of research because strategies that im-
prove personalization at the language modeling
level drive results at the user interface level.

3 Personalized Interpolation Model

The goal of text prediction is strongly aligned with
language modeling. The task of language modeling
is to predict which words come next, given a set
of context words. In this paper, we explore using
a combination of both large scale neural LMs and
small scale personalized n-gram LMs. This combi-
nation has been studied in the literature (Chen et al.,
2015) and has been found to be performant. We
describe mechanisms for extending this previous
work in this section. Once trained, we compute the
perplexity of these models not by exponentiation of
the cross entropy, but rather by explicitly predicting
the probability of test sequences. In practice this
model is to be used to rerank sentence completion
sequences. As a result, it is impossible to ignore
the observation of OOV tokens.

3.1 Personalized n-gram LMs

Back-off n-gram LMs (Kneser and Ney, 1995)
have been widely adopted given their simplicity,
and efficient parameter estimation and discount-
ing algorithms further improve robustness (Chen
et al., 2015). Compared with DNN-based models,
n-gram LMs are computationally cheap to train,
lightweight to store and query, and fit well even
on small data—crucial benefits for personalization.
Addressing the sharp distributions and sparse data
issues in n-gram counts is critical. We rely on Mod-
ified Kneser-Ney smoothing (James, 2000), which
is generally accepted as one of the most effective
smoothing techniques.

3.2 Global LSTM
For large scale language modeling, neural network
methods can produce dramatic improvements in
predictive performance (Jozefowicz et al., 2016).
Specifically, we use LSTM cells (Hochreiter and
Schmidhuber, 1997), known for their ability to cap-
ture long distance context without vanishing gradi-
ents. By computing the softmax function on the out-
put scores of the LSTM we can extract the LSTM’s
per-token approximation as language model proba-
bilities.

3.3 Evaluation
We use perplexity (PP) to evaluate the performance
of our LMs. PP is a measure of how well a prob-
ability model predicts a sample, i.e., how well an
LM predicts the next word. This can be treated
as a branching factor. Mathematically, PP is the
exponentiation of the entropy of a probability dis-
tribution. Lower PP is indicative of a better LM.
We define lift in perplexity (PP lift) as

PP lift =
PPglobal − PPinterpolated

PPglobal
, (1)

where PPinterpolated is the perplexity of the interpo-
lated model and PPglobal is the perplexity of the
global LSTM model, which serves as the baseline.
Higher PP lift is indicative of a better LM.

3.4 Interpolation Strategies
Past work (Chen et al., 2015) has described mecha-
nisms for interpolating global models with person-
alized models for each user. Our experimentation
mixes a global LSTM model with the personalized
n-gram models detailed above2.

The interpolation is a linear combination of the
predicted token probabilities:

P = αPpersonal + (1− α)Pglobal (2)

α indicates how much personalization is added to
the global model. We explore constant values of
α, either globally or for each user. We compute
a set of oracle α values, the values of α per user
that empirically minimize interpolated perplexity.
We compare our strategies for tuning α to these
oracle α values, which present the best possible
performance on the given user data in Section 5.3.
Intuitively, users whose comments have a high pro-
portion of tokens outside the global vocabulary will

2We further detail the hyperparameters and training
scheme of our LSTM and n-gram models in the appendices.
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need more input from the global model than their
own personalized model to accurately model their
language habits. Thus, we also explore an inverse
relationship between α and each user’s OOV rate.

3.5 OOV Mitigation Strategies

When training on datasets with a large proportion
of OOV tokens, low PP may not indicate a good
model. Specifically, if the proportion of OOV to-
kens in the data is high, the model may assign too
much mass to OOV tokens resulting in a model
with a propensity to predict the OOV token. Such
a model may have low PP, but only because it fre-
quently predicts the commonly occurring OOV to-
ken. While this may be an effective model of the
pure sequence of tokens, it does not align with
downstream objectives present at the interface level
which relies on a robust prediction of non-OOV to-
kens. Because of this disconnect between model
and overall task objective, mitigation strategies
must be implemented in order to adequately evalu-
ate the performance of LMs in high OOV settings.
We evaluate the following strategies to mitigate this
behavior:

1. Do nothing, assigning OOV tokens their esti-
mated probabilities;

2. Skip the OOV tokens, scoring only those
items known in the training vocabulary; and

3. Back-off to a uniform OOV penalty, assigning
a fixed probability φ to model the likelihood
of selecting the OOV token3.

When reporting our results we denote PPbase as
PP observed when using strategy 1, PPskip as PP
observed when using strategy 2, and PPbackoff as
PP observed when using strategy 3.

4 Data

The data for our model comes from comments
made by users on the Internet social media web-
site Reddit4. Reddit is a rich source of natural-
language data with high linguistic diversity due
to posts about a variety of topics, informality of
language, and sheer volume of data. As a linguis-
tic resource, Reddit comments present in a heavily

3We consider φ to be a hyperparameter which must be
tuned for each use case. In our experiments we assign φ to be
1
V

, where V is the vocabulary size.
4We retrieved copies of www.reddit.com user comments

from https://pushshift.io/.

conversational and colloquial tone, and users fre-
quently use slang and misspell words. Because
of this there are a high number of unique tokens.
As developers of a machine learning system, we
seek to balance having a large vocabulary in or-
der to capture the most data with having a small
vocabulary in order to keep the model from overfit-
ting. We construct our vocabulary by empirically
selecting the n most common tokens observed by
randomly selecting Reddit user comments. We
then share this vocabulary, created from the global
training set, in both the personalized and global
models. This value of n must be tuned based on
data. When choosing a size for vocabulary, there
exists a tradeoff between performance and captur-
ing varied language. Larger vocabularies adversely
impact performance but may encapsulate more vari-
ability of language. For a given vocabulary size
chosen from training data for the global LSTM, we
plot the resulting OOV rates for users. As can be
seen when comparing Figure 1 and Figure 2, very
few gains in user-level OOV rates are seen when
expanding the vocabulary size twenty-fold. Thus,
we choose a vocabulary size of 50,000.

Figure 1: Histogram of OOV rates for 3265 users’ train-
ing data with a vocabulary size of 50,000.

For the global LSTM, we split the global distribu-
tion of Reddit data into training sourced from 2016,
validation sourced from 2017, and test sourced
from 2018. We sampled such that 70% of users
were reserved for training, 20% of users for valida-
tion, and 10% of users for test. We allot 100, 000
users for the test set and scale the number of users
in the other sets accordingly. There are 10 billion
total tokens in the training data, with 29 million
unique tokens. 90% of unique tokens occur 6 or
fewer times, and half of users have 20 or fewer com-
ments per year with an average comment length of
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Figure 2: Histogram of OOV rates for 3265 users’ train-
ing data with a vocabulary size of 1,000,000.

13 tokens. For the personalized n-grams, we se-
lected all comment data from 3265 random Reddit
users6 who made at least one comment in each of
2016, 2017, and 2018. Then, for each user, we se-
lected the data from 2016 as training data, the data
from 2017 as validation data, and the data from
2018 as testing data.

5 Results

Here we discuss the results observed when eval-
uating the interpolated global LSTM and user-
personalized n-gram model on users’ comments
using various OOV mitigation and α interpolation
strategies.

5.1 OOV Mitigation Strategies

In our data used for personalization, 68% users
have more than 25% OOV rate for validation data,
and 65% users have more than 25% OOV rate for
training data. This empirically causes large devi-
ations between the different PPbackoff, PPskip, and
PPbase. We find that a personalized n-gram model
can’t handle OOV tokens very well in high OOV
settings, because it assigns higher probabilities to
OOV tokens than some of the tokens in the vocab-
ulary. As discussed in Section 3.5 high OOV rates
at the per-user level PPbase present a view of the
results that is disconnected from downstream use in
an NLI. At the same time, PPskip presents the view
most aligned with the downstream task because
in an NLI the OOV token should never be shown.
However, PPskip comes with some mathematical
baggage. Specifically, when all tokens are OOV,
the PPskip will be infinite. These two approaches
represent the extremes of the strategies which could
be used. We argue that PPbackoff represents the best

of both worlds.
Figure 3 shows that PPbackoff provides measure-

ments near the minima that are closely aligned with
PPskip while also being free of the mathematical
and procedural issues associated with PPskip and
PPbase. We provide an example to further illus-
trate the above statement. Consider a high OOV
rate comment such as “re-titled jaff ransomware
only fivnin.” with OOV tokens re-titled, jaff, ran-
somware, fivnin. Following encoding, the mode
would see this sequence as “OOV OOV OOV only
OOV”. When measuring the probability of this
sequence a model evaluated using PPbase would
have lower perplexity because it has been trained to
overweight the probability of OOV tokens as they
occur more frequently than the tokens they repre-
sent. However, this sequence should have far lower
probability, and thus higher perplexity, because the
model is in fact failing to adequately model the true
sequence. We argue that assigning a uniform value
θ to OOV tokens will more accurately represent
the performance of the model when presented with
data with a high quantity of OOV tokens.

Because we believe that PPbackoff presents the
most accurate picture of model performance, we
have chosen to present our results in Section 5.2
and 5.3 using PPbackoff.

