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Abstract

Knowledge-based question answering (KB-
QA) has long focused on simple questions
that can be answered from a single knowl-
edge source, a manually curated or an auto-
matically extracted KB. In this work, we look
at answering complex questions which often
require combining information from multiple
sources. We present a novel KB-QA system,
MULTIQUE, which can map a complex ques-
tion to a complex query pattern using a se-
quence of simple queries each targeted at a
specific KB. It finds simple queries using a
neural-network based model capable of col-
lective inference over textual relations in ex-
tracted KB and ontological relations in curated
KB. Experiments show that our proposed sys-
tem outperforms previous KB-QA systems on
benchmark datasets, ComplexWebQuestions
and WebQuestionsSP.

1 Introduction

Knowledge-based question answering (KB-QA)
computes answers to natural language questions
based on a knowledge base. Some systems use
a curated KB (Bollacker et al., 2008), and oth-
ers use an extracted KB (Fader et al., 2014). The
choice of the KB depends on its coverage and
knowledge representation: a curated KB uses on-
tological relations but has limited coverage, while
an extracted KB offers broad coverage with tex-
tual relations. Commonly, a KB-QA system finds
answers by mapping the question to a structured
query over the KB. For instance, example question
1 in Fig. 1 can be answered with a query (Rihanna,
place of birth, ?) over a curated KB or (Rihanna,
‘was born in’, ?) over an extracted KB.

Most existing systems focus on simple ques-
tions answerable with a single KB. Limited efforts
have been spent to support complex questions that

∗ NB and XZ contributed equally to this work.

2. What college did the author of ‘The Hobbit’ attend?
nesting

3. Which Portuguese speaking countries import fish from Brazil?
conjunction

1. Where was Rihanna born?
simple

Figure 1: Simple vs Complex questions.

require inference over multiple relations and enti-
ties. For instance, to answer question 2 in Fig. 1,
we need to infer relations corresponding to expres-
sions ‘author of’ and ‘attend’. In practice, a sin-
gle KB alone may not provide both high coverage
and ontological knowledge to answer such ques-
tions. A curated KB might provide information
about educational institutions, while an extracted
KB might contain information about authorship.
Leveraging multiple KBs to answer complex ques-
tions is an attractive approach but is seldom stud-
ied. Existing methods assume a simple abstrac-
tion (Fader et al., 2014) over the KBs and have
limited ability to aggregate facts across KBs.

We aim to integrate inference over curated and
extracted KBs for answering complex questions.
Combining information from multiple sources of-
fers two benefits: evidence scattered across multi-
ple KBs can be aggregated, and evidence from dif-
ferent KBs can be used to complement each other.
For instance, inference over ontological relation
book author can benefit from textual relation ‘is
written by’. On the other hand, evidence matching
‘attend’ may exclusively be in the curated KB.

Example 1 What college did the author of ’The
Hobbit’ attend?
Simple Queries:
G1: The Hobbit ‘is wrtten by’ ?a.
G2: ?b person.education ?c . ?c institution ?x.

Join: G = G1 join?a=?b G2

Evaluate: ans = University of Oxford

In this work, we propose a novel KB-QA sys-
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Figure 2: Partial queries and derivations.

tem, MULTIQUE, which constructs query patterns
to answer complex questions from simple queries
each targeting a specific KB. We build upon recent
work on semantic parsing using neural network
models (Bao et al., 2016; Yih et al., 2015) to learn
the simple queries for complex questions. These
methods follow an enumerate-encode-compare
approach, where candidate queries are first col-
lected and encoded as semantic vectors, which are
then compared to the vector representation of the
question. The candidate with the highest semantic
similarity is then executed over the KB. We pro-
pose two key modifications to adapt these mod-
els to leverage information from multiple KBs and
support complex questions. First, to enable col-
lective inference over ontological and textual rela-
tions from the KBs, we align the different relation
forms and learn unified semantic representations.
Second, due to the lack of availability of fully-
annotated queries to train the model, we learn with
implicit supervision signals in the form of answers
for questions. Our main contributions are:
• We propose a novel KB-QA system, MULTI-

QUE, that combines information from curated
and extracted knowledge bases to answer com-
plex questions. To the best of our knowledge,
this is the first attempt to answer complex ques-
tions from multiple knowledge sources.
• To leverage information from multiple KBs, we

construct query patterns for complex questions
using simple queries each targeting a specific
KB. (Section 3 and 5).
• We propose a neural-network based model that

aligns diverse relation forms from multiple KBs
for collective inference. The model learns to
score simple queries using implicit supervision
from answers to complex questions (Section 4).
• We provide extensive evaluation on benchmarks

demonstrating the effectiveness of proposed
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Figure 3: System Architecture

techniques on questions of varying complexity
and KBs of different completeness (Section 6).

