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Abstract

We propose a novel procedure for training mul-
tiple Transformers with tied parameters which
compresses multiple models into one enabling
the dynamic choice of the number of encoder
and decoder layers during decoding. In train-
ing an encoder-decoder model, typically, the
output of the last layer of the N -layer encoder
is fed to the M -layer decoder, and the out-
put of the last decoder layer is used to com-
pute loss. Instead, our method computes a sin-
gle loss consisting of N × M losses, where
each loss is computed from the output of one
of the M decoder layers connected to one of
the N encoder layers. Such a model subsumes
N × M models with different number of en-
coder and decoder layers, and can be used for
decoding with fewer than the maximum num-
ber of encoder and decoder layers. Given our
flexible tied model, we also address to a-priori
selection of the number of encoder and de-
coder layers for faster decoding, and explore
recurrent stacking of layers and knowledge dis-
tillation for model compression. We present a
cost-benefit analysis of applying the proposed
approaches for neural machine translation and
show that they reduce decoding costs while
preserving translation quality.

1 Introduction

Neural networks for sequence-to-sequence model-
ing typically consist of an encoder and a decoder
coupled via an attention mechanism. Whereas the
very first deep models used stacked recurrent neural
networks (RNN) (Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2015) in the encoder and
decoder, the recent Transformer model (Vaswani
et al., 2017) constitutes the current state-of-the-art
approach, owing to its better context modeling via
multi-head self- and cross-attentions.

Given an encoder-decoder architecture and its
hyper-parameters, such as the number of encoder

and decoder layers, vocabulary sizes (in the case
of models for texts), and hidden layers, the pa-
rameters of the model, i.e., matrices and biases
for non-linear transformations, are optimized by
iteratively updating them so that the loss for the
training data is minimized. The hyper-parameters
can also be tuned, for instance, through maximiz-
ing the automatic evaluation score on the devel-
opment data. However, in general, it is highly
unlikely (or impossible) that a single optimized
model suffices diverse cost-benefit demands at the
same time. For instance, in practical low-latency
scenarios, one may accept some performance drop
for speed. However, a model used with a subset of
optimized parameters might perform badly. Also,
a single optimized model cannot guarantee the best
performance for each individual input. An exist-
ing solution for these problems is to train multiple
models and host them simultaneously. However,
this approach is not very practical, because it re-
quires a large number of resources. We also lack a
well-established method for selecting appropriate
models for each individual input prior to decoding.

As a more effective solution, we consider train-
ing a single model that subsumes multiple mod-
els which can be used for decoding with different
hyper-parameter settings depending on the input or
on the latency requirements. In this paper, we fo-
cus on the number of layers as an important hyper-
parameter that impacts both speed and quality of
decoding, and propose a multi-layer softmaxing
method, which uses the outputs of all layers during
training. Conceptually, as illustrated in Figure 1,
this is the same as tying (sharing) the parameters
of multiple models with different number of layers
and is not specific to particular types of multi-layer
neural models.

Despite the generality of our proposed method,
in this paper, we focus on encoder-decoder mod-
els with N encoder and M decoder layers, and
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Figure 1: The general concept of multi-layer softmaxing for training multi-layer neural models with an example of
a 4-layer model. Figure 1a is a depiction of our idea in the form of multiple vanilla models whose layers are tied
together. Figure 1b shows the result of collapsing all tied layers into a single layer. The red lines indicate the flow
of gradients and hence the shallowest layer in the stack receives the largest number of updates.

compress N ×M models1 by updating the model
with a total of N ×M losses computed by soft-
maxing the output of each of the M decoder layers,
where it attends to the output of each of the N
encoder layers. The number of parameters of the
resultant encoder-decoder model is equivalent to
that of the most complex subsumed model with N
encoder and M decoder layers. Yet, we can now
perform faster decoding using a fewer number of
layers, given that shallower layers are also directly
trained.

To evaluate our proposed method, we take the
case study of neural machine translation (NMT)
(Cho et al., 2014; Bahdanau et al., 2015), using
the Transformer model (Vaswani et al., 2017), and
demonstrate that a single model with N encoder
and M decoder layers trained by our method can
be used for flexibly decoding with fewer than N
and M layers without appreciable quality loss. We
evaluate our proposed method on WMT18 English-
to-German translation task, and give a cost-benefit
analysis for translation quality vs. decoding speed.