Figure 3: Average of interpolated PP for all users for
varied values of α ≤ 0.7 for each method of approach-
ing OOV tokens.

5.2 Analysis of Personalization

We next present an interesting dichotomy in Figure
4 not previously discussed in the personalization
literature. In the constant α for all users setting
we can optimize to either minimize the overall
PPbackoff for all users or to maximize the average
PPbackoff lift across users. These two objectives
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result in different constant α5. Specifically, mini-
mizing PPbackoff over users yields α = 0.105, pro-
viding an improvement for 67.3% of users and an
average PPbackoff lift of 2.5%. Maximizing the av-
erage PPbackoff lift per user yields α = 0.041, pro-
viding an improvement for 74.2% of users and an
average PPbackoff lift of 2.7%6.

Figure 4: PPbackoff and average PPbackoff lift over base-
line for various values of α < 0.22.

5.3 Constant and Personalized Interpolation
Coefficient α Optimization

When searching for a constant value for α for all
users, α = 0.105 achieves the minimum mean
interpolated PPbackoff, with an average PPbackoff lift
of 2.5%.

Next, we personalize the value of α for each user.
We first produce a set of oracles6 as described in
Section 3.4. With this set of oracle values of α, the
average PPbackoff lift is 6.1% with the best average
PPbackoff achievable in this context. While it is
possible to compute the oracle values for each user
in a production setting, this may not be tractable
when user counts are high and there exist latency
constraints.

Thus, we try an inverse linear relationship: α =
k · (1− OOV rate). To illustrate the effect of this
relationship, we perform this optimization 10 times,
using a different random subset of users each time
to optimize k and then evaluate on the rest of the
users. On average, we observe a PPbackoff lift of
5.2%, and 80.1% of users achieve an improvement
in PPbackoff. In Figure 5 we see that a heuristic ap-
proach of lower complexity achieves near-oracle
performance, with the distribution of PPbackoff for
this method closely matching the oracle distribu-

5There may be other trade-offs to examine.
6Further details are included in the appendices.

tion of PPbackoff. We also find that this method of
α personalization yields lower PPbackoff for more
users than using a constant value for α.

Figure 5: Distribution of interpolated PPbackoff for users
using each method of α optimization. The values for
α = k · (1 − OOV rate) are averaged over 10 random
selections.

6 Conclusion & Future Work

In this paper we presented new strategies for in-
terpolating personalized LMs, discussed strategies
for handling OOV tokens to give better vision into
model performance, and evaluated these strategies
on public data allowing the research community
to build upon these results. Furthermore, two di-
rections could be worth exploring: Investigate on
when personalization is useful at a user level to bet-
ter interpret the results; Research on user-specific
vocabularies for personalized models instead of us-
ing a shared vocabulary for both the personalized
and global background models.

As NLIs move closer to the user, personalization
mechanisms will need to become more robust. We
believe the results we have presented form a natural
step in building that robustness.
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A Appendices

A.1 Hyperparameters and Model Training

The global LSTM model trained token embeddings
of size 300, and had hidden unit layers of size 256
and 128, an output projection of dimension 100,
and a vocabulary of 50,000 tokens. It was trained
with dropout using the Adam optimizer, and we
parallel-trained our global LSTM on an Azure7

Standard NC24s v2 machine which includes 24
vCPUs and 4 NVIDIA Tesla P100 GPUs.

The personalized n-gram models were 3-gram
modified Kneser-Ney smoothed models with dis-
counting values of 0.5 (1-grams), 1 (2-grams), and
1.5 (3-grams).

A.2 User Analysis Plots

The average size of the user-personalized corpus is
around 140 comments, while the median size is 23
comments. The average comment length for each
user is around 14 tokens.

7www.azure.com
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Figure 6: Histogram of PP lift over global model vs.
average comment length (α = 0.105).

Figure 7: Histogram of PP lift over global model vs.
number of comments (α = 0.105).

By analyzing the results with the lowest inter-
polated PPbackoff (α = 0.105 for all users), we
make two observations: users with average com-
ment length less than around 30 tokens don’t get
much benefit from personalization, and users with
less than around 100 comments don’t get much
benefit from personalization.

A.3 Oracle α Distribution
Figure 8 shows the distribution of the empirically-
computed “oracle” values for α.

Figure 8: Distribution of oracle values of α per user.
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Abstract

Many users communicate with chatbots and
AI assistants in order to help them with var-
ious tasks. A key component of the assis-
tant is the ability to understand and answer a
user’s natural language questions for question-
answering (QA). Because data can be usually
stored in a structured manner, an essential step
involves turning a natural language question
into its corresponding query language. How-
ever, in order to train most natural language-
to-query-language state-of-the-art models, a
large amount of training data is needed first.
In most domains, this data is not available and
collecting such datasets for various domains
can be tedious and time-consuming. In this
work, we propose a novel method for acceler-
ating the training dataset collection for devel-
oping the natural language-to-query-language
machine learning models. Our system allows
one to generate conversational multi-term data,
where multiple turns define a dialogue session,
enabling one to better utilize chatbot interfaces.
We train two current state-of-the-art NL-to-QL
models, on both an SQL and SPARQL-based
datasets in order to showcase the adaptability
and efficacy of our created data.

1 Introduction

Chatbots and AI task assistants are widely used
today to help users with their everyday needs. One
use for these assistants is asking them questions
on various areas of knowledge or how to accom-
plish different tasks (Braun et al., 2017; Cui et al.,
2017). Because data is usually stored in a struc-
tured database, in order to answer a user’s ques-
tions, it is essential that the system should first
understand the question, and convert it into a struc-
tured language query, such as SQL or SPARQL, to
fetch the correct answer.

While much research has focused on
translating natural languages into query lan-

Turn 1: Who are the employees that
work in the IT department and have
the last name Smith?

Turn 2: How many of them started
working after Jan 1, 2020?

Turn 3: What are their phone
numbers?

Turn	1:SELECT	name	
FROM	Employees
WHERE	last_name	=	'Smith'	
AND	dept_name	=	'IT';

Turn	2:SELECT	Count(name)	
FROM	Employees
WHERE	last_name		=	'Smith'
AND	dept_name	=	'IT'
AND	hire_date	>	'01-01-2020';

Turn	3:SELECT	phone_number	
FROM	Employees
WHERE	last_name		=	'Smith'
AND	dept_name	=	'IT'
AND	hire_data	>	'01-01-2020';

Natural Language Query Language (SQL)

Figure 1: Example illustrating a three-turn dialogue,
featuring the natural language (first column) and query
language (second column) representations.

guages (Ngonga Ngomo et al., 2013; Braun et al.,
2017; Dubey et al., 2016; Giordani and Moschitti,
2009; Finegan-Dollak et al., 2018; Giordani,
2008; Xu et al., 2017; Zhong et al., 2017), the
state-of-the-art systems typically involve a large
amount of training data. Therefore, in order to
fully utilize these models that translate a natural
language (NL) question into query language (QL),
one would need to collect large amounts of both
NL-QL pairs. Although there are works which
involve the collection of NL-QL pairs in different
domains (Hemphill et al., 1990; Zelle and Mooney,
1996; Zhong et al., 2017; Yu et al., 2018, 2019b),
data is still not available in most domains, and thus
this collection process can be both time-consuming
and expensive.

In this work, we address the problem of hav-
ing insufficient data collection methodologies by
proposing a novel approach that accelerates the
data collection process for use in NL-to-QL models.
Additionally, our approach focuses on generating
conversation data, where the context of a dialogue
turn is used to generate a subsequent pair. In this
way, we better simulate the data necessary for real
world chatbots and voice assistants, as exemplified
in Figure 1. Our contributions are as follows:
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• We develop a novel approach that accelerates
the creation of NL-to-QL data pairs. Primar-
ily, our approach tackles the problem in the
conversational domain.

• We showcase our data collection system on
two different QLs, SQL and SPARQL, demon-
strating the flexibility of our system.

• Finally, we demonstrate the use of cur-
rent single-turn state-of-the-art approaches on
these two domains to prove the adaptability of
our system to current models.

Though our data collection implementation fo-
cuses on conversational data, the models we deploy
are single-turn. Our main focus here is to give
a demonstration of the generated data. Section 3
and Section 4 show the adaptability of our data
collection scheme to these kinds of models.

The rest of this paper is structured as follows:
Section 2 surveys prior work in both the NL-to-
QL and data collection space, Section 3 details our
novel conversational data collection approach, Sec-
tion 4 walks through examples in both the SQL and
SPARQL domain, Section 5 describes the current
models we have trained and tested on the generated
data, Section 6 gives the results on the data and
models, and Section 7 concludes our work.

2 Related Work

In the field of natural language interfaces for struc-
tured data there are bodies of work that 1) focus
on translating natural language to a specific query
language and that 2) relate to collecting semantic
parsing data for natural language interfaces.

