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Abstract

In this paper, we present MultiVitaminBooster, a system implemented for the PARSEME shared
task on semi-supervised identification of verbal multiword expressions - edition 1.2. For our ap-
proach, we interpret detecting verbal multiword expressions as a token classification task aiming
to decide whether a token is part of a verbal multiword expression or not. For this purpose, we
train gradient boosting-based models. We encode tokens as feature vectors combining multilin-
gual contextualized word embeddings provided by the XLM-RoBERTa language model (Conneau
et al., 2019) with a more traditional linguistic feature set relying on context windows and depen-
dency relations. Our system was ranked 7th in the official open track ranking of the shared task
evaluations with an encoding-related bug distorting the results. For this reason we carry out
further unofficial evaluations. Unofficial versions of our systems would have achieved higher
ranks.

1 Introduction

Multiword expressions (MWEs) are an object of research in various areas of linguistics and NLP. On
the one hand, areas such as lexico-semantics and construction grammar have a distinct research interest
in the form and semantics of different classes of multiword expressions (Masini, 2005); their automatic
detection makes them accessible to large-scale corpus analyses. On the other hand, various NLP-systems,
especially in the area of machine translation where the detection of MWEs prevents spurious literal
translations, can benefit from detecting MWEs (Zaninello and Birch, 2020), as well.

In this paper, we present an approach to the automatic detection of verbal multiword expressions
(VMWE), MWEs which form around a head verb, which was our contribution to the PARSEME shared
task 2020 on verbal multiword expressions (Ramisch et al., 2020a). The data set provided for the shared
task (Ramisch et al., 2020b) distinguishes 7 general categories of VMWEs, some with additional subcat-
egories:

VMWE category Tag Example
Verbal idioms VID to let the cat out of the bag.

Light-verb constructions LVC.full, LVC.cause to make a decision
Verb-particle constructions VPC.full, VPC.cause to go on
Multi-verb constructions MVC to make do
Inherently reflexive verbs IRV sich beschäftigen (to deal with; to be concerned)

Inherently adpositional verbs IAV to stand for s. th.
Inherently clitic verbs LS.ICV se ne frega (he does not care)

Table 1: The different categories of VMWEs dealt with during the shared task.

Past approaches in the area of MWE detection rely on the usage of statistical association measures (Ev-
ert et al., 2017; Pecina, 2005; Ramisch et al., 2008; Tsvetkov and Wintner, 2010) and machine learning
(Klyueva et al., 2017; Moreau et al., 2018; Stodden et al., 2018; Waszczuk, 2018), sometimes combining
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both (Mandravickaitė and Krilavičius, 2017). Our approach follows this tradition while paying tribute to
the latest developments in the area of multilingual transformer-based neural language modeling.

Transformer-based language models such as BERT (Devlin et al., 2019) or RoBERTa (Liu et al., 2019)
are pre-trained on large-scale corpora and are able to achieve state-of-the-art results for various standard
tasks in NLP. They can either be fine-tuned to solve a specific task or used to provide contextualised
word embeddings. The difference between such contextualised embeddings and the static ones based on
traditional methods such as GloVe (Pennington et al., 2014) or word2vec (Mikolov et al., 2013) is that the
former can account for different local word contexts and encode a given word individually with regard
to the observed local context as well as global distributional information.

By intuition, this aspect should make contextualised word embeddings a feasible candidate for the de-
tection of MWEs, as they should encode a word differently when observed as part of an MWE compared
to an occurrence in open distribution, given both cases were reflected during pre-training. As this aspect
can, however, not be guaranteed in all cases, we complement the embeddings with regular window- and
dependency-based features to make the results of our systems less dependent on the pre-training of the
language model used, and, thus, more robust. To be able to account for the multiple languages repre-
sented in the shared task without providing a distinct transformer language model for each language, we
use the multilingual XLM-RoBERTa (Conneau et al., 2019) which was trained on Common Crawl data
in 100 languages (including all languages represented in the shared task) and is, as a consequence, able
to generate contextualised word embeddings for all of them.