Given a flexible tied model, for saving decod-
ing time, we then design mechanisms to choose,
prior to decoding, the appropriate number of en-
coder and decoder layers depending on the input.
We also focus on compact modeling, where we
leverage other orthogonal types of parameter tying
approaches. Compact models are faster to decode
and will be useful in cases where a-priori layer
prediction might be infeasible.

The rest of the paper is organized as follows.
Section 2 briefly reviews related work for com-
pressing neural models. Section 3 covers our

1Rather than casting the encoder-decoder model into a
single column model with (N +M ) layers.

method that ties multiple models by softmaxing
all encoder-decoder layer combinations. Section 4
describes our efforts towards designing and evaluat-
ing a mechanism for dynamically selecting encoder-
decoder layer combinations prior to decoding. Sec-
tion 5 describes two orthogonal extensions to our
model aiming at further model compression and
speeding-up of decoding. The paper ends with
Section 6 containing conclusion and future work.

2 Related Work

There are studies that exploit multiple layers si-
multaneously. Wang et al. (2018) fused hidden
representations of multiple layers in order to im-
prove the translation quality. Belinkov et al. (2017)
and Dou et al. (2018) attempted to identify which
layer can generate useful representations for differ-
ent natural language processing tasks. Unlike them,
we make all layers of the encoder and decoder us-
able for decoding with any encoder-decoder layer
combination. In practical scenarios, we can save
significant amounts of time by choosing shallower
encoder and decoder layers for inference.

Our method ties the parameters of multiple mod-
els, which is orthogonal to the work that ties pa-
rameters between layers (Dabre and Fujita, 2019)
and/or between the encoder and decoder within
a single model (Xia et al., 2019; Dabre and Fu-
jita, 2019). Parameter tying leads to compact mod-
els, but they usually suffer from drops in inference
quality. In this paper, we counter such drops with
knowledge distillation (Hinton et al., 2015; Kim
and Rush, 2016; Freitag et al., 2017). This ap-
proach utilizes smoothed data or smoothed training
signals instead of the actual training data. A model
with a large number of parameters and high per-
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formance provides smoothed distributions that are
then used as labels for training small models in-
stead of one-hot vectors.

As one of the aims in this work is model size
reduction, it is related to a growing body of work
that addresses the computational requirement re-
duction. Pruning of pre-trained models (See et al.,
2016) makes it possible to discard around 80% of
the smallest weights of a model without deteriora-
tion in inference quality, given it is re-trained with
appropriate hyper-parameters after pruning. Cur-
rently, most deep learning implementations use
32-bit floating point representations, but 16-bit
floating point representations (Gupta et al., 2015;
Ott et al., 2018) or aggressive binarization (Cour-
bariaux et al., 2017) can be alternatives. Compact
models are usually faster to decode; studies on
quantization (Lin et al., 2016) and average attention
networks (Xiong et al., 2018) address this topic.

None of the above work has attempted to com-
bine multi-model parameter tying, knowledge dis-
tillation, and dynamic layer selection for obtaining
and exploiting highly-compressed and flexible deep
neural models.

3 Multi-Layer Softmaxing

3.1 Proposed Method

Consider an N -layer encoder and M -layer decoder
model. Let X be the embedded input to the en-
coder, Y the expected output of the decoder as well
as the input to the decoder (for training), and Ŷ
the output predicted by the decoder. Algorithm 1
shows the pseudo-code for our proposed method.
Line 3 represents the process done by the i-th en-
coder layer, Lenc

i , and line 5 does the same for the
j-th decoder layer, Ldec

j , given the embedded de-
coder input, dec0. In simple words, we compute
a loss using the output of each of the M decoder
layers which in turn is computed using the out-
put of each of the N encoder layers. In line 8,
the N × M losses are aggregated2 before back-
propagation. Henceforth, we will refer to this as
the Tied-Multi model.

For a comparison, the vanilla model is formu-
lated as follows: decj = Ldec

j (decj−1, encN ),
Ŷ = softmax (decM ), and overall loss =
cross entropy(Ŷ , Y ).

2We averaged multiple losses in our experiment, but there
are a number of options, such as weighted averaging.