2.1 NL-to-QL

NL-to-QL models have worked to transform nat-
ural language queries into their respective logi-
cal form (LF) representations (Dong and Lapata,
2016), SQL queries (Xu et al., 2017; Zhong et al.,
2017; Finegan-Dollak et al., 2018; Cai et al., 2018),
or SPARQL queries (Ngonga Ngomo et al., 2013;
Dubey et al., 2016). While work in the SPARQL
domain first normalize and match the queries, state-
of-the-art work in translating NL to SQL involves
neural architectures. Dong and Lapata (2016) uti-
lize and encoder-decoder framework to translate
NL questions into their LF representation. Xu et al.
(2017) propose a sketch-based model where a neu-
ral network predicts each slot of the sketch. The ar-

chitecture built by Zhong et al. (2017) uses policy-
based reinforcement learning in order to translate
NL to SQL. While Finegan-Dollak et al. (2018)’s
main takeaway is how different evaluations effect
the generalization problem in translating NL to
SQL, they approach the problem with a seq2seq
model. Because of the volume of data needed to
fully utilize these models, it can be difficult to adapt
to different domains.

In the multi-turn domain, Saha et al. (2018)
first approach the problem of complex sequen-
tial question-answering (CSQA) by first building a
large-scale QA dataset made to answer questions
found in Wikidata 1. However, their data collection
process was extremely laborious, as their process
required in-house annotators, crowdsourced work-
ers, and multiple iterations. Additionally, their ap-
proach was end-to-end, meaning the output was
an expected answer. Nevertheless, because their
approach incorporate the query representation, we
plan to further incorporate their approach into our
data collection process in future work.Yu et al.
(2019a) also develop the first general-purpose DB
querying dialogue system. However, their system
dialogues focus on clarifying a NL question for
user verification, before returning an answer. Our
work focuses on generating conversational data
about specific database entities and properties.

2.2 Data Collection for Semantic Parsing

NL question semantic parsers have been developed
for single-turn QA in order to translate simple NL
questions into their respective LFs (Wang et al.,
2015). In their approach, Wang et al. (2015) first
begin with a domain, building a seed lexicon of
that domain. Next, they find the LF and canon-
ical utterance templates corresponding based on
the lexicon. Wang et al. (2015) then paraphrase
their canonical utterances via crowd-sourcing. Iyer
et al. (2017) learn a semantic parser via an encoder-
decoder model by using NL/SQL templates. This
model is tuned through user feedback, where incor-
rect queries are annotated by crowd-workers. Para-
phrasing is accomplished through the Paraphrasing
Database (PPDB) (Ganitkevitch et al., 2013).

While the two previously mentioned works are
single-turn semantic parsers, Shah et al. (2018) de-
velop a multi-turn semantic parser. Their approach
begins with a task schema and API which is used
to create dialogue outlines for the provided domain.

1https://www.wikidata.org/wiki/Wikidata:Main Page
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Figure 2: An overview of our conversational data col-
lection deployment system. Blue shapes denote the in-
put/output data at each stage, while green diamonds
denote the processes of the system. The “plus” sign
denotes the concatenation of both seed templates and
paraphrase templates.

These dialogue outlines involve a user and system
bot that simulate a scenario. The dialogues are then
paraphrased via crowd-sourcing. However, Shah
et al. (2018) use the logical-form representation
of the utterances rather than their query language
representation. In our work, we re-incorporate the
paraphrases into the dialogue generation phase.

3 Data Collection System

Our conversational data collection strategy is devel-
oped to efficiently collect NL/QL pairs for training
data in models which translate the NL into QL in a
multi-turn setting. Because domain data is required
when training a chatbot to query a database when
converting from NL to QL, our approach is gener-
alized so that one can easily collect data for their
respective domain.

3.1 Overview

Our approach in collecting data is made of the four
following steps: 1) First we generate the dialogue
represented as LFs, forming the abstract represen-

tations of NL questions, 2) Next, we convert the
LFs into an NL template and QL templates 3) We
then collect paraphrases of the natural language
templates, and 4) Finally, we use these paraphrases
to further develop our dialog generator. In gener-
ating our dialogue, the context of each previous
turn is taken in order to develop the current turn.
Figure 2 presents our data deployment system. We
divide and expand upon the steps further in the next
sections.

3.2 Definitions
We first define the following notations in our data
collection system:

• Un: an utterance in the dialogue.

• LFn: the LF n in the dialogue.

• NLn: the NL utterance corresponding to
LFn.

• QLn: the QL utterance corresponding to
LFn.

3.3 Input Module
The input to our data collection system consists of
a domain ontology, lexicon, and database. These
should be provided by the user and vary depend-
ing on the type of data one requires. The domain
ontology defines the <object, relation, property>
triples of a given dataset, where each object has a
set of properties connected through a relation, e.g.
<ACL 2020, has location, Seattle>. The lexicon
file defines each data field, along with its NL and
QL representation, important in the NL-QL Gen-
erator step. The database is the data in structured
form.

3.4 Logical Form Dialogue Generator
In order to appropriately simulate a conversation
between a user and chatbot, the synthetic dialogue
must first be generated. This is done by first outlin-
ing the dialog via LFs, where the system generates,
LF1−n. These outlines are an abstract but under-
standable representation of the dialogue taking into
account the type, entity, and relation of a question.
Thus, our parser builds a dialogue based on a do-
main ontology, lexicon, and domain database.

The LFs take the form of three predicates:
Retrieve-Objects, Inquire-Property, and Compute,
each taking on their own arguments. For the
Retrieve-Objects predicate, the LF fetches an in-
stance that satisfies a condition. As arguments,
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Retrieve-Objects takes an entity type, tin from the
ontology, a boolean condition cin, and a property
value,pi

n, from the DB. For the Inquire-Property
predicate, given an anchor entity aein, target in-
stance, tiin, and an inference path ipi

n from the
entity to that instance, the LF finds the property in
that path of the anchor entity. The Compute pred-
icate denotes a computation compi

n over a set of
given objects, thus its arguments are comprised of
Retrieve-Objects arguments and an operation to be
performed. 2. For our work, we focus on using the
COUNT aggregate function. Future work can eas-
ily adapt more aggregate functions into our model
such as MAX or MIN depending on the values con-
tained in the database.

More formally, each LF can be described as fol-
lows:

LFn → {Retrieve−Objects(tin, c
i
n, p

i
n),

Inquire− Property(aein, ti
i
n, ip

i
n),

Compute(compin, t
i
n, c

i
n, p

i
n)} (1)

At the start of a dialogue, a random LF predi-
cate is selected, given the database schema, lexicon,
and domain ontology. The subsequent turns in the
dialogue are built conditionally on the previous
turn. Therefore, given a LFn−1, when generating
LFn the context of LFn−1 is further taken into
consideration including its arguments, type, and
answer. The subsequent predicate is also chosen
at random, however its values are conditional on
the arguments and answer(s) of the current predi-
cate. For example, if LFn−1 is an Retrieve-Objects
predicate and another Retrieve-Objects predicate
is chosen as LFn, this LF can further filter the an-
swer of LFn−1 by using an additional condition.
Table 1 summarizes the types of LFs, along with
an explanation and example of each both in LF and
NL, which we discuss in the next section.

3.5 NL-QL Generator

Once the LF generator is complete, the data collec-
tion system generates an NL utterance along with
its corresponding QL. To generate such pairs, the
NL-QL generator takes in each LF from the LF
Dialog as input. Based on the predicate type, an
NL-QL pair is selected and filled with correspond-
ing arguments of the predicate. Thus, the system
uses NL seed templates for the Retrieve-Objects,

2n refers to the dialogue turn, while i refers to the number
of dialogue generated.

Inquire-Property, and Compute predicates to cre-
ate the initial training data for the conversational
dialogue. For example, one NL template for turns
after NL1 can be ”How about <entity>?”

The aforementioned seed templates are hand-
crafted based on the type of data and are thus left
to the user to create. These data are hand-crafted to
increase the quality of the seed templates in terms
of coherency and utility, important features not only
for quality training data, but also when performing
the paraphrase task. Because we hand-crafted the
query language templates, we also guarantee that
the queries are executable for their corresponding
QLs, SQL or SPARQL in this work. For the QL,
we fill in slots for field names, aliases, and values,
utilizing the information in the domain ontology,
lexicon, and database schema. Note, ‘field’ refers
to column names in relational DBs (queried with
SQL) and type names in graph DBs (queried with
SPARQL). To reiterate, the NL-QL generator takes
each LFn, with its respective arguments, and seed
templates as input, and outputs a NLn−QLn pair,
where Un → (NLn, QLn). Section 4 goes through
detailed examples of various NL-QL pairs.

3.6 Paraphrase

The final step involves the paraphrasing of the seed
NL templates given in the NL-QL Generator step.
To paraphrase the seed NL templates, we first pro-
vide crowdworkers from Amazon Mechanical Turk
(AMT) 3 with the instantiated templates, the output
from the first iteration of the NL-QL generator. We
ask the workers to paraphrase the seed templates
while keeping the meaning/intent of the original
questions. After collecting these paraphrased ques-
tions, we further abstract them and link them to
their respective predicate representation. In this
way, the paraphrases can be utilized in further itera-
tions of the NL-QL Generator step and instantiated
when generating new dialogues for training data.
While abstracting the templates, we manually scan
them for quality control purposes. Furthermore, we
ran multiple trial runs in presenting the problem
to the AMT workers. Previous work (Wang et al.,
2015; Shah et al., 2018) also use similar crowd-
sourcing techniques in order to paraphrase their
templates. Via AMT, Wang et al. (2015) paraphrase
canonical utterance, natural language representa-
tions to single-turn LFs, while Shah et al. (2018)
paraphrase dialogue outlines as their final step.