2 Task and Overview

Our goal is to map a complex question Q to a
query G, which can be executed against a com-
bination of curated KB Kc and extracted KB Ko.
Knowledge Bases. The background knowledge
source K=

⋃
{Kc, Ko} is denoted as K=(V, E ,R),

where V is the set of entities and E is a set of triples
(s, r, o). A triple denotes a relation r ∈ R between
subject s ∈ V and object o ∈ V . The relation set
R is a collection of ontological relations Ro from
Kc and textual relations Rt from Ko. A higher
order relation is expressed using multiple triples
connected using a special CVT node.

Complex Question, Q corresponds to a query G
which has more than one relation and a single
query focus ?x. G is a sequence of partial queries
G = (G1, G2, .., Go) connected via different join
conditions. A partial query has four basic ele-
ments: a seed entity sr is the root of the query, a
variable node ov corresponds to an answer to the
query, a main relation path (sr, p, ov) is the path
that links sr to ov by one or two edges from either
Ro or Rt, and constraints take the form of an en-
tity linked to the main relation by a relation c. By
definition, each partial query targets a specific KB.

A composition tree C describes how the query
G is constructed and evaluated given the partial
queries. It includes two functions, simQA and join.
simQA is the model for finding simple queries. It
enumerates candidates for a simple query, encodes
and compares them with the question representa-
tion, and evaluates the best candidate. join de-
scribes how to join two partial queries i.e. whether
they share the query focus or another variable
node. Fig. 2 shows the partial queries and com-
position tree for the running example 1.
Overview. Given a complex input question, the
task is to first compute a composition tree that de-
scribes how to break down the inference into sim-
ple partial queries. We then have to gather can-
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Figure 4: Example Candidate Generation for the running example 1.

didates for each partial query from both curated
and extracted KBs. For each candidate, we have
to measure its semantic similarity to the question
using a neural-network based model that should
be capable of inference over different forms of re-
lations. We then have to join the different partial
queries to find the complex query for the question.
Since there can be multiple ways to answer a com-
plex question, we derive several full query deriva-
tions. We rank them based on the semantic sim-
ilarity scores of their partial queries, query struc-
ture and entity linking scores. We execute the best
derivation over the multiple KBs. Fig. 3 shows the
architecture of our proposed system, MULTIQUE.

3 Partial Query Candidate Generation

We first describe how we find candidates for par-
tial queries given an input question. We use a
staged generation method with staged states and
actions. Compared to previous methods (Yih et al.,
2015; Luo et al., 2018) which assume a question
has one main relation, our strategy can handle
complex questions which have multiple main re-
lations (and hence partial queries). We include a
new action At that denotes the end of the search
for a partial query and transition to a state St. State
St refers back to the composition tree to deter-
mine the join condition between the current par-
tial query and the next query. If they share an
answer node, candidate generation for the sub-
sequent query can resume independently. Other-
wise, it waits for the answers to the current query.

We generate (entity, mention) pairs for a ques-
tion using entity linking (Bast and Haussmann,
2015) and then find elements for query candidates.
Fig. 4 depicts our staged generation process.
Identify seed entity. The seed sr for a partial
query is a linked entity in the question or an an-
swer of a previously evaluated partial query.
Identify main relation path. Given a seed entity,
we consider all 1-hop and 2-hop paths p. These
include both ontological and textual relations. The
other end of the path is the variable node ov.

Identify constraints. We next find entity and type
constraints. We consider entities that can be con-
nected using constraint relations is a relations1 to
the variable node ov. We also consider entities
connected to the variables on the relation path via
a single relation. We consider all subsets of con-
straints to enable queries with multiple constraints.
Transition to next partial query. Once candi-
dates of a partial query Gi are collected, we re-
fer to the composition tree to determine the start
state of the next partial queryGi+1. If the next op-
eration is simQA, we compute the semantic simi-
larity of the candidates of Gi using our semantic
matching model and evaluate K-best candidates.
The answers form the seed for collecting candi-
dates for Gi+1. Otherwise, candidate generation
resumes with non-overlapping entity links in Gi.