Algorithm 1: Training a tied-multi model
1 enc0 = X;
2 for i in 1 to N do
3 enci = Lenc

i (enci−1);
4 for j in 1 to M do
5 decj = Ldec

j (decj−1, enci);
6 Ŷ = softmax (decj);
7 lossi,j = cross entropy(Ŷ , Y );

8 overall loss = aggregate(loss1,1, . . . , lossN,M );
9 Back-propagate using overall loss;

3.2 Experimental Setup
We evaluated the utility of our multi-layer soft-
maxing method on a neural machine translation
task. We experimented with the WMT18 English-
to-German (En→De) translation task. We used
all the parallel corpora available for WMT18, ex-
cept ParaCrawl corpus,3 consisting of 5.58M sen-
tence pairs, as the training data and 2,998 sen-
tences in newstest2018 as test data. The English
and German sentences were pre-processed using
the tokenizer.perl and truecase.perl
in Moses.4 The true-case models for English and
German were trained on 10M sentences randomly
extracted from the monolingual data made avail-
able for the WMT18 translation task, using the
train-truecaser.perl in Moses.

We evaluated the following two types of models
on both translation quality and decoding speed.

Vanilla models: 36 vanilla models with 1 to 6 en-
coder and 1 to 6 decoder layers, each trained
referring only to the last layer for computing
loss.

Tied-Multi model: A single tied-multi model
with N = 6 encoder and M = 6 decoder
layers, trained by our multi-layer softmaxing.

Our multi-layer softmaxing method was imple-
mented on top of an open-source toolkit of the
Transformer model (Vaswani et al., 2017) in the ver-
sion 1.6 branch of tensor2tensor.5 For train-
ing, we used the default model settings correspond-
ing to transformer base single gpu in
the implementation, except what follows. We
used a shared sub-word vocabulary of 32k deter-
mined using the internal sub-word segmenter of ten-
sor2tensor. To ensure that each model sees roughly

3http://www.statmt.org/wmt18/translation-task.html
We excluded ParaCrawl following the instruction on the
WMT18 website: “BLEU score dropped by 1.0” for this task.

4https://github.com/moses-smt/mosesdecoder
5https://github.com/tensorflow/tensor2tensor

http://www.statmt.org/wmt18/translation-task.html
https://github.com/moses-smt/mosesdecoder
https://github.com/tensorflow/tensor2tensor
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BLEU score
Decoding time (sec)

36 vanilla models Single tied-multi model
n\m 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 26.3 30.3 31.9 32.2 32.4 32.9 23.2 28.6 30.5 30.8 31.2 31.5 94.7 101.9 143.4 174.7 215.5 244.5
2 28.6 32.5 33.1 33.3 33.5 33.2 26.5 31.5 33.0 33.6 33.8 34.0 100.5 110.8 153.7 185.6 227.8 253.6
3 29.2 32.6 33.6 34.4 34.3 34.1 27.8 32.5 33.9 34.6 34.7 34.7 102.5 114.2 168.5 194.8 234.0 259.8
4 29.8 33.6 34.3 34.7 34.4 34.5 28.3 33.0 34.3 34.8 34.9 34.9 104.1 105.6 143.9 197.0 219.1 264.6
5 30.7 33.9 34.6 35.5 34.4 35.0 28.6 33.1 34.5 34.8 35.0 35.1 105.1 111.5 156.4 186.0 236.1 268.8
6 30.8 34.0 34.4 35.7 35.0 35.0 28.7 33.1 34.6 34.7 34.9 35.0 107.4 113.6 168.1 190.1 229.5 257.9

Table 1: BLEU scores of 36 separately trained vanilla models and our single tied-multi model used with n (1 ≤
n ≤ N ) encoder and m (1 ≤ m ≤M ) decoder layers. One set of decoding times is also shown given the fact that
vanilla and our tied-multi models have identical shapes when n andm for encoder and decoder layers are specified.

the same number of examples during training,6 we
trained the models for 300k iterations, with 1 GPU
for the vanilla models and 2 GPUs with batch size
halved for our tied-multi model. We averaged the
last 10 checkpoints saved every after 1k updates,
decoded the test sentences, fixing a beam size7 of
4 and length penalty of 0.6, and post-processed the
decoded results using the detokenizer.perl
and detruecase.perl in Moses.

We evaluated our models using the BLEU metric
(Papineni et al., 2002) implemented in sacreBLEU
(Post, 2018).8 We also present the time consumed
to translate the test data, which includes times for
the model instantiation, loading the checkpoints,
sub-word splitting and indexing, decoding, and sub-
word de-indexing and merging, whereas times for
detokenization are not taken into account.

Note that we did not use any development data
for two reasons. First, we train all models for the
same number of iterations. Second, we use check-
point averaging before decoding, which does not
require development data unlike early stopping.