3https://www.mturk.com/
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Predicate Explanation Example LF

Retrieve-Objects Gets objects from DB Which employees have
building no. equal to 5?

Retrieve-Objects(employee(ALL),
(employee.building no,‘=’,5))

Inquire-Property Gets an object’s property What is the office of James? Inquire-Property(James, office)

Compute CompuAggregate function How many employees have
hire year equal to 2010?

Compute(COUNT, employee(ALL),
[(’hire year’, 2010)])

Table 1: LF predicate summary with an explanation and example of each, both in NL and LF.

Similarly to Shah et al. (2018), we input the
paraphrases back into our NL-QL generation step.
Figure 2 illustrates this through the “+” symbol,
signifying that the paraphrases are appended to the
seed templates when mapping to LF and creating
the final NL-QL pairs. This approach can take
multiple iterations, as the user sees fit to the NL
question generation task in their data domain.

4 Data Examples

In this section we will showcase examples in both
the SQL and SPARQL domain and traverse through
each stage of our Data Collection System. We first
begin with SQL, used to query relational databases,
and then demonstrate our system with a graph
querying language, SPARQL. By doing so, we
show the extendability of our approach to vari-
ous structured QLs. Moreover, we confirm the
importance of generating executable queries in a
conversational data collection system.

4.1 SQL

Through our data collection system for conversa-
tional QA, we are able to produce contextual depen-
dent NL-SQL pairs. For the SQL example, suppose
a user wants to produce data for an employee direc-
tory relational database. Figure 3 gives an example
of possible input files needed to produce this kind
of conversational data with our data collection sys-
tem, including a domain ontology with two entities
Employee and Department, a lexicon to map NL
and QL instances, and a database containing Em-
ployee and Department data.

Thus, given the input files in Figure 3, possible
LFn values with each predicate are:

(i) Retrieve-Object(employee(ALL),
(employee.dept name,‘=’, Marketing))

(ii) Inquire-Property(James,dept name)

(iii) Computation(COUNT,employee(ALL),
[(‘works in’, ‘IT’)])

Domain
Ontology

Instance NL QL

Employee "employee" Employee

Department "department" Department

name "name" name

phone_num "extension" phone

dept_name "department 
name" dept_name

works_in "works in" dept_id

Lexicon

works_in

Database

Employee

Property:
name
phone_num

Department

Property:
dept_name

Employee

id    name    phone    dept_id

0      John      ext.123  Marketing

1      Smith     ext.321        IT

Department

id                         dept_name

001                           Marketing

002                                 IT

Figure 3: Example ontology schema, lexicon, and
database. The two tables in the Database are used
throughout our SQL example.

In (i), the logical form represents a retrieval of em-
ployee objects who work in the Marketing depart-
ment. (ii) asks about the department name of James.
(iii) computes the total number of employees who
work in the IT department. During the generation
of LF 1, one of these LFs can be generated. Then
for LF 2 - LF n, the context is passed along to gen-
erate the LFs. The n denotes the number of turns
a dialogue can take. As an example, given LF 1
is (1) from the aforementioned LFs, LF 2 can be
Inquire-Property(Answer,phone num), where An-
swer denotes the objects returned by LF 1. Our
dialogue generation system allows one to tune the
number of turns and number of dialogues generated
from the given input.

For the NL-QL step, our input includes the dia-
logues represented as LFs along with NL-QL seed
templates described in Section 3.5. Possible tem-
plates are given in Table 2. Note, that we refer to
a column in a relational DB as a field. Taking our
previous Retrieve-Objects example, the filled seed
template would read: “Which employee have de-
partment equal to Marketing?” The Lexicon from
Figure 3 is utilized here, as the instance name is
mapped to its NL name. Similarly, its QL name
(table name) is mapped in the SQL query.

Finally, in the final step, as explained in 3.5,
the NL seed templates are paraphrased via crowd-
sourcing, e.g. “Which employee have depart-
ment equal to Marketing?” can be paraphrased into
“Who works in the marketing department?”.
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Predicate Template

Retrieve-Object Which <entity>have <field name>
equal to <instance>?

Inquire-Property What is the <field name>
of <entity value>?

Computation How many <entity>have
<field name>equal to <instance>?

Table 2: Examples of seed templates with their re-
spective predicates. <entity>refers to an entity type.
<field name>corresponds to a column in a relational
DB or a relation in a graph DB. <instance>refers to
the value of that field in the DB. <entity value>is an
instance of an entity in the DB.

Figure 4: An example of a subgraph in the Photoshop
Knowledge Graph. The Layer object (red node), can
be seen connected to its objects (blue nodes) through
relations. Here we can see that the Layer entity is con-
nected to the various actions connected to “Photoshop
Layers”, such as “flatten”, “lock”, and “use”, where the
object nodes show how they can be performed.

4.2 SPARQL

SPARQL is used to query graph databases, where
entities are linked together through relations. These
graph databases usually take the form of triples
in the form: <subject,relation,object>. Because
both LF-Generator and NL-QL Generator remain
the same as in Section 4.1, here we examine the
main differences in the system data when utilizing
SPARQL instead of SQL. As a guide, we refer to
the example give in Figure 4.

Figure 4 gives an example of a subgraph found
in the Photoshop Knowledge Graph (KG). This
KG contains the various tools, dialogs, shortcuts,
and options found in Photoshop, connected to their
options and definitions through relations. The KG
is extracted from the Photoshop Wiki. Similarly
to the SQL example above, we input a domain on-

tology, lexicon, and database to the conversational
data collection system. However, in the case of a
graph database, the entities found in the ontology
are more clearly defined in a graph database. Ad-
ditionally, instead of a table structure, the database
is in the form of <subject,relation,object> triples,
where each entity belongs to a type defined in the
ontology.

While the the types of LFs generated in the LF-
Generator are equivalent, a property now refers
to the relation found in the triple, while a prop-
erty refers to the object of a KB triple. For ex-
ample, an entity such as the one found in fig-
ure 4 may have various properties, including
“has shortcut” and “has option”. When generat-
ing NL-QL pairs, the generator again takes from
the out of the LF-Generator, lexicon, and seed
templates, where the QL template is SPARQL-
based instead of SQL-based. Paraphrases are
collected in the same way. Thus, an example
Photoshop Retrieve-Object LF template question,
and paraphrase may look like: “LF: Retrieve-
Objects(tool(ALL), (tool.has shortcut, ‘=’, ‘H))”,
“Template: Which 〈 entities〉 have 〈 relation〉 equal
to 〈 object〉?”, and “Paraphrase: What’s the tool
with the H shortcut?”

5 Experiments

We will now examine our experiments with a rela-
tional and graph database setting. We first briefly
discuss the data used in constructing the conversta-
tional dataset and then describe the various models
utilized in translating the NL questions into their
respective structured queries.

5.1 Data

For our experiments involving SQL data, we con-
struct an NL-QL conversational dataset on data
based on a proprietary web analytics tool. In our re-
sults table, we refer to this dataset as Web-Analytics.
For the graph-database, we construct an NL-QL
conversational dataset based on the Photoshop KB,
as the one exemplified in Section 4.1. As previously
noted, this KB contains various entities found in
Photoshop, connected to their properties, through
predicates which define the properties. In total, the
KB contains 15,381 triples, with 3,410 triples that
correspond to how-to type queries.

After running our conversational data collection
system on both set of data, we collected 288 and
73 NL-QL pairs of templates for the Photoshop

32



Photoshop Web-Analytics
Templates 288 73

Table 3: Number of templates for each dataset, where
the Photoshop dataset is SPARQL-based and Web-
Analytics dataset is SQL-based.

and Web-Analytics datasets, respectively. Table 3
summarizes these statistics. Additionally, we con-
figured our system to give 3 turn dialogues.

5.2 Models
In our experiments we utilize single-turn NL-QL
models. Specifically, we utilize the baselines de-
fined by Finegan-Dollak et al. (2018).

The first baseline is a seq2seq model with
attention-based copying, originally proposed by
Jia and Liang (2016). This model takes an NL
utterance as input and outputs a structured query.
Included in the output is a COPY token, which sig-
nifies the copying of an input token. In the copying
mechanism model, the loss is calculated based on
the accumulation of both the probability of distribu-
tion of the tokens in the output and the probability
of copying from an input token. This copying prob-
ability is calculated as the categorical cross entropy
of the distributed attention scores across the input’s
tokens, where the token with the max attention
score is chosen as the output token.