2 System Description

For our system, MultiVitaminBooster, we interpret detecting MWEs as a binary token classification task
whose goal is to decide whether a token is part of a given MWE or not. We train respective binary
classifiers per language and MWE category to account for the phenomenon of overlapping MWEs from
different categories using the train and dev sets provided for the shared task. For re-assembling single
tokens into coherent MWEs, we calculate sub-graphs of the dependency tree of a given sentence where
all nodes not marked as being part of a given MWE category are filtered out. We interpret the remaining
connected components within them as coherent MWEs and tag the tokens accordingly.

2.1 Feature Encoding

XLM-RoBERTa-based contextualised word embeddings: we represent each token by the contex-
tualised word embedding generated by XLM-RoBERTa by itself as well as for its parent within the
dependency tree of a sentence and the root of the respective sentence. To this end, we add the averages
of the contextualised embeddings of all children and siblings of a given token. For acquiring the em-
beddings, we rely on the version of XLM-RoBERTa provided by huggingface.co (Wolf et al., 2019) and
use the base model. As this language model requires a more fine-grained segmentation of tokens than
present in the training data (e. g. highly productive morphemes are regarded as independent tokens to
save input dimensions) and because, as a consequence, a token within the training set might correspond
to multiple sub-tokens and, thus, to multiple contextualised embeddings, we average these embeddings
in such cases.

XLM-RoBERTa attention values: as transformer-based language models use attention during the
calculation of representations (Vaswani et al., 2017), they provide numerical values directly indicating
the importance of tokens for the semantics of each other. Our intuition is that the question whether two
tokens are part of a given MWE, or not, could be reflected in the attention they show for each other. We
encode each token with the attention it pays its parent and the root of a given sentence as well as the
attention both of these pay to the token itself. Analogous to the embeddings themselves, we average the
attention values in cases where multiple sub-tokens correspond to a token from the training data.

Linguistic features (window- and dependency-based): the training- and evaluation corpora of the
shared task (Ramisch et al., 2020b) comply to the format of the universal dependencies project (McDon-
ald et al., 2013). The majority of them were either automatically annotated with lemmata, UD POS tags,
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language-specific POS tags, universal features1 and UD dependency relations using UDPipe (Straka and
Straková, 2017) or taken directly from official UD treebanks.

We encode each token with its corresponding lemma (we filter out all lemmata not observed as being
part of an VMWE within the training corpus), its language-specific POS tag, its universal features and
its dependency tag. To this, we add the corresponding annotations of the parent, siblings and children of
a token within the dependency tree of a given sentence, the respective annotations of the root token of
this sentence within this tree, and the corresponding annotations of neighbouring tokens given a size of
two for the left and the right context. We encode these features as one-hot respectively n-hot-vectors.

2.2 Classification
Gradient Boosting: for MultiVitaminBooster, we use gradient boosting (Mason et al., 1999) relying on
the implementation provided by CatBoost (Dorogush et al., 2018; Prokhorenkova et al., 2018). Gradient
boosting creates an ensemble of weak learners in the form of regression trees in order to create a strong
one. The logit parameters predicted by these trees are combined into final prediction scores using a
variant of logistic regression. We chose gradient boosting as an algorithm as it is able to create complex
and powerful classification models for heterogeneous feature sets. We use the default parameters and
train for 1000 epochs. Per language and VMWE category present for this language, we train a binary
token classifier whose goal is to decide whether a token is part of a VMWE of the respective category.

2.3 VMWE re-assembly
This leaves us with tagged tokens. However, the task requires VMWEs to form connected units indicating
relations between the different corresponding tokens within the output data. To reconnect the single
tokens tagged as VMWE within a given sentence into such complete units, we implemented the following
heuristics which is executed per language and VMWE category:

• We instantiate the dependency tree of a sentence as a graph.

• Within this graph, we delete all nodes corresponding to tokens without a respective VMWE tag.

• We interpret the remaining connected components (= remaining sub-graphs consisting of one or
more connected nodes) as coherent VMWEs.