3.3 Results
Table 1 summarizes the BLEU scores and the av-
erage decoding times9 over 3 runs of all the mod-
els, exhibiting the cost-benefit property of our tied-
multi model in comparison with the results of the
corresponding 36 vanilla models.

Even though the objective function for the tied-
multi model is substantially more complex than

6This might lead to sub-optimal models, such as immature
or over-fit ones, so we will examine the convergence in future.

7One can realize faster decoding by narrowing down the
beam width. This approach is orthogonal to ours and in this
paper we do not insist which is superior to the other.

8https://github.com/mjpost/sacreBLEU
signature: BLEU+case.mixed+lang.en-de+numrefs.1
+smooth.exp+test.wmt18+tok.13a+version.1.3.7

9These numbers will vary depending on machine, model
architecture, concurrent processes, implementation, hyper-
parameters, etc. For instance, decoding with a larger length
penalty produces longer sentences consuming a longer time.

the one for the vanilla model, when performing de-
coding with the 6 encoder and 6 decoder layers, it
achieved a BLEU score of 35.0, which is approach-
ing to the best BLEU score of 35.7 given by the
vanilla model with 6 encoder and 4 decoder layers.
Note that when using a single encoder layer and/or
a single decoder layer, the vanilla models gave sig-
nificantly higher BLEU score than the tied-multi
model. However, when the number of layers is in-
creased, there is no significant difference between
the two types of models.

Regarding the cost-benefit property of our tied-
multi model, two points must be noted:

• BLEU score and decoding time increase only
slightly, when we use more encoder layers.

• The bulk of the decoding time is consumed
by the decoder, since it works in an auto-
regressive manner. We can substantially cut
down decoding time by using fewer decoder
layers which does lead to sub-optimal transla-
tion quality.

One may argue that training a single vanilla
model with optimal number of encoder and de-
coder layers is enough. However, as discussed in
Section 1, it is impossible to know a priori which
combination is the best for different input sentences.
More importantly, a single vanilla model cannot
suffice diverse cost-benefit demands and cannot
guarantee the best translation for any input (see
Section 3.4). Recall that we aim at a flexible model
and that all the results in Table 1 have been ob-
tained using a single tied-multi model, albeit using
different number of encoder and decoder layers for
decoding.

3.4 Analysis and Discussion
We conducted an analysis from the perspective of
training time, model size, and decoding behavior,
in comparison with vanilla models.

https://github.com/mjpost/sacreBLEU
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Figure 2: Distribution of oracle translations determined by chrF scores between reference and each of the hypothe-
ses derived from the 36 combinations of encoder and decoder layers (newstest2018, 2,998 sentences).

Training Time: Given that all our models were
trained for the same number of iterations, we com-
pared the training times between vanilla and tied-
multi models. As a reference, we use the vanilla
model with 6 encoder and 6 decoder layers. The
total training time for all the 36 vanilla models was
25.5 times10 that of the reference model. In con-
trast, the training time for our tied-multi model was
about 9.5 times that of the same reference model.
This is because training of a tied-multi model can
aggressively leverage GPU parallellism for its vast
number of computations.

Model Size: The number of parameters of our
tied-multi model is exactly the same as the vanilla
model withN encoder andM decoder layers. If we
train a set of vanilla models with different numbers
of encoder and decoder layers, we end up with
significantly more parameters. For instance, in case
of N = M = 6 in our experiment, we have 25.2
times more parameters: a total of 4,607M for the
36 vanilla models against 183M for our tied-multi
model. In Section 5, we discuss the possibility of
further model compression.

Decoding Behavior: To better understand the na-
ture of our proposed method, we analyzed the distri-
bution of oracle translations within 36 translations
generated by each of the vanilla and our tied-multi
models. Let (n,m) be an encoder-decoder layer
combination of a given model with n encoder and
m decoder layers. The oracle layer combination for
an input sentence was determined by measuring the
quality of the translation derived from each layer
combination. We used a reference-based metric,

10We measured the collapsed time for a fair comparison,
assuming that all vanilla models were trained on a single GPU
one after another, even though one may be able to use multiple
GPUs to train the 36 vanilla models in parallel.

chrF (Popović, 2016), since it has been particularity
designed for sentence-level translation evaluation
and was shown to have relatively high correlation
with human judgment of translation quality at sen-
tence level for the English–German pair (Ma et al.,
2018). In cases where multiple combinations have
the highest score, we chose the fastest one follow-
ing the overall trend of decoding time (Table 1).
Formally, we considered a combination (n1,m1)
is faster than another combination (n2,m2) if the
following holds.