4 Semantic Matching

We now describe our neural-network based model
which infers over different relation forms and
computes the semantic similarity of a partial query
candidate to the question.

4.1 Model Architecture

Fig. 5 shows the architecture of our model. To en-
code the question, we replace all seed (constraint)
entity mentions used in the query by dummy to-
kens wE (wC). To encode the partial query, we
consider its query elements, namely the main rela-
tion path and constraint relations. Given the vector
representations q for the question Q and g for the
partial query Gi, we concatenate them and feed a
multi-layer perceptron (MLP). The MLP outputs
a scalar which we use as the semantic similarity
Ssem(Q,Gi). We describe in detail the encod-
ing methods for the question and different relation
forms in the main relation path. We also describe
other design elements and the learning objective.

Encoding question. We encode a question Q us-
ing its token sequence and dependency structure.

1common.topic.notable types,common.topic.notable for
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Figure 5: Semantic Matching Model

Since a complex question tends to be long, encod-
ing its dependency tree captures any long-range
dependencies. Let 〈w1, w2, . . . , wn〉 be the tokens
inQ, where seed (constraint) entity mentions have
been replaced with wE (wC). We map the tokens
to vectors 〈qw1 , qw2 , . . . , qwn 〉 using an embedding
matrix Ew and use an LSTM to encode the se-
quence to a latent vector qw. Similarly, we encode
the dependency tree into a latent vector qdep.

Encoding main relation path. The main relation
path can have different forms, a textual relation
from Ko or an ontological relation from Kc. In
order to collectively infer over them in the same
space, we first align the textual relations to onto-
logical relations. For instance, we find textual re-
lations‘is author of’, ‘written by’ can be aligned
to ontological relation book.author. We describe
how we derive the relation alignments in Sec. 4.2.
Given a relation alignment, we encode each rela-
tion form i in the alignment to a latent vector ri.
We apply a max pooling over the latent vectors
of different relations in the alignment to obtain
a unified semantic representation over the differ-
ent relation forms. Doing so enables the model to
learn better representations of an ontological rela-
tion which has complementary textual relations.

To encode each relation form into vector ri, we
consider both sequence of tokens and ids (Luo
et al., 2018). For instance, the id sequence of the
relation in Fig. 5 is {book author}, while its token
sequence is {‘book’, ‘author’}. We embed the to-
kens into vectors using an embedding matrix and
use average embedding rw as the token-level rep-
resentation. We translate the relation directly us-
ing another embedding matrixEr of relation paths
to derive its id-level representation ridi . The vector
representation of a path then is ri = [rwi ; r

id
i ].

Encoding constraints. Similarly, we encode the
constraint relations ci in by combining its token-
level representation cwi and id-level representation
cidi . Given the unified vector representation of a re-
lation path, and the latent vectors of the constraint
relations, we apply max pooling to obtain the com-
positional semantic representation g of the query.

Attention mechanism. Simple questions contain
expressions for matching one main relation path.
A complex question, however, has expressions for
matching multiple relation paths, which could in-
terfere with each other. For instance, words ‘col-
lege’ and ‘attend’ can distract the matching of the
phrase ‘author of’ to the relation book.author. We
mitigate this issue by improving the question rep-
resentation using an attention mechanism (Luong
et al., 2015). The idea is to learn to emphasize
parts of the question that are relevant to a con-
text derived using the partial query vector g. For-
mally, given all hidden vectors ht at time step
t ∈ {1, 2, . . . , n} of the token-level representation
of the question, we derive a context vector c as the
weighted sum of all the hidden states:

c =
n∑

t=1

αtht

where αt corresponds to an attention weight. The
attention weights are computed as:

α = softmax(Wtanh(Wqq
w +Wgg))

whereW,Wg,Wq are network parameters. The at-
tention weights indicate how much the model fo-
cuses on each token given a partial query.

Objective function. We concatenate the context
vector c, question dependency vector qdep and
query vector g and feed to a multi-layer perceptron
(MLP). It is a feed-forward neural network with
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two hidden layers and a scalar output neuron indi-
cating the semantic similarity score Ssem(q,Gi).
We train the model using cross entropy loss,

loss = ylog(Ssem) + (1− y)log(1− Ssem)

where y ∈ {0, 1} is a label indicating whether Gi

is correct or not. Training the model requires a)
an alignment of equivalent relation forms, and b)
examples (question, partial query) pairs. We de-
scribe how we generate them given QA pairs.

