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Abstract

Healthcare systems have increased patients’
exposure to their own health materials to en-
hance patients’ health levels, but this has been
impeded by patients’ lack of understanding of
their health material. We address potential
barriers to their comprehension by developing
a context-aware text simplification system for
health material. Given the scarcity of anno-
tated parallel corpora in healthcare domains,
we design our system to be independent of a
parallel corpus, complementing the availabil-
ity of data-driven neural methods when such
corpora are available. Our system compen-
sates for the lack of direct supervision using
a biomedical lexical database: Unified Med-
ical Language System (UMLS). Compared
to a competitive prior approach that uses a
tool for identifying biomedical concepts and a
consumer-directed vocabulary list, we empiri-
cally show the enhanced accuracy of our sys-
tem due to improved handling of ambiguous
terms. We also show the enhanced accuracy
of our system over directly-supervised neural
methods in this low-resource setting. Finally,
we show the direct impact of our system on
laypeople’s comprehension of health material
via a human subjects’ study (n = 160).

1 Introduction

Healthcare practices have granted patients in-
creased access to their health information to sup-
port self-care (Davis et al., 2005; Detmer et al.,
2008). But, the benefits have been hindered by
patients’ low comprehension of their own health
data (Irizarry et al., 2015), as a study shows that
readability measures of online health information
is significantly higher than patient health literacy
abilities (Mcinnes and Haglund, 2011). Moreover,
older adults, the largest demographic group inter-
acting with the healthcare system, are often the
least health-literate (Kessels, 2003; Kutner et al.,
2006). With low levels of health literacy result-
ing in worse health outcomes (Ha and Longnecker,
2010; Kindig et al., 2004), there is an urgent need
to reduce the gap between the health literacy of pa-
tients and the health literacy demands of healthcare
systems. Accordingly, we explore text simplifi-
cation methods for health text, taking medication
instructions as a use case (see Table 1).

This mismatch in patient literacy levels and
health documents is due in part to the differing
language used by healthcare professionals and pa-
tients (Rotegard et al., 2006). For example, what
professionals refer to as “PO”, patients might refer
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Original:
Take 50 mg PO daily for 2 days. Hold for
SBP < 90.
Gold Simplification:
Take 50 milligrams by mouth daily for 2 days.
Hold for systolic blood pressure < 90.
Dr. Babel Fish:
Take 50 milligrams orally daily for 2 days.
Hold for systolic blood pressure < 90.

Table 1: Example medication instruction, its target sim-
plification, and our system’s simplification. Color cod-
ing reflects replacement.

to as “by mouth”. While previous works have ad-
dressed this by performing local word replacement
(Kandula et al., 2010), their context-free frame-
works lacked the accuracy. In a health document,
“Mg” could mean “milligrams” or “Magnesium”,
and harnessing the contextual information, for ex-
ample in “Take 50 Mg” or “Mg reacts with”, aids
accurate simplification.

Our approach is a context-aware medical text
simplification system, named Dr. Babel Fish
(DBF). We design our system to be independent of
the availability of annotated datasets as scarcity of
such data is expected due to privacy and proprietary
concerns. To compensate for annotated datasets,
we instead rely on a structured knowledge base
in the form of the Unified Medical Language Sys-
tem (UMLS) (Bodenreider, 2004; Lindberg et al.,
1993). Taking inspiration from the modular and
context-aware frameworks of Phrase-Based Statisti-
cal Machine Translation (PBSMT) systems (Koehn
et al., 2003), our system, DBF, first identifies hard
(low frequency) words such as “SBP”, then col-
lects possible simplifications of these words from
the UMLS such as {systolic blood pressure, and
serotonin-binding protein}, and finally chooses the
simplification that best reflects patients’ preferred
medical terms and best fits the context (“systolic
blood pressure” in this case), by relying on a patient
language model trained on a suitable monolingual
corpus.

Although Neural Machine Translation (NMT)
frameworks (Bahdanau et al., 2014; Sutskever et al.,
2014) constitute the state-of-the-art, they suffer in
the low-resource settings of the clinical (medical)
domains, and we accordingly present our system
to complement neural methods in domains lacking
the appropriate parallel corpus. Although we take
medication instructions as a use case, our system

is general enough by construction, to handle any
medical text. All code and materials associated
with this study are released to the public1. This
paper makes the following contributions:

• It studies a knowledge-aware text simplifica-
tion model that does not rely on parallel text.

• The study empirically demonstrates the higher
precision simplification output of the pro-
posed model compared to previous methods.

• It makes a parallel corpus of medication in-
structions available to foster future research.

• It provides a comprehensive and comparative
study of NMT models applied to healthcare
text simplification, previously impossible due
to the lack of a parallel corpus.

• Via a human subjects’ study, it shows the posi-
tive impact of DBF on patient comprehension.

2 Previous Work

Efforts to improve patient comprehension of health
information in the biomedical informatics commu-
nity can be categorized into: developing standards
(Atreja et al., 2005; Wolf et al., 2011), curating dic-
tionaries (Zeng and Tse, 2006), annotating text with
additional information (Tupper, 2008; Mohan et al.,
2013; Zheng and Yu, 2016; Martin-Hammond and
Gilbert, 2016), normalizing terms (Mowery et al.,
2016), syntactic simplification (Jonnalagadda and
Gonzalez, 2010; Kandula et al., 2010; Peng et al.,
2012), and finally, lexical simplification (Chen
et al., 2018; Kandula et al., 2010; Qenam et al.,
2017). Our work belongs to the final category.

One popular previous attempt (Kandula et al.,
2010) of health material text simplification relies
on the Consumer Health Vocabulary (CHV) (Zeng
and Tse, 2006) for mapping the hard term to its
simpler counterpart, disregarding context informa-
tion. Other word-replacement systems (Chen et al.,
2018; Qenam et al., 2017) have relied on MetaMap
(Aronson, 2001) to map medical terms to their sim-
pler counterparts by either utilizing CHV as a the-
saurus (Qenam et al., 2017), or relying on an in-
house equivalent resource (CoDeMed) (Chen et al.,
2018). Although, MetaMap performs word sense
disambiguation (WSD) by relying on the context,
its creators admit its low WSD quality (Aronson
and Lang, 2010). Therefore, we rely on a language
model instead of MetaMap. Nonetheless, since

1http://bit.ly/dbf-public-access

http://bit.ly/dbf-public-access
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MetaMap followed by a CHV (or another dictio-
nary) is a popular method in previous works, we
include it as a baseline in our experiments.

Beyond health materials, lexical simplification
is highly researched. A thorough survey of this
field is present in (Paetzold and