(n1,m1) < (n2,m2)

≡ m1 < m2 ∨ (m1 = m2 ∧ n1 < n2).
(1)

Figure 2 compares the distributions of oracle layer
combinations for the vanilla and our tied-multi
models, revealing that the shallower layer com-
binations in our tied-multi model often gener-
ates better translations than deeper ones unlike
the vanilla models, despite the lower corpus-level
BLEU scores. This sharp bias towards shallower
layer combinations suggests the potential reduction
of decoding time by dynamically selecting the layer
combination per input sentence prior to decoding,
ideally without performance drop. We address this
task in Section 4.

4 Dynamic Layer Selection

Motivated by the results shown in Figure 2, we
tackled an advanced problem: dynamic selection
of one layer combination prior to decoding.11

4.1 Method
We formalize the encoder-decoder layer combina-
tion selection with a supervised learning approach

11This is the crucial difference from two post-decoding
processes: translation quality estimation (Specia et al., 2010)
and n-best-list re-ranking (Kumar and Byrne, 2004).
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where the objective is to minimize the following
loss function (2).

argmin
θ

1

|S|
∑
si∈S

L(f(si; θ), tik), (2)

where si is the i-th input sentence (1 ≤ i ≤ |S|),
tik is the translation for si derived from the k-th
layer combination (1 ≤ k ≤ K) among K pos-
sible combinations, where K = N × M in our
case, f is the model with parameters θ, and L is
a loss function. Assuming that the independence
of target labels (layer combinations) for a given
input sentence allows for ties, the model is able to
predict multiple layer combinations for the same
input sentence.

We implemented the model f with a multi-head
self-attention neural network inspired by Vaswani
et al. (2017). The number of layers and atten-
tion heads are optimized during a hyper-parameter
search, while the feed-forward layer dimensional-
ity is fixed to 2,048. Input sequences of tokens are
mapped to their corresponding embeddings, initial-
ized by the embedding table of the tied-multi NMT
model. Similarly to BERT (Devlin et al., 2019), a
specific token is prepended to input sequence be-
fore being fed to the classifier. This token is finally
fed during the forward pass to the output linear
layer for sentence classification. The output lin-
ear layer has K dimensions, allowing to output as
many logits as the number of layer combinations
in the tied-multi NMT model. Finally, a sigmoid
function outputs probabilities for each layer combi-
nation among the K possible combinations.

The parameters θ of the model f are learned
using mini-batch stochastic gradient descent with
Nesterov momentum (Sutskever et al., 2013) and
the loss function L, implemented as a weighted
binary cross-entropy (BCE) function (3).

LBCEik

= −wik
[
δky

i
k · log ŷik + (1− yik) · log(1− ŷik)

]
,

(3)

where yik is the reference class of the i-th input
sentence si, ŷik is the output of the network after
the sigmoid layer given si, and δk = (1− p(tk))α
is the weight given to the k-th class based on class
distribution prior. During our experiment, we have
found that the classifier tends to favor recall in
detriment to precision. To tackle this issue, we
introduce another loss using an approximation of

the macro Fβ implemented following (4).

LiFβ = 1−
[
(1 + β2) · P ·R

(β2 · P ) +R

]
, (4)

where P = µ/
∑

k ŷ
i
k, R = µ/

∑
k y

i
k, and µ =∑

k(ŷ
i
k · yik).

The final loss function is the linear interpolation
of LBCE averaged over the K classes and LFβ with
parameter λ, both averaged over the batch: λ ×
LBCE +(1−λ)×LFβ . We tune α, β, and λ during
the classifier hyper-parameter search based on the
validation loss.

4.2 Experiment

The layer combination classifier was trained on a
subset of the training data for NMT models (Sec-
tion 3.2) containing 5.00M sentences, whereas the
remaining sentences compose a development and a
test sets each containing approximately 200k sen-
tences. The two latter subsets were used for hyper-
parameter search and evaluation of the classifier,
respectively. To allow for comparison and repro-
ducibility, the final evaluation of the proposed ap-
proach in terms of translation quality and decoding
speed were conducted on the official WMT devel-
opment (newstest2017, 3,004 sentences) and test
(newstest2018, 2,998 sentences) sets; the latter is
the one also used in Section 3.2.