4.2 Relation Alignment
An open KB has a huge vocabulary of relations.
Aligning the textual relations to ontological re-
lations for collective inference can become chal-
lenging if the textual relations are not canonical-
ized. We, first learn embeddings for the textual
relations and cluster them to obtain canonicalized
relation clusters (Vashishth et al., 2018). For in-
stance, a cluster can include both ‘is author of’
and ‘authored’. We use the canonicalized textual
relations to derive an alignment to the ontological
relations. We derive this alignment based on the
support entity pairs (s, o) for a pair of ontological
relation and canonicalized textual relation. For in-
stance, relations ‘is author of’ and book.author in
our example question will share more entities than
relations ‘is author of’ and education.institution.
The alignment is based on a support threshold i.e.
minimum number of support entity pairs for a pair
of relations. In our experiments, we set the thresh-
old to 5 to avoid sparse and noisy signals in the
alignment.

4.3 Implicit Supervision
Obtaining questions with fully-annotated queries
is expensive, especially when queries are complex.
In contrast, obtaining answers is easier. In such
a setting, the quality of a query candidate is of-
ten measured indirectly by computing the F1 score
of its answers to the labeled answers (Peng et al.,
2017a). However, for complex questions, answers
to the partial queries may have little or no overlap
with the labeled answers. We, therefore, adopt an
alternative scoring strategy where we estimate the
quality of a partial query as the best F1 score of all
its full query derivations. Formally, we compute a
score V (G

(k)
i ) for a partial query as:

V (G
(k)
i ) = max

i≤t≤n−1
F1(D

(k)
t+1)

where Dt denotes the derivation at level t and n

denotes the number of partial queries.

Such implicit supervision can be susceptible to
spurious derivations which happen to evaluate to
the correct answers but do not capture the seman-
tic meaning of a question. We, thus, consider ad-
ditional priors to promote true positive and false
negative examples in the training data. We use
L(Q,G

(k)
i ) as the ratio of number of words in the

relations ofG(k)
i that are mentioned in the question

Q. We also use C(Q,G(k)
i ) as the fraction of re-

lation words that hit a small hand-crafted lexicon
of co-occurring relation and question words. We
estimate the quality of a candidate as: V (G

(k)
i ) +

γ L(Q,G
(k)
i ) + δ C(Q,G

(k)
i ). We consider a can-

didate a positive example if its score is larger than
a threshold (0.5) and negative otherwise.

5 Query Composition

In this work, we focus on constructing complex
queries using a sequence of simple partial queries,
each with one main relation path. Since the orig-
inal question does not have to be chunked into
simple questions, constructing composition trees
for such questions is fairly simple. Heuristi-
cally, a composition tree can simply be derived
by estimating the number of main relations (verb
phrases) in the question and the dependency be-
tween them (subordinating or coordinating). We
use a more sophisticated model (Talmor and Be-
rant, 2018) to derive the composition tree. The
post-order traversal of the tree yields the order in
which partial queries should be executed.

Given a computation tree, we adopt a beam
search and evaluate best k candidates for a partial
query at each level. This helps maintain tractabil-
ity in the large space of possible complex query
derivations. The semantic matching model only
independently scores the partial queries and not
complete derivations. We, thus, need to find the
best derivation that captures the meaning of the
complex input question. To determine the best
derivation, we aggregate the scores over the par-
tial queries and consider additional features such
as entities and structure of the query. We train
a log-linear model on a set of (question-answer)
pairs using features such as semantic similarity
scores, entity linking scores, number of constraints
in the query, number of variables, number of rela-
tions and number of answer entities. Given the
best scoring derivation, we translate it to a KB
query and evaluate it to return answers to the ques-



6

tion. Such an approach has been shown to be suc-
cessful in answering complex questions over a sin-
gle knowledge base (Bhutani et al., 2019). In this
work, we extend that approach to scenarios when
multiple KBs are available.

6 Experiments

We present experiments that show MULTIQUE

outperforms existing KB-QA systems on complex
questions. Our approach to construct queries from
simple queries and aggregate multiple KBs is su-
perior to methods which map questions directly to
queries and use raw text instead.