The second baseline is a template-based model
developed by Finegan-Dollak et al. (2018). This
model takes in natural language questions, along
with query templates to train. Since our data collec-
tion system directly utilizes templates to generate
the data, this model is easily adaptable to our set-
ting. We simply use the templates we collect from
both the seed-templates and paraphrasing tasks, as
well as the slot values extracted from the source DB
when creating the dialogue data to train the model.
In the template-based model, there are two deci-
sions being made. First the model selects the best
template to choose from the input. This is done
by passing the final hidden states of a bi-LSTM
through a feed-forward neural network. Next, the
model selects the words in an input NL-question
which can fill the template slots. Again, the same
bi-LSTM is used to predict whether an input token
is used in the output query or not. Thus, given a
natural language question, the model jointly learns
the best template from the given input, as well as
the values that fill the template’s slots. Please note,
that while this model is best fitted for our dataset,

SELECT	?entity	?property	where	{	
?entity	rdf:type	ontology:ps_entity	.	
?entity	ontology:sharpen	?property	.	
?entity	rdfs:label	"ps_entity0"@en}

Figure 5: The template-based model developed by
Finegan-Dollak et al. (2018), where the blue boxes rep-
resent LSTM cells and the green box represents a feed-
forward neural network. ‘Photos’ is classified as a slot
value, while the template chosen (Tempalte 42), is de-
picted above the model. In the template, the entity slot
is highlighted in yellow and the properties which make
the template unique are in red.

it does not generalize well to data outside of the
trained domain due to the template selection task.
Figure 5, inspired by Finegan-Dollak et al. (2018),
shows an example of the template-based model
with our own input in the SPARQL domain.

Although our dataset collection system gener-
ates multi-turn data, because of the immaturity of
multi-turn NL-to-QL models, we leave the use of
multi-turn models for future work. We do how-
ever, mention the model developed by Saha et al.
(2018), which answers complex sequential natural
language questions over KBs, which can be further
integrated in future work.

5.3 Settings

We experimented with both the seq2seq and
template-based models on the SQL-based and
SPARQL-based datasets previously discussed. For
the Photoshop SPARQL dataset, we generated
2,100 single-turn data pairs utilizing our data col-
lection system, while generating 3,504 single-data
pairs for the web-analytics dataset. Experiments
all used a 90/10 train/validation set split.

6 Results

We evaluated the models on our generated datasets
for exact-match accuracy of the SQL/SPARQL out-
put queries. The results (shown in Table 4) indicate
that in both cases the seq2seq model outperforms
the template-based model. While the seq2seq gives
an accuracy of .726 and .738, the template-based
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Dialogue Session Count (SPARQL) Dialogue Session Count (SQL)

Figure 6: The above graphs show that as the dialogue session count increases for both the Photoshop SPARQL
(left) and Web-Analytics SQL (right) dataset, the accuracy also increases. The y-axis of each graph marks the
accuracy, while the x-axis marks the number of dialogue sessions for each dataset.

Photoshop Web-Analytics
Seq2seq .726 .738
Template-based .305 .641

Table 4: Results on the accuracy of the NL-to-QL
task on the generated single-turn Photoshop and Web-
Analytics datasets.

model results in .305 and .641 accuracy. Further-
more, the template-based model performs better on
the Web-Analytics SQL-based dataset. This may
be because the number of templates contained in
the SQL dataset is almost four times greater than
the number of templates contained in the Photo-
shop SPARQL dataset, 73 compared to 288.

We also investigate how the accuracy of the mod-
els increase, as the number of samples generated by
our data collection system increase. Figure 6 shows
that for our best performing model (seq2seq), as
the number of dialogue sessions (or data points)
increases, the accuracy increases. While this is
expected, it also shows that through out dialog
creation system, one can improve their NL-to-QL
application’s performance by configuring the data
creation system with more dialogues and templates.

Though the models use synthetic data generated
by our system, our system allows one to accelerate
the data collection process and quickly deploy an
NL-to-QL system that gives reasonably accurate
results. This deployed system can then later collect
data collected from real application users, where
the application logs where a correct or incorrect
response may have been returned. Iyer et al. (2017)
explore this kind of work which learns from user
feedback, where users marked utterances as cor-

rect or incorrect, and the accuracy of the semantic
parser increased as a result.

7 Conclusion

In this work, we propose a conversational data col-
lection system which accelerates the deployment of
conversational natural language interface applica-
tions which utilize structured data. We describe the
three main processes of our system, including the
LF Dialog Generator, the NL-QL Generator, and
the Paraphrase component. By taking in a domain
ontology, lexicon, and structured database as in-
put, our system generates NL-QL multi-turn pairs
which can be used to train systems that translate NL
to QL. Each component of our system is examined
in both the SQL and SPARQL QL domain. We
then validate our data by training state-of-the-art
NL to QL models on single-turn utterances. Our
experiments show promising results in both the
SQL and SPARQL domains, while providing an ef-
ficient method to generate data for the development
of multi-turn models.
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Abstract

Text normalization and sanitization are intrin-
sic components of Natural Language Infer-
ences. In Information Retrieval or Dialogue
Generation, normalization of user queries or
utterances enhances linguistic understanding
by translating non-canonical text to its canon-
ical form, on which many state-of-the-art lan-
guage models are trained. On the other hand,
text sanitization removes sensitive information
to guarantee user privacy and anonymity. Ex-
isting approaches to normalization and sani-
tization mainly rely on hand-crafted heuris-
tics and syntactic features of individual to-
kens while disregarding the linguistic con-
text. Moreover, such context-unaware solu-
tions cannot dynamically determine whether
out-of-vocab tokens are misspelt or are en-
tity names. In this work, we formulate text
normalization and sanitization as a multi-task
text generation approach and propose a neu-
ral pointer-generator network based on multi-
head attention. Its generator effectively cap-
tures linguistic context during normalization
and sanitization while its pointer dynamically
preserves the entities that are generally miss-
ing in the vocabulary. Experiments show
that our generation approach outperforms both
token-based text normalization and sanitiza-
tion, while the pointer-generator improves the
generator-only baseline in terms of BLEU4
score, and classical attentional pointer net-
works in terms of pointing accuracy.

1 Introduction

Early Natural Language Processing (NLP) faced
the long-standing limitation of human language un-
derstanding, mainly due to linguistic morphology
or the wide variance of word forms. Therefore, a
crucial requirement to obtain outstanding perfor-
mance for modern NLP systems is the availability
of “standardized” textual data (Guyon et al., 1996;

Rahm and Do, 2000). Standardizing or normal-
izing textual data reduces the domain complexity,
hence improves the generalization of the learned
model. However, there are challenges to automatic
text normalization. Natural language is by nature
evolving, e.g. Urban Dictionary1 is a crowdsourced
online dictionary for slang words and phrases not
typically found in a standard dictionary, but used in
an informal setting such as text messages or social
media posts. Moreover, abbreviations and emojis
allow humans to express rich and informative con-
tent with few characters, but troubles machine un-
derstanding. Finally, humans are prone to spelling
errors while writing or typing.

Due to the reasons mentioned above, develop-
ers have designed pre-processing techniques to
normalise textual data, including spell correction,
tokenisation, stemming, lemmatization and part-
of-speech tagging. During the years, multiple li-
braries have been proposed to facilitate such pre-
processing steps: e.g. NLTK (Bird, 2006), spaCy2

or Stanford Core NLP (Manning et al., 2014). How-
ever, as textual domains vary greatly from medi-
cal records, legal documents to social media posts,
there is no single solution or a fixed set of pre-
processing steps for text normalization. Thus, up
to date, defining a pre-processing pipeline remains
an art form which requires a significant engineering
effort. While researchers can define hard-policies
to eliminate all noisy textual data, they also consid-
erably reduce the amount of information available
to the model, thus limit its performance. Such prun-
ing approach appears problematic in the industry
where engineers tackle domain-specific problems
are given a relatively limited noisy textual dataset.

Enterprises also have to comply with multiple
policies concerning privacy. Thus, they are re-

1https://www.urbandictionary.com/
2https://spacy.io/
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Table 1: Example of well formatted text correctly masked with simple regex rules. Note that all the reported credit
card number are artificially generated.

Unmasked Text Masked Text

i need to delete my credit card 5496-9579-4394-2954 i need to delete my credit card ****
the refund will post to your credit card ending in (8077) in
the next 3-5 business days

the refund will post to your credit card ending in (****) in
the next 3-5 business days

Table 2: Examples of text over-masked due to regex application.

Over-Masked Text Missing Information

I sent the faulty product back and provided PayPal with the tracking ***********************
USPS.

Tracking Number

I was charged a fee for a payment from my son. He owed me *** and I only received 145.90. Can
you please refund that fee to my account? Thank you

Money Amount

quired to mask or remove sensitive information
rather than cache them inside data centers. Such
sensitive information includes credit card numbers,
email addresses and Social Security Number (SSN).
Note that sanitation issues not only arise during an
offline storage/backup process of user-generated
content, but they might also happen in real-time.
For example, it is common for big enterprises to
outsource customer services, like live-chat or chat-
bot systems, to third parties. Thus, there is the
need to remove all the sensitive information before
expose the input text to any third party to prevent
information leakage. At the same time, the se-
mantic meaning of a customer’s request has to be
preserved to deliver good customer support. Enter-
prises have traditionally addressed sanitization by
defining heuristics. Such an approach is effective
over well-defined text such as official documents
and notes. As shown in Tab. 1, carefully designed
regex rules are able to properly mask content fol-
lowing a specific pattern, e.g. credit card numbers,
from a document3. Instead, in an informal setting
regex rules can fail due to the presence of typos
or sensitive information whose syntax is not ac-
counted in the predefined patterns; for example:

• “my card ending -4810 has being refused.”