The training, development, and test sets were
translated by each layer combination of the tied-
multi NMT model. Each source sentence was thus
aligned with 36 translations whose quality were
measured by the chrF metric. Because several com-
binations can lead to the best score, the obtained
dataset was labeled with multiple classes (36 layer
combinations) and multiple labels (ties with regard
to the metric). During inference, the ties were bro-
ken by selecting the layer combination with the
highest value given by the sigmoid function, or
backing-off to the deepest layer combination (6,
6) if no output value reaches 0.5. This tie break-
ing method differs from the oracle layer selection
presented in Equation (1) and in Figure 2 which
prioritizes shallowest layer combinations. In this
experiment, decoding time was measured by pro-
cessing one sentence at a time instead of batch
decoding, the former being slower compared to the
latter, but leads to precise results. The decoding
times were 954s and 2,773s when using (1,1) and
(6,6) layer combinations, respectively. By select-
ing the fastest encoder-decoder layer combinations
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Classifier Fine-tuning Time (s) BLEU
Baseline (tied (6,6)) 2,773 35.0
Oracle (tied) 1,812 42.1
(#1) 8 layers, 8 heads X 2,736 35.0
(#2) 2 layers, 4 heads X 2,686 34.8
(#3) 2 layers, 4 heads 2,645 34.7
(#4) 4 layers, 2 heads 2,563 34.3

Table 2: Dynamic layer combination selection results
in decoding time (in seconds, batch size of 1) and
BLEU, including the baseline and oracle for the WMT
newstest2018 using the tied-multi model architecture.

according to an oracle, the decoding times went
down to 1,918s and 1,812s for the individual and
tied-multi models, respectively. However, our ob-
jective is to be faster than default setting, that is,
where one would choose (6,6) combination.

Several classifiers were trained and evaluated on
the WMT test set, with or without fine-tuning on
the WMT development set. Table 2 presents the re-
sults in terms of corpus-level BLEU and decoding
speed.12 Some classifiers maintain the translation
quality (middle rows), whereas others show qual-
ity degradation but further gain in decoding speed
(bottom rows). The classification results show that
gains in decoding speed are possible with an a-
priori decision for which encoder-decoder combi-
nation to select, based on the information contained
in the source sentence only. However, no BLEU
gain has so far been observed, demonstrating a
trade-off between decoding speed and translation
quality. Our best configuration for decoding speed
(#4) reduced 210s but leads to a 0.7 point BLEU
degradation. On the other hand, when preserving
the translation quality compared to the baseline
configuration (#1) we saved only 37s. The oracle
layer combination can achieve substantial gains
both in terms of BLEU (7.1 points) and decoding
speed (961s). These oracle results motivate possi-
ble future work in layer combination prediction for
the tied-multi NMT model.

5 Further Model Compression

We examined the combination of our multi-layer
softmaxing approach with another parameter-tying
method in neural networks, called recurrent stack-
ing (RS) (Dabre and Fujita, 2019), complemented
by sequence-level knowledge distillation (Kim and
Rush, 2016), a specific type of knowledge distil-
lation (Hinton et al., 2015). We demonstrate that

12Decoding time does not include the time spent for layer
selection, which took up to 1.0 second for the entire test set.

these existing techniques help reduce the number
of parameters in our model even further.

5.1 Distillation into a Recurrently Stacked
Model

In Section 2, we have discussed several model com-
pression methods orthogonal to multi-layer soft-
maxing. Having already compressed N ×M mod-
els with our approach, we consider further com-
pressing it using RS. However, models that use RS
layers tend to suffer from performance drops due
to the large reduction in the number of parameters.
As a way of compensating the performance drop,
we apply sequence-level knowledge distillation.

First, we decode all source sentences in the train-
ing data to generate a pseudo-parallel corpus con-
taining distillation target sentences, i.e., soft-targets
for the child model which makes learning easier
and hence is able to mimic the behavior of the par-
ent model. Then, an RS child model is trained with
multi-layer softmaxing on the generated pseudo-
parallel corpus. Among a variety of distillation
techniques, we chose the simplest one to show the
impact that distillation can have in our setting, leav-
ing an extensive exploration of more complex meth-
ods for the future.

5.2 Experiment

We conducted an experiment to show that RS and
sequence distillation can lead to an extremely com-
pressed tied-multi model which no longer suffers
from performance drops. We compared the follow-
ing four variations of our tied-multi model trained
with multi-layer softmaxing.

Tied-multi model: A model that does not share
the parameters across layers, trained on the
original parallel corpus.

Distilled tied-multi model: The same model as
above but trained on the pseudo-parallel cor-
pus.

Tied-multi RS model: A tied-multi model that
uses RS layers, trained on the original parallel
corpus.

