@inproceedings{huo-de-melo-2020-inducing,
title = "Inducing Universal Semantic Tag Vectors",
author = "Huo, Da and
de Melo, Gerard",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://preview.aclanthology.org/fix-sig-urls/2020.lrec-1.382/",
pages = "3121--3127",
language = "eng",
ISBN = "979-10-95546-34-4",
abstract = "Given the well-established usefulness of part-of-speech tag annotations in many syntactically oriented downstream NLP tasks, the recently proposed notion of semantic tagging (Bjerva et al. 2016) aims at tagging words with tags informed by semantic distinctions, which are likely to be useful across a range of semantic tasks. To this end, their annotation scheme distinguishes, for instance, privative attributes from subsective ones. While annotated corpora exist, their size is limited and thus many words are out-of-vocabulary words. In this paper, we study to what extent we can automatically predict the tags associated with unseen words. We draw on large-scale word representation data to derive a large new Semantic Tag lexicon. Our experiments show that we can infer semantic tags for words with high accuracy both monolingually and cross-lingually."
}
Markdown (Informal)
[Inducing Universal Semantic Tag Vectors](https://preview.aclanthology.org/fix-sig-urls/2020.lrec-1.382/) (Huo & de Melo, LREC 2020)
ACL
- Da Huo and Gerard de Melo. 2020. Inducing Universal Semantic Tag Vectors. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 3121–3127, Marseille, France. European Language Resources Association.