6.1 Experimental Setup

Datasets. We use two benchmark QA datasets:
• CompQWeb (Talmor and Berant, 2018): A

recent dataset with highly complex questions
with compositions, conjunctions, superlatives
and comparatives. It contains 34,689 questions,
split into 27,734 train, 3,480 dev and 3,475 test
cases. For simplicity of evaluation, we only re-
serve questions with compositions and conjunc-
tions (90% of the dataset).
• WebQSP (Yih et al., 2016): It contains 4,737

questions split into 3,098 train and 1,639 test
cases. Most of the questions are simple; only
4% questions have multiple constraints (Yin
et al., 2015). We evaluate on this dataset to
demonstrate our proposed methods are effective
on questions of varying complexity.

Knowledge Bases. We use the Freebase2 dump as
the curated KB. We construct an extracted KB us-
ing StanfordOpenIE (Angeli et al., 2015) over the
snippets released by (Talmor and Berant, 2018) for
CompQWeb and (Sun et al., 2018) for WebQSP.
Evaluation Metric. We report averaged F1 scores
of the predicted answers. We additionally com-
pute precision@1 as the fraction of questions that
were answered with the exact gold answer.
Baseline systems. We compare against two sys-
tems that can handle multiple knowledge sources.
• GraftNet+ (Sun et al., 2018): Given a ques-

tion, it identifies a KB subgraph potentially con-
taining the answer, annotates it with text and
performs a binary classification over the nodes
in the subgraph to identify the answer node(s).
We point that it collects subgraphs using 2-hop
paths from a seed entity. Since this cannot scale

2http://commondatastorage.googleapis.com/freebase-
public/rdf/freebase-rdf-2015-08-02-00-00.gz

for complex questions which can have arbitrary
length paths, we follow our query composition
strategy to generate subgraphs. We annotate
the subgraphs with snippets released with the
datasets. We call this approach GraftNet+.
• OQA (Fader et al., 2014): It is the first KB-QA

system to combine curated KB and extracted
KB. It uses a cascade of operators to paraphrase
and parse questions to queries, and to rewrite
and execute queries. It does not generate a uni-
fied representation of relation forms across the
KBs. For comparison, we augment its knowl-
edge source with our extracted KB and evaluate
the model released by the authors.

Several other KB-QA systems (Cui et al., 2017;
Abujabal et al., 2017; Bao et al., 2016) use only
Freebase and handle simple questions with a few
constraints. SplitQA (Talmor and Berant, 2018)
and MHQA (Song et al., 2018) handle complex
questions, but use web as the knowledge source.
Implementation Details. We used NVIDIA
GeForce GTX 1080 Ti GPU for our experiments.
We initialize word embeddings using GloVe (Pen-
nington et al., 2014) word vectors of dimension
300. We use BiLSTMs to encode the question to-
ken and dependency sequences. We use 1024 as
the size of hidden layer of MLP and sigmoid as
the activation function.

6.2 Results and Discussion

We evaluate several configurations. We consider
candidates from curated KB as the only available
knowledge source to answer questions and use it
as a baseline (cKB-only). To demonstrate that in-
ference over curated KB can benefit from open
KB, we consider diverse relation forms of curated
KB facts from open KB (cKB+oKB). Lastly, we
downsample the curated KB candidates to 90%,
75% and 50% to simulate incompleteness in KB.
Effectiveness on complex questions. Our pro-
posed system outperforms existing approaches on
answering complex questions (Table 1). Even
though both MULTIQUE and GraftNet+ use the
same information sources, our semantic matching
model outperforms node classification. Also, us-
ing extracted facts instead of raw text enables us
to exploit the relations between entities in the text.
We also achieve significantly higher F1 than OQA
that uses multiple KB but relies on templates for
parsing questions to queries directly and does not
deeply integrate information from multiple KBs.
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Method CompQWeb WebQSP

MULTIQUE (cKB-only) 31.24/37.61 61.16/69.84
MULTIQUE (cKB+oKB) 34.62/41.23 57.49/67.51

MULTIQUE (90%cKB+oKB) 27.15/30.21 55.47/65.42
MULTIQUE (75%cKB+oKB) 25.54/28.09 50.64/60.17
MULTIQUE (50%cKB+oKB) 18.57/20.51 41.72/50.82

GraftNet+ (Sun et al., 2018) 31.96/44.78 57.21/68.98
OQA (Fader et al., 2014) 0.42/42.85 21.78/32.63
SplitQA(Talmor and Berant, 2018) -/27.50 -
MHQA (Song et al., 2018) -/30.10 -

Table 1: Average F1 / precision@1 of baseline systems
and MULTIQUE in different configurations.