Figure 1: An example illustrating this heuristic. Translation of this utterance: the student is concerned
with cooperation projects.

3 Results and Analysis

As already stated, our official system (MVB) was ranked last in the official shared task evaluations with
an output encoding-related bug distorting results (under a common condition, it was likely that multiple
sentences were assigned the same VMWE tags). For this reason, we evaluated a bug-fixed system (MVB
(bug free)) for seven out of the 14 languages represented in the shared task (DE, EU, GA, HI, IT, SV
and TR; due to time-related reasons, we only managed to evaluate our system for these languages for the
official shared task which is why we decided to focus on them throughout all other evaluations).

In addition to our bug-fixed system, we trained a system exclusively on the contextualised embeddings
and attention values (Emb. Att. B.), another system exclusively on the window- and dependency-based
linguistic features (Ling. Feats. B.) and a third system which relies on the same feature set as MVB but

1https://universaldependencies.org/u/feat/index.html
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uses logistic regression as classification algorithm (we rely on the implementation provided by scikit-
learn (Pedregosa et al., 2011) for this and train for 1000 iterations) as additional baselines.2

The official evaluations of the shared task were separated into two tracks. Systems participating in the
closed track were obliged to only rely on the data sets provided directly by the organisers (Ramisch et
al., 2020b), while systems participating in the open track were allowed to use external resources such
as external corpora or lexical resources, as well. All our systems except for the one relying solely on
window- and dependency-based linguistic features would have participated in the open track due to the
usage of the external contextualised embeddings if submitted for the official shared task. The systems
were evaluated with regard to different categories with the three most important ones being unseen MWE-
based, a category that evaluates the performance of systems in respect to VMWEs not observed within
the training data, global MWE-based, a category that evaluates the general detection of VMWEs as
connected units, and global token-based, a category evaluating the detection of VMWEs on a token
level.

System Unseen MWE-based Global MWE-based Global Token-based
P R F1 Rank P R F1 Rank P R F1 Rank

MVB 0.05 0.07 0.06 7 0.19 0.09 0.12 7 3.49 1.26 1.85 7
MVB (bug free) 3.74 3.48 3.61 6* 52.21 30.02 38.12 5* 84.10 35.16 49.59 5*
Ling. Feats. B. 14.88 10.03 11.98 2** 56.62 35.72 43.80 3** 82.52 41.49 55.22 3**
Emb. Att. B. 13.44 0.42 0.81 7* 25.81 0.89 1.72 7* 67.11 1.73 3.37 7*

MVLR 3.65 21.12 6.22 5* 21.60 46.89 29.58 5* 37.87 70.76 49.34 5*
MTLB-STRUCT 36.24 41.12 38.53 1 71.26 69.05 70.14 1 77.69 70.9 74.14 1

SEEN2SEEN 36.47 0.57 1.12 2 76.21 58.56 66.23 1 78.64 57.02 66.11 1

Table 2: The overall results of our evaluations for the seven languages. * = unofficial rank in the open track. ** = unofficial
rank in the closed track. MTLB-STRUCT and SEEN2SEEN are the winning systems of the two tracks of the shared tasks. We provide their results for reasons
of comparability. Bold marks the highest score reached within a category throughout all shared task results within a given track. Underline marks the best score
reached among our systems.

The bug-free version of MultiVitaminBooster would have been ranked fifth within the global MWE-
based and global token-based evaluation categories and sixth within the unseen MWE-based category if
it had participated in the official shared task. While this is a huge improvement over the bugged version,
these results can be considered subpar, especially in comparison to the winning systems MTLB-STRUCT
and SEEN2SEEN.

Two further observations which speak against our form of usage of multilingual contextualised word
embeddings for the given task can be made here, as well: on the one hand, the system which was trained
solely on them (Emb. Att. B.) performed by far worst out of all our unofficial systems, and, on the other
hand, the system which was trained solely on the window- and dependency-based linguistic feature set
(Ling. Feats. B.) performed best out of all our systems and even manages to put MultiVitaminBooster
into place. If submitted to the shared track, it would have been ranked second in the unseeen MWE-based
category and third in the global MWE-based and global token-based categories for the closed track. Here,
the question whether these results would have turned out more successful if another language model had
been used instead of XLM-RoBERTa (Conneau et al., 2019) or if our results reflect a general inadequacy
of the approach to use transformer-based word embeddings for detecting VMWEs remains.