• “i want to cancel my last transaction 6 9 0 8 2
0 5 7 3 D 1 4 8 0 4 3 3.”

On the other hand, rules-based approaches, begin
semantic-unaware, tend to mask most of the in-
sensitive but crucial numerical information, trou-
bling the downstream analysis. For instance, Tab. 2

3Note that all the personal information have been anoni-
mized.

demonstrates a case when a tracking number is con-
fused with a transaction number. Similarly, in the
second case, a transaction amount is confused with
a credit card number.

As mentioned, we claim that it is not possible to
define a general heuristics that correctly cover all
the corner cases while ignoring semantics. Instead,
we propose a novel approach for text normalization
and sanitization based on the recent advancements
made in NLP, specifically in Machine Translation
(MT). That is, we formulate the joint text normal-
ization and sanitization task as learning to translate
from non-canonical English to a sequence of well-
defined or masked tokens. For example, Tab. 3
demonstrates how malformed texts are translated
into a semantically equivalent sequence of well-
defined tokens with properly masked information.
To our knowledge, this is the first attempt to for-
mulate the joint text normalization and sanitization
under MT framework. In so doing, we propose a
novel network architecture for MT that can solve
this multi-task learning problem.

Moreover, we address the thorny problem of gen-
erating unseen tokens during inference in sequence-
to-sequence (seq2seq) learning by making use of
pointer networks (Vinyals et al., 2015; See et al.,
2017; Merity et al., 2016). In addition to the genera-
tor, we integrate the pointer network, a module that
learns to directly copy a specific segment within
the input text to the output sequence. Compare to
previous work, our design of the pointer is novel
as it learns to predict the start and end positions
of the correct text segment to be copied, and is
built upon the concept of multi-head attention and
positional encoding (Vaswani et al., 2017). Ex-
periments show that using a generating-pointing
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mechanism improves normalization performance
compared to a pure generating mechanism. Our
model can correctly identify and preserve most
named entities contained in the input text, poten-
tially benefits downstream analysis.

2 Related Work

The introduction of word embeddings (Hinton et al.,
1986; Mikolov et al., 2013; Goldberg and Levy,
2014) has produced a gigantic leap forward for
most NLP-related task. Traditional problems such
as vector sparsity and word interaction were solved
by a simple, yet effective, methodology that ex-
ploits a large corpus rather than a sophisticated
algorithm. However, such methods are limited by
the challenge of inferring embeddings for words
unobserved at training time, i.e. Out-Of-Vocabulary
(OOV). Such scenarios are common in many social-
media related applications where the input text is
generated in real-time. Thus, the user’s malformed
language might affect downstream performance
(Hutto and Gilbert, 2014). Another solution is to
include all the misspelling words in the training
dataset or to impose similar embeddings for all
n-character variations of a canonical word. This,
would not scale well due to the sheer amount of
such non-canonical terms; thus researchers have
studied the spelling correction problem since long
time (Church and Gale, 1991; Brill and Moore,
2000). However, traditional approaches are based
on a word-per-word basis; which has shown accept-
able results when applied to formal languages.

There have been many robust approaches to
token-level spelling correction and lemmatization.
The pioneering work done by Han and Baldwin
demonstrated that micro-phonetic similarity could
provide valuable insight to correct the spelling in an
informal context, as many of these relaxed spellings
are often based on the word’s phonetic, e.g thr
for there or d for the. Monoise (van der Goot,
2019a) generates feature-engineered n-character
candidates for a misspelt word not found in the
vocabulary and ranks them using a Random Forest
Classifier. However, to accurately identify mis-
spelt words, let alone normalizing them, optimal
approaches need to consider the whole contextual
semantics rather than the word-level morphology.
For example, the utterance Can I speak to a reel
person? is not misspelt at word-level as every word
is a valid English word. However, if we consider
sentence-level semantics, reel should be normal-

ized into real. To factor in such contextual signals,
recent advancements in NLP has considered these
sequential nature of a written language as well as
the long-term dependencies present in sentences.
Thus, the research community has proposed dif-
ferent methodologies to perform micro-text nor-
malisation based on deep learning (Min and Mott,
2015; Edizel et al., 2019; Gu et al., 2019; Satap-
athy et al., 2019). While we address the problem
of text normalisation in the NLP context, it has
also been adopted as a key component for speech
applications (Sproat and Jaitly, 2016; Zhang et al.,
2019).

Pointer Network was first proposed to solve ge-
ometric problems where the size of the output
classes is a variable not conforming to the fixed
multi-label classification of traditional seq2seq
learning (Vinyals et al., 2015). Pointer Network
becomes widely adopted in many NLP tasks in-
cluding machine translation (Gulcehre et al., 2016),
abstractive summarization (See et al., 2017) and
language modeling (Merity et al., 2016) as it aids
accurate reproduction of factual details such as un-
seen proper nouns commonly treated as OOVs.
However, existing works formulate the pointing
operation as a single position classification task
that returns one word (token) position in the en-
coding sequence to be copied to the decoding se-
quence. Such formulation is no longer suitable
for our char-to-word strategy. Furthermore, with
the recent state-of-the-art in seq2seq learning in-
troduced by the Transformer architecture, there
has not been a comprehensive comparison between
different attention strategies, i.e. the classical at-
tention mechanisms (Luong et al., 2015) and multi-
head attention (Vaswani et al., 2017) on this point-
ing objective.

Finally, none of the previous research considered
the joint privacy-preserving issue, which is com-
mon in commercial NLIs such as virtual agents
for customer services. To the best of our knowl-
edge, (Sánchez et al., 2012) is the first model that
attempted to solve the sanitization problem at a se-
mantic level, without using a rule-based approach
(Sweeney, 1996). However, the former approaches
are based on manually defined policies that are
application and context-specific or are limited to
named entities; thus are not generalizable across
domains and applications.
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Table 3: Example of malformed input text is normalized in the output. Note that the tracking number is mapped to
an unknown token while the transaction id is masked for security/privacy reasons.

Input Text Output Text

D show jst gettin started. the show is just getting started .
R u thr ? are you there ?
Why it is my transaction with id 781243692BSD0433 on hold ? why it is my transaction whith id <msk> on hold ?
I can’t enter the tracking number 781243692BSD0433 for a refund. i can not enter the tracking number <unk> for a refund

3 Problem Formulation

Neural seq2seq models (Sutskever et al., 2014;
Cho et al., 2014; Vaswani et al., 2017) became
the de facto standard for machine translation sys-
tems. Such models are composed by an encoder-
decoder architecture which takes an input sequence
x = [x1, ..., xM ] and generate the desired output
sequence y = [y1, ..., yN ] according to the con-
ditional probability distribution P gen

θ (y|x), where
θ stands for the model parameters. Due to their
well-designed factorisation of P gen

θ (y|x) based on
an autoregressive approach:

P
gen
θ (y|x) =

N∏

t=1

Pθ(yt|yt−1, ..., y1,x). (1)

seq2seq models have been proven capable of solv-
ing the translation task with outstanding results.
However, in the traditional MT settings x and y
are tokens’ sequences of different languages, in-
stead, in our context y represents the same input
sentence, but rewritten in a formal and anonymised
language.

In addition to the next token generation objective,
we formulate the pointing objective as outputting
two sequences of start positions us = [us1, ..., u

s
N ]

and end positions ue = [ue1, ..., u
e
N ] of the input

encoding sequence where usi , u
e
i ∈ [1, ...,M − 1].

Similar to y, us and ue are chosen according to the
conditional probability distributions P pt-start

θ (u|x)
and P pt-end

θ (u|x) which can be factored as:

P
pt-start
θ (ue|x) =

N∏

t=1

P
pt-start
θ (ust |yt−1, ..., y1,x),

(2)

P
pt-end
θ (us|x) =

N∏

t=1

P
pt-end
θ (uet |yt−1, ..., y1,x).

(3)
Note that the factorisation proposed in Eq. 2

(and 3), convert the intractable estimation of us

conditioned on x in a sequence of classification
tasks over the sequence length (M ) predicting ust
based on the previous predictions y<t.

Finally, we learn the optimal θ by maximizing
the joint likelihood of the distribution for gener-
ative normalisation and sanitisation, P gen

θ (y|x),
and the distribution for pointing to the start and
end positions for normalisation, P pt-start

θ (us|x),
P

pt-end
θ (ue|x). In other words, our optimisation

problem is the minimization of the well-known
cross-entropy loss:

θ∗ = argmin
θ
−

T∑

t=1

[
ŷt logP

gen
θ (yt|y<t,x)

+ ûst logP
pt-start
θ (ust |y<t,x)

+ ûet logP
pt-end
θ (uet |y<t,x)

]
.

(4)

4 Proposed Method

4.1 Generator
It is possible to formalise the text normalisation
task as a seq2seq problem, where malformed En-
glish is translated in well-defined English. In lit-
erature seq2seq (Sutskever et al., 2014) models
and the similar Memory Networks (Gulcehre et al.,
2017; Weston et al., 2014; Graves et al., 2014) have
been widely applied to multiple tasks such as ma-
chine translation (Vaswani et al., 2017; Cho et al.,
2014) , language inference (Sukhbaatar et al., 2015;
Devlin et al., 2018; Dai et al., 2019), question an-
swering (Devlin et al., 2018; Yang et al., 2019) and
more. Still, in most cases, the model is expected to
serve at a single granularity level: i.e. sequence of
words to sequence of words (W2W), char-to-char
(C2C) or subword-to-subword (Sw2Sw). While
this guarantees consistency, these approaches are
not suitable for our application. On the one hand,
the limited vocabulary size is the main advantage
of a C2C approach, but it is more computationally
expensive and might generate misspelt words.

On the other hand, a W2W setting is affected
by the huge vocabulary size and by the OOV prob-
lem, but it guarantees grammatically correct words.
Thus, we propose to use a char-to-word (C2V) strat-
egy, where the input sequence is handled as a string
of characters, but the output is generated as a dis-
tribution over well-formed words. Such a design
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Figure 1: Model architecture. The left part represent a bidirectional encode based on the Transformer architectuGre,
while the right part represent an auto-regressive decoder with pointing capabilities also based on the Transformer
architecture. Note that, for each decoder timestep, the probabilities of the ith position in the encoder being the
start and end positions are calculated from the start and end pointer distribution. The pointer and vocabulary
distribution are derived from the encoder hidden states of the input text and decoder hidden states of the partial
output text.

enables us to handle any input string, solving the
problems related to spelling errors while certifying
well-formed output. However, it imposes also some
challenges; e.g how to embed conceptually differ-
ent objects in the same low dimensional space, or
how to learn time dependencies inside a long se-
quence of characters are only the major problems.

As shown in Fig. 1, given the input embedding
of a sequence of characters x = [x1, ..., xM ], we
can formally define an encoder as:

q,k,v = xWq,xWk,xWv, (5)

z = f(q,k,v) (6)

where f(·) is a bidirectional Transformer as defined
in (Devlin et al., 2018). Similarly, given the output
embedding of a sequence of words y = [y1, ..., yN ]
the decoder is defined as:

q′,k′,v′ = yW′q,yW′k,yW′v, (7)

ht = f ′(q′,k′,v′, z) (8)

where f ′(·) is a traditional Transformer decoder ap-
plied in an auto-regressive settings as in (Vaswani
et al., 2017). Note that, we are differentiate from
the original implementation as we adopt a C2W
approach.

4.2 Pointer

We address the limitation of generating unseen to-
kens in our design of the pointer network. As our
generator module predicts a token from a fixed dic-
tionary (vocabulary), it fails to normalise OOVs.
We add a pointer module to our neural network
that allows it to copy a segment of the input text
if an unknown word is detected. Although previ-
ous works designed their pointer module to point
to a single position, for our char-to-word learning
problem where each position indicates a character,
we propose to jointly point to a start and an end
position, while coping all characters in-between.
As the output token often consists of consecutive
characters, this strategy effectively avoids copying
a long continuous character sequence over multiple
steps.

Formally, at the decoder timestep t, we learn
to output the start position ust and end position
uet by maximisation of Eq. 2 and Eq. 3 respec-
tively. The pointer distribution for the start po-
sition is a function of the encoder representa-
tion z and the decoder representation ht at t, or
P

pt-start
θ (ust |y<t,x) = gs(ht, z). Given that, we

can formally define the attention mechanism of the
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Transformer architecture as:

attni(q,k) = softmax(
qi · kTi√
dK

), (9)

z = [attn0(q,k), ..., attnN (q,k)]WO

(10)

where dK stands for the output dimension of Wk,
[·, ..., ·] is the concatenation of N different attention
heads and WO is a linear transformation.

Our pointer distribution can be formulated as
the attention probability of the last decoder hidden
state at timestep t towards each position of the
encoder hidden state z. Specifically, we treat ht
as the query vector q; while z is the key sequence
k in Eq. 10. We derive the probability of the i-th
position of the encoding sequence being the start
position as:

gsi (ht, z) = [attn0(ht, z), ..., attnN (ht, z)]iWs.

Notice that unlike the original multihead attention,
we did not concern about the value sequence v, but
we directly use the attention output to detect the
pointing position. Similarly, we define the proba-
bility of the j-th position being the end position to
copy as:

gej (ht, z) = [attn0(ht, z), ..., attnN (ht, z)]jWe.

5 Experiments

We conducted 3 experiments to verify the effective-
ness of our proposed model. 1) For improved joint
normalization and sanitization, we compare our
context-aware model with: 1.1) a traditional token-
level lemmatizer and spelling corrector, and 1.2) a
LSTM W2W encoder-decoder model. 2) For im-
proved normalization of proper nouns, we compare
our multi-head attentional pointer-generator with
2.1) a generator-only and a pointer-only baseline,
and 2.2) the traditional attention encoder-decoder
model. 3) Finally, to address the utility of text
normalization we evaluate the performance’s im-
provement obtained on a text classification task
with or without text normalization.

The seq2seq transformer architecture we used
has 4 attention heads and 5 layers with 100 hidden
units. The maximum number input characters and
output words are 600 and 300 respectively. Dur-
ing evaluation we maintain a beam size of 3. We
determine the correct positions for the pointer net-
work by matching any output word to its character

Table 4: The datasets’ statistics used for evaluation.

Conversational Classification

Total size 66151 17851
Training Set 54110 6851
Validation Set 6020 5500
Test Set 6021 5500

list if the characters appear consecutively in the
input character sequence, and noting the start and
end position of that character list. Words whose
characters are not found consecutively are assign
a start and end position of 0 (the beginning of the
sequence). We fix the start and end position to the
nearest left and right space respectively in the in-
put character sequence to select a complete word.
We use the pointer output instead of the genera-
tor output whenever the predicted probability for
generation is less than 0.6.

5.1 Datasets

We conducted the experiments on two datasets:
• The former dataset contains conversations oc-

curred between a customer and a live-chat agent.
Human annotators provide the normalized and san-
itized version as ground turth. We will refer to
this as the Conversational dataset and use it for the
evaluation of the first two experiments.
• The later one contains utterances collected

from a task-oriented chatbot service where cus-
tomers interact with an agent to solve 27 possible
tasks. Each utterance has been manually inspected
and assigned to one of the possible class. We will
refer to this as the Classification datasets and we
will adopt it for the last experiments in Sec. 6.3.

We report the dataset statistics in Tab. 4 and the
detailed descriptions in Sec. 8.1.

5.2 Baselines

We adopted two baselines to benchmark the abil-
ity of the proposed model in the task of normaliz-
ing and sanitizing a sentence. The first baseline,
Monoise (van der Goot, 2019b) – a lexical normal-
ization tool, is adopted to confirm our model’s ef-
fectiveness over token-based approaches. Monoise
performs normalization via two subtasks: candi-
date generation and candidate ranking. The first
subtask uses heuristics to select potential normal-
ized forms of each token, including nearest neigh-
bors in word embedding space, edit distance and
phonetic distance, and crafted lookup list derived
from training, and more. The second subtask first
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Table 5: Performance of our proposed Transformer ver-
sus baseline in text normalization and sanitization.

Systems Normalization Sanitization
BLEU4 WER BLEU4 WER

Monoise 0.9536 0.0206 - -
LSTM 0.9955 0.0015 0.9827 0.0076

Transformer
(Our model) 0.9986 0.0007 0.9880 0.0052

engineers features for each candidate, including
word embedding distance, n-gram probability, char-
acter order, and more. This baseline is used to
demonstrate the improvement of our approaches
over a heuristic token-based model not only in
terms of effectiveness but also efficiency.

The second baseline, LSTM implemented using
Fairseq (Ott et al., 2019), is used to highlight the ef-
fectiveness of our char-to-word Transformer-based
proposal over traditional word-to-word RNN.

Based on the previous research done in the MT
filed, we report the test performances of normaliza-
tion and sanitization in terms of BLEU4 and Word
Error Rate (Klakow and Peters, 2002) (WER). The
experiment results are described in Tab. 5.

We also (2.1) compare the performance of
our proposed pointer-generator model against
generator-only model in text normalisation objec-
tive and, (2.2) compare multi-head attention against
classical attention mechanisms described in a pre-
vious work (Luong et al., 2015). The alternative
attention formulation considered for benchmarking
are:

• General attention
gsi (ht, z, θs) = hTt Wszi

gei (ht, z, θe) = hTt Wezi

• Concat attention
gsi (ht, z, θs) = vTs tanh(Ws[h

T
t , zi])

gei (ht, z, θs) = vTe tanh(We[h
T
t , zi]).

Note that, for an overall comparison of the dif-
ferent network architectures considered we used
the BLEU4 score. Instead, to evaluate the pointing
mechanisms, we compute the accuracy score of
the start and end position w.r.t. the correct text’s
segment, as well as the improved F1 score of the
proposed model and baselines. The experiment
results are described in Tab. 7.

Finally, the classification is done using a linear
classifier with a bag-of-word approach; which is a

common settings in the industry. The performance
are evaluated in terms of accuracy and F1 score.
The results are reported in Tab. 9.