Distilled tied-multi RS model: The same model
as above but trained on the pseudo-parallel
corpus.

First, we trained 5 vanilla models with 6 encoder
and 6 decoder layers, because the performance of
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Tied-multi model Tied-multi RS model
n\m 1 2 3 4 5 6 1 2 3 4 5 6

without
distillation

1 23.2 28.6 30.5 30.8 31.2 31.5 25.7 29.8 30.6 30.8 30.7 30.9
2 26.5 31.5 33.0 33.6 33.8 34.0 28.5 32.3 32.9 33.0 33.1 33.2
3 27.8 32.5 33.9 34.6 34.7 34.7 29.2 32.9 33.6 33.8 33.6 33.5
4 28.3 33.0 34.3 34.8 34.9 34.9 29.3 33.2 33.7 33.9 33.6 33.7
5 28.6 33.1 34.5 34.8 35.0 35.1 29.4 33.2 33.7 33.9 33.9 34.0
6 28.7 33.1 34.6 34.7 34.9 35.0 29.2 33.2 33.7 33.9 34.0 33.8

with
distillation

1 30.1 34.0 35.1 35.3 35.6 35.7 31.2 33.5 34.1 34.2 34.3 34.3
2 33.4 35.8 36.6 36.8 37.1 37.3 33.7 35.5 35.7 35.7 35.8 35.8
3 34.7 36.5 37.0 37.4 37.4 37.5 34.1 35.8 36.1 36.1 36.2 36.2
4 35.2 36.8 37.2 37.4 37.5 37.5 34.3 36.0 36.2 36.2 36.3 36.3
5 35.5 36.9 37.1 37.4 37.5 37.6 34.5 36.1 36.2 36.3 36.3 36.3
6 35.5 37.0 37.2 37.5 37.6 37.6 34.6 36.1 36.2 36.2 36.3 36.2

Table 3: BLEU scores of the tied-multi models with (left block) and without (center and right blocks) RS layers,
each trained with (bottom block) and without (top block) sequence distillation. n and m respectively denote the
number of layers in the encoder and the decoder. The top-left block is identical to the middle block in Table 1.

distilled models is affected by the quality of par-
ent models, and NMT models vary vastly in per-
formance (around 2.0 BLEU points) depending
on parameter initialization. We then decode the
source side (English side) of the entire training
data (5.58M sentences) with the one13 with the
highest BLEU score on the newstest2017 (used in
Section 4.2) in order to generate pseudo-parallel
corpus for sequence distillation.

Table 3 gives the BLEU scores for all models.
Comparing top-left and top-right blocks of the ta-
ble, we can see that the BLEU scores for RS models
are higher than their non-RS counterparts when us-
ing fewer than 3 decoder layers. This shows the
benefit of RS layers despite the large parameter
reduction. However, the reduction in parameters
negatively affects (up to 1.3 BLEU points) when
decoding with more decoder layers, confirming the
limitation of RS as expected.

Comparing the scores of the top and bottom
halves of the table, we can see that distillation dra-
matically boosts the performance of the shallower
encoder and decoder layers. For instance, without
distillation, the tied-multi model gave a BLEU of
23.2 when decoding with 1 encoder and 1 decoder
layers, but the same layer combination reaches
30.1 BLEU through distillation. Given that RS
further improves performance using lower layers,
the BLEU score increases to 31.2. As such, distil-
lation enables decoding using fewer layers without
substantial drops in performance. Furthermore, the
BLEU scores did not vary significantly when the
layers deeper than 3 were used, meaning that we
might as well train shallower models using distil-

13Ensemble of multiple models (Freitag et al., 2017) is
commonly used for distillation, but we used a single model to
save decoding time.

Model(s) Parameters Relative size
36 vanilla models 4,608M 25.16
Single tied-multi model 183M 1.00
36 RS models 2,623M 14.33
Single tied-multi RS model 73M 0.40

Table 4: Total model sizes for covering all 36 encoder-
decoder layer combinations. The relative size is cal-
culated regarding the tied-multi model as a standard.
Similarly to “36 vanilla models,” “36 RS models” rep-
resents the total number of parameters of all models.

lation. The performance of our final model, i.e.,
the distilled tied-multi RS model (bottom-right),
was significantly lower than the non-RS model (up
to 1.5 BLEU points) similarly to its non-distilled
counterpart. However, given that it outperforms
our original tied-multi model (top-left) in all the
encoder-decoder layer combinations, we conclude
that we can obtain a highly compact model with
better performance.