Our model based on logistic regression (MVLR) achieved lower precision but higher recall scores
than all our systems based on gradient boosting and, by average, lower F1-scores than the best gradient
boosting-based models. This raises the question to what extent the results would differ when applying
other classification algorithms.

One other important finding is that for all our systems, there is a discrepancy between the precision
scores observed for global MWE-based and global token-based. While the precision achieved for the
global MWE-based category turned out subpar, MultivitaminBooster and the system relying solely on
the linguistic feature set achieve the best precision scores out of all our unoffical and all official systems
within the global token-based category. We attribute this discrepancy to our heuristics used for re-
assembling VMWEs.

2Our code and our full evaluation results can be found under https://github.com/SGombert/
MultiVitaminBoosterResults
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A closer look onto an example can explain this: ”’Es tut weh, die Sprache derer benützen zu müssen,
die dich schinden’, heißt es da beispielsweise schon am Anfang [...].” (”’It hurts having to use the
language of those who maltreat you’, it says, for example, at the beginning.”) In this German sentence,
all tokens marked as bold were recognised as one large VMWE instead of multiple ones, illustrating a
problematic pattern which is observable for our systems throughout all languages evaluated. Tokens of
multiple VMWEs of the same category can form connected components within the dependency tree of a
given sentence which our heutristics is not able to resolve in a correct way. A solution to this would be to
further inspect the dependency relations for which this phenomenon is observable and to try to identify
criteria to filter them out under given circumstances.

System Unseen MWE-based Global MWE-based Global Token-based
P R F1 Rank P R F1 Rank P R F1 Rank

MVB (bug free) 0.65 2.27 1.02 4* 65.14 50.82 57.10 3* 87.07 59.50 70.69 2*
Ling. Feats. B. 1.63 4.55 2.40 2** 70.50 56.46 62.71 1** 86.09 64.16 73.52 1**

MTLB-STRUCT 48.75 58.33 53.11 1 72.25 75.04 73.62 1 81.20 77.24 79.17 1
ERMI 37.09 41.67 39.25 1 63.48 56.32 59.69 1 79.48 62 69.66 1

Table 3: The results of two of our systems for the langugage Hindi. * = unofficial rank in the open track. ** = unofficial rank
in the closed track. MTLB-STRUCT and ERMI are the winning systems of the two tracks of the shared task for this language. We provide their results for reasons
of comparability.

A further observation is that in the case of the language Hindi, the results achieved by our systems
show positive outliers. Here, MultiVitaminBooster would have ranked third in the global MWE-based
category and second in the global token-based category. The unofficial system trained solely on window-
and dependey-based features even manages to achieve unofficial first ranks in the closed track.

4 Conclusion and Future Work

We presented MultiVitaminBooster and three unofficial systems implemented for the PARSEME shared
task 2020 on verbal multiword expressions. We evaluated our systems for seven languages. The best of
our systems would have ranked fifth in the official shared task. A positive outlier can be observed for
the language Hindi, where our systems achieved more competitive results. The usage of multilingual
contextualized word embeddings for our systems can be considered a failure, as the same deteriorated
results and our system relying solely on the linguistic feature set achieved superior results. It is, however,
to explore if this would have turned out differently with another language model.

To summarise, there remains room for improvement. Using statistical association measures induced
from large scale corpora as additional features may be a route to further explore this. An improved
redesign of the heuristics used for assembling tokens into VMWEs built on a more complex rule set
could lead to improvements in MWE-based precision scores and close the gap to the token-based ones.
Different classification algorithms, such as CRFs or SVMs, could be explored as alternatives to gradient
boosting and logistic regression, as well as different variations and combinations of training hyperpa-
rameters to aim for better regularisation.
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