In contrast, we can construct complex query pat-
terns from simple queries, and can infer over di-
verse relation forms in the KB facts. SplitQA (Tal-
mor and Berant, 2018) and MHQA (Song et al.,
2018) use a similar approach to answer complex
questions using a sequence of simpler questions,
but rely solely on noisy web data. Clearly, by com-
bining the knowledge from curated KB, we can
answer complex questions more reliably.
Effectiveness on simple questions. An evalua-
tion on simpler questions demonstrates that MUL-
TIQUE can adapt to questions of varying complex-
ity. We achieve the comparable F1 score on the
as other KB-QA systems that adopt an enumerate-
encode-compare strategy. STAGG (Yih et al.,
2015), a popular KB-QA system uses a similar
approach for candidate generation but improves
the results using feature engineering and by aug-
menting entity linking with external knowledge
and only uses curated KB. MULTIQUE uses multi-
ple KBs, and can be integrated with a better entity
linking and scoring scheme for derivations.
KB completeness. Our results show that includ-
ing information from extracted KB helps improve
inference over ontological relations and facts for
complex questions (as indicated by 3.38 F1 gain
in cKB+oKB). It instead hurts the performance on
WebQSP dataset. This can be attributed to the cov-
erage of the accompanying textual data sources of
the two datasets. We found that for only 26% of
the questions in WebQSP, an extracted fact could
be aligned with a curated KB candidate. In con-
trast, there were 55% such questions in the Com-
pQWeb. This illustrates that considering irrele-
vant, noisy facts does not benefit when curated KB
is complete. Such issues can be mitigated by using
a more robust retrieval mechanism for text snip-
pets or facts from extracted KB.

A KB-QA system must rely on an extracted

Setup CompQWeb WebQSP

No constraints 31.23/37.87 52.53/60.84
No attention 26.92/31.24 40.29/51.86
No re-ranking 29.39/36.14 55.13/62.78
No prior 30.88/36.68 57.54/64.63

Table 2: Ablation results, average F1 / precision@1, of
MULTIQUE (cKB+oKB).

KB when curated KB is incomplete. This is re-
flected in the dramatic increase in the percent-
age of hybrid queries when curated KB candidates
were downsampled (e.g., from 17% to 40% at 90%
completeness). As expected, the overall F1 drops
because the precise curated KB facts become un-
available. Despite the noise in extracted KBs, we
found 5-15% of the hybrid queries found a cor-
rect answer. Surprisingly, we find 55% of the
queries changed when the KB is downsampled to
90%, but 89% of them did not hurt the average F1.
This indicates that the system could find alterna-
tive queries when KB candidates are dropped.
Ablation Study. Queries for complex questions
often have additional constraints on the main re-
lation path. 35% of the queries in CompQWeb
had at least one constraint, while most of the
queries (85%) in WebQSP are simple. Ignoring
constraints in candidate generation and in seman-
tic matching drops the overall F1 score by 9.8%
(8.6%) on CompQWeb (WebQSP) (see Table 2).
Complex questions also are long and contain ex-
pressions for matching different relation paths. In-
cluding the attention mechanism helps focus on
relevant parts of the question and improves the re-
lation inference. We found F1 drops significantly
on CompQWeb when attention is disabled.

Re-ranking complete query derivations by ad-
ditionally considering entity linking scores and
query structure consistently helps find better
queries. We examined the quality of top-k query
derivations (see Table 3). For a large majority of
the questions, query with the highest F1 score was
among the top-10 candidates. A better re-ranking
model, thus, could help achieve higher F1 score.
We also observed that incorporating prior domain
knowledge in deriving labels for partial queries at
training was useful for complex questions.
Qualitative Analysis. The datasets also provide
queries over Freebase. We used them to analyze
the quality of our training data and the queries gen-
erated by our system. We derive labels for each
partial query candidate by comparing it to the la-
beled query. On an average, 4 candidates per ques-
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CompQWeb WebQSP
% Avg. best F1 % Avg. best F1

Top-1 35.11 34.62 69.12 57.49
Top-2 39.73 37.02 76.21 63.74
Top-5 51.12 42.08 85.05 70.00
Top-10 59.19 46.39 89.63 73.37

Table 3: Percentage of questions with the highest F1

score in the top-k derivations, and the average best F1.

tion were labeled correct. We then compare them
with the labels derived using implicit supervision.
We found on average 3.06 partial queries were true
positives and 103.08 were true negatives, with few
false positives (1.72) and false negatives (0.78).