We now analyze the effect of RS and knowledge
distillation on model size and decoding speed.

Model Size: Table 4 gives the sizes of several
models and their ratio with respect to the tied-multi
model. Training vanilla and RS models with 36
different encoder-decoder layer combinations re-
quired 25.2 and 14.3 times the number of parame-
ters of a single tied-multi model, respectively. Al-
though RS led to some parameter reduction, com-
bining RS with our tied-multi model resulted in a
further compressed single model. This model has
63.2 times and 36.0 times fewer parameters than all
the individual vanilla and RS models, respectively.

Decoding Speed: Table 5 compares results ob-
tained by beam and greedy search using our dis-
tilled tied-multi RS model. In general, greedy
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BLEU score Decoding time (sec)
n\m 1 2 3 4 5 6 1 2 3 4 5 6

Beam
search

1 31.2 33.5 34.1 34.2 34.3 34.3 94.7 101.9 143.4 174.7 215.5 244.5
2 33.7 35.5 35.7 35.7 35.8 35.8 100.5 110.8 153.7 185.6 227.8 253.6
3 34.1 35.8 36.1 36.1 36.2 36.2 102.5 114.2 168.5 194.8 234.0 259.8
4 34.3 36.0 36.2 36.2 36.3 36.3 104.1 105.6 143.9 197.0 219.1 264.6
5 34.5 36.1 36.2 36.3 36.3 36.3 105.1 111.5 156.4 186.0 236.1 268.8
6 34.6 36.1 36.2 36.2 36.3 36.2 107.4 113.6 168.1 190.1 229.5 257.9

Greedy
search

1 30.4 33.1 33.8 34.0 33.8 33.9 58.8 69.1 78.4 94.6 110.7 124.3
2 33.2 35.0 35.3 35.5 35.4 35.5 62.7 68.0 78.8 94.1 112.8 125.8
3 33.8 35.5 35.7 35.7 35.8 35.8 71.8 70.3 79.3 99.9 114.9 128.4
4 34.0 35.8 35.8 35.8 35.8 35.8 72.1 70.7 82.3 98.8 115.2 127.5
5 34.0 35.7 35.8 35.8 35.8 35.9 76.2 68.6 80.9 99.4 120.9 136.7
6 34.1 35.6 35.8 35.8 35.8 35.9 76.6 69.3 81.5 99.2 120.7 131.5

Table 5: BLEU scores and decoding times of our distilled tied-multi RS model by beam and greedy search. The
top-left block is identical to the bottom-right block in Table 3. The top-right block is identical to the right-most
block in Table 1.

decoding is faster than beam decoding, but suf-
fers from reduced performance. By using our dis-
tilled model, however, greedy decoding reduced
the BLEU scores only by 0.5 points compared to
beam decoding. For instance, whereas beam de-
coding with our tied-multi model without RS and
distillation (top-left block in Table 3) achieved the
highest BLEU score of 35.1 with 5 encoder and 6
decoder layers consuming 268.8s, greedy decod-
ing with our distilled tied-multi RS model with 2
encoder and 2 decoder layers resulted in a com-
parable BLEU score of 35.0 in 68.0s, i.e., with a
factor of 4.0 in decoding time thanks to RS and
distillation. This happens because we have used
translations generated by beam decoding as target
sentences for knowledge distillation, which has the
ability to loosely distill beam search behavior into
greedy decoding behavior (Kim and Rush, 2016).

6 Conclusion

In this paper, we have proposed a novel procedure
for training encoder-decoder models, where the
softmax function is applied to the output of each
of the M decoder layers derived using the output
of each of the N encoder layers. This compresses
N×M models into a single model that can be used
for decoding with a variable number of encoder
(1 ≤ n ≤ N ) and decoder (1 ≤ m ≤ M ) layers.
This model can be used in different latency scenar-
ios and hence is highly versatile. We have made a
cost-benefit analysis of our method, taking NMT
as a case study of encoder-decoder models. We
have proposed and evaluated two orthogonal exten-
sions and show that we can (a) dynamically choose
layer combinations for slightly faster decoding and
(b) further compress models using recurrent stack-

ing with knowledge distillation leading to models
that also enable faster decoding.

For further speed up in decoding as well as
model compression, we plan to combine our ap-
proach with other techniques, such as those men-
tioned in Section 2. Although we have only tested
our idea for NMT, it should be applicable to other
tasks based on deep neural networks.
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