6 Results and Evaluation

6.1 Generator

At the macro-scopic level, all translation models,
i.e. LSTM and the proposed Transformer-based
out-perform Monoise. Specifically, our model out-
performs Monoise by 0.045 absolute margin or re-
duces the error by 33 times in terms of BLEU4
score. In terms of WER, the result is perfor-
mance is consistent where our model reduces the
error by 0.02 or by 29 times. Overall, this high-
lights the improvement of context-aware translation
models from context-unaware token-based lemma-
tizers. We also highlight the superiority of our
Transformer-based architecture over the RNN base-
line. On normalization task, it is able to reduce
LSTM’s error by approximately 3 times in terms of
BLEU4 and 2 times in terms of WER. On Sanitiza-
tion task, the proposed model consistently reduces
LSTM’s error by approximately 1.5 times in terms
of both BLEU4 and WER.

For a deeper understanding of the models behav-
ior, we examine the results at micro-scopic level
in Tab. 6. We observe that in the first example,
Monoise, being unaware of the context, normalize
shipping address to ship address. This can be con-
fusing as the phrase shipping address specifically
means the delivery address of a package, while ship
address possibly means the docking location of a
large watercraft. Instead, the proposed model is
able to consider the contextual information such
as my order, indicating a package to be delivered,
and leave the word shipping as it is. In the second
example, Monoise leaves the word real unlemma-
tized as reel is an existing English word. However,
when we factor in the context of virtual agent and
the followed word person, normalizing reel as real
is more sensible. Overall, also the analysis of the
last example demonstrate how the proposed model
is able to consider the semantics of an utterance;
which eventualy lead to a better results w.r.t. a
token-based approach.

6.2 Pointer

As shown in Tab. 7, all the networks with pointing
capabilities outperform the Generator-only base-
line in terms of BLEU score. Multihead Pointer-
Generator improves Generator-only model by the

43



Table 6: Test examples highlight the behaviours of different methods. Note that, misspelled phrases are highlighted
in red and correctly normalised phrases are highlighted in blue.

Input Text Transformer (Our model) Monoise

shipping address is incorrect on my or-
der.

shipping address is incorrect on my or-
der .

ship address is incorrect on my order .

can i speak with a reel person? can i speak with a real person ? can i speak with a reel person ?
i had money that was refunded to me
and i tried sending to my bank account
but its was on hold

i have money that was refund to me and
i try send it to my bank account but it
was on hold

i have money that was refund to me and
i try send it to my bank account but it is
was on hold

Table 7: Performance of our proposed Multihead Pointer-Generator versus baselines in text normalisation. The
Pointer Start Acc. and Pointer End Acc. denote the accuracy of each system in pointing to the correct start and end
position. The Generating F1 denotes the F1 score of each system in generating the correct next token.

Systems BLEU4 Pointer Start Acc. Pointer End Acc. Generating F1

Generator-only 0.9532 – – 0.9243
General Pointer-Generator 0.9583 0.7083 0.7084 0.9229
Concat Pointer-Generator 0.9582 0.707 0.7065 0.928

Multihead Pointer-Generator 0.9606 0.7076 0.7076 0.9334

Table 8: Test examples highlight the behaviours of different methods.Note that: misspelled phrases are
highlighted in red, correctly normalised phrases are highlighted in blue, mishandled OOVs are highlighted in
gray, and, correctly pointed OOVs are highlighted in green.

Input Text Generator-only Output Pointer-only Ouput Pointer-Generator Output

sennd mony from PayPal
to venmo account

send money from PayPal to
UNK account .

sennd mony from PayPal to
venmo account .

send money from PayPal to
venmo account .

how can I conect my
venmo account with hsbc
and citibank account?

how can i connect my UNK
account with hub and UNK
account ?

how can i conect my venmo
account with hsbc and
citibank account ?

how can i connect my venmo
account with hsbc and
citibank account ?

followw PayPal on twitter follow PayPal on UNK . followw PayPal on twitter . follow PayPal on twitter .

largest absolute margin of .0074 or 15.8% error
reduction, compared with .0061 absolute margin or
10.89% error reduction and 0.006 absolute margin
or 10.68% error reduction from General and Con-
cat Pointer-Generator respectively. These statics
confirm our hypothesis that jointly using a pointing
and generating mechanism improves the perfor-
mance of neural models. Moreover, our Multihead
Pointer-Generator being highly compatible with
the end-to-end transformer-based architecture is
the most effective amongst the proposed pointer-
based models.

We further seek to understand the improvement
brought about by our proposed Multihead Pointer-
Generator by examining its accuracy in pointing
to the correct start and end positions of the text
segment to be copied. Experiment results from
Pointer Start Acc. and Pointer End Acc. Table 8
suggest that there is no significant difference in
pointing to the correct positions between the three
pointer models. However, the Multihead Pointer-
Generator shows a performance boost in terms of

Table 9: Classification performances with and without
text normalized and sanitized input.

Systems Accuracy F1 score

with text-norm 0.7696 0.7175
without text-norm. 0.7583 0.6855

F1 score, where our proposed model enhances the
Generator baseline by 0.0091 absolute margin or
12.02% error reduction. This is significantly higher
than the changes brought about by General (+1.84%
error), and Concat (+4.89% error). This implies
that our network design is capable of enhancing a
traditional Generator-only module when applied
to the text normalisation tasks.

6.3 Classification

Finally, we want to evaluate if text normalization
and sanitization is also beneficial for downstream
tasks. That is, we hypothesized that a normalized
and sanitized utterance would be easier to process
by another model such as a text classifier. Re-

44



cent advancement in NLP claims that BERT-like
models can easily overcome limitations related to
misspelling errors due to their tokenization and
pre-training process. However, such models are
computational expensive thus are not yet widely
adopted in commercial applications that require
high-throughput like chatbot services.

It has to be noted that our Conversational dataset
contains a broader set of topics and a more varie-
gate lexicon than this dataset. Thus, for this experi-
ment, we directly apply the best performing model
of task 1 and 2 to obtain a normalized and sanitized
version of the input utterances.

Tab. 9 reports the impact of text normalization
and sanitization on a downstream text classifica-
tion task in our NLI that requires strong natural
language understanding. Overall, our proposed
model yields a relative improvement of +1.08%
in terms of accuracy and +4.67% in terms of F1

score. This indicates that text normalization is ben-
eficial in detecting the classes characterized by a
limited amount of training examples.

7 Conclusion

We addressed the importance of context awareness
in joint normalization and sanitization. We veri-
fied our C2W Transformer-based model’s quality
over context-unaware word-level lemmatizer and
traditional W2W seq-to-seq model at both macro-
scopic and microscopic level. Moreover, we tack-
led the limitation of representing and producing
OOVs during generation with a pointer-generator
that learns to copy the relevant text segments from
the source input to the translated output. Experi-
ments at both macroscopic and microscopic level
verified improved normalization and sanitization
fluency previously limited by OOVs.

Our formulation of text normalization as a
learning-to-translate problem avoids the tedious en-
gineering of domain specific preprocessing heuris-
tics for textual data. The proposal of pointer-
generator is highly generalizable to other NLP tasks
such as summarization or machine translation.
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8 Appendix

8.1 Dataset Details

As described in Sec. 5.1, we adopted two distinct
datasets in our evaluation. Here we are going to
describe their characteristics and the annotation
process used.

Conversational Dataset
As over-mentioned, this dataset is formed by utter-
ances collected from a chat service where clients
interact with customers service agents. Note that
such conversations happen in real-time. Thus they
contain a huge variety of topics as well as a huge
lexicon. Clients can access this chat service from
any device, this translate in many syntactic errors
present in the utterances as well as an informal lan-
guage. All the above considerations suggest that
many customers adopt mobile devices to interact
with these services. The topics covered in such con-
versations can vary from issues related to financial
services to trust problem, which involves third par-
ties not directly participating in the conversations
or general chitchatting.

Human annotator has been used to reduce each
word o its canonical form, i.e. lemmas. In contrast,
misspelt words and sensitive/personal information
are corrected or masked according to the contex-
tual meaning of the conversation. Note that this
labelling process contains little uncertainty; thus,
we used a single annotator per utterance to max-
imise the dataset size.

Classification Dataset
The second dataset is a traditional text classifica-
tion dataset collected from a task-oriented chatbot
system where customers can interact with a chatbot
agent to solve 27 possibles task. Note that the user
interface is equal for both dataset, but in this case,
instead of a human agent, there is a chatbot agent.
It has to be noted that we collect only the first ut-
terance typed from the customer since it is the only
part needed to classify the customer’s need on the
27 classes correctly.

3 skilled annotators have manually annotated
each utterance, and we have discharged all the ut-
terances that do not present 100% of agreement.
The classes used in this dataset are a subset of the
topics appearing in the previous dataset. For exam-
ple, we have classes related to transactions status,
transactions that are declined, dispute for item not
received, scam emails or problems related to the ac-

count of a customer. Note that, if the chatbot is not
able to address the customer’s need the conversa-
tion would be redirected to an human agent. Thus,
a system able to normalize and sanitize utterances
from the live-chat service (Conversational dataset),
would be directly applicable also to this dataset.
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