We further examined if the queries which
achieve a non-zero F1 were spurious. We com-
pared the query components (entities, relations,
filter clauses, ordering constraints) of such queries
with labeled queries. We found high precision
(81.89%) and recall (76.19%) of query compo-
nents, indicating the queries were indeed precise.
Error Analysis. We randomly sampled 50 ques-
tions which achieve low F1 score (< 0.1) and an-
alyzed the queries manually. We found 38% er-
rors were made because of incorrect entities in the
query. 92% of the entity linking errors were made
at the first partial query. These errors get propa-
gated because we find candidate queries using a
staged generation. A better entity linking system
can help boost the overall performance. 12% of
the queries had an incorrect curated KB relation
and 18% of the queries had an incorrect extracted
KB relation. In a large fraction of cases (32%) the
predicted and true relation paths were ambiguous
given the question (e.g., kingdom.rulers vs gov-
ernment for “Which queen presides over the lo-
cation...”). This indicates that relation inference is
difficult for highly similar relation forms.
Future Work. Future KB-QA systems targeting
multiple KBs should address two key challenges.
They should model whether a simple query is an-
swerable from a given a KB or not. It should query
the reliable, extracted KBs only when the curated
KB lacks sufficient evidence. This could help im-
prove overall precision. Second, while resolving
multiple query components simultaneous is bene-
ficial, the inference could be improved if the ques-
tion representation reflected all prior inferences.

7 Related Work

KB-QA methods can be broadly classified into:

retrieval-based methods, template-based methods
and semantic parsing-based methods. Retrieval-
based methods use relation extraction (Feng et al.,
2016) or distributed representations (Bordes et al.,
2014; Xu et al., 2016) to identify answers from
the KB but cannot handle questions where mul-
tiple entities and relations have to be identified
and aggregated. Template-based methods rely
on manually-crafted templates which can encode
very complex query logic (Unger et al., 2012; Zou
et al., 2014), but suffer from the limited coverage
of templates. Our approach is inspired by (Abu-
jabal et al., 2017), which decomposes complex
questions to simple questions answerable from
simple templates. However, we learn solely from
question-answer pairs and leverage multiple KBs.

Modern KB-QA systems use neural network
models for semantic matching. These use an
encode-compare approach (Luo et al., 2018; Yih
et al., 2015; Yu et al., 2017), wherein continu-
ous representations of question and query candi-
dates are compared to pick a candidate which is
executed to find answers. These methods require
question-answer pairs as training data and focus
on a single knowledge source. Combining multi-
ple knowledge sources in KB-QA has been studied
before, but predominantly for textual data. (Das
et al., 2017b) uses memory networks and universal
schema to support inference on the union of KB
and text. (Sun et al., 2018) enriches KB subgraphs
with entity links from text documents and formu-
lates KB-QA as a node classification task. The key
limitations for these methods are that a) they can-
not handle highly compositional questions and b)
they ignore the relational structure between the en-
tities in the text. Our proposed system additionally
uses an extracted KB that explicitly models the re-
lations between entities and can compose complex
queries from simple queries.

We formulate complex query construction as a
search problem. This is broadly related to struc-
tured output prediction (Peng et al., 2017b) and
path finding (Xiong et al., 2017; Das et al., 2017a)
methods which learn to navigate the search space
using supervision from question-answer pairs.
These methods are effective for answering simple
questions because the search space is small and
the rewards to guide the search can be estimated
reliably. We extend the ideas of learning from im-
plicit supervision (Liang et al., 2016) and inte-
grate it with partial query evaluation and priors to
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preserve the supervision signals.

8 Conclusion

We have presented a new KB-QA system that uses
both curated and extracted KBs to answer com-
plex questions. It composes complex queries us-
ing simpler queries each targeting a KB. It in-
tegrates an enumerate-encode-compare approach
and a novel neural-network based semantic match-
ing model to find partial queries. Our system
outperforms existing state-of-the-art systems on
highly compositional questions, while achieving
comparable performance on simple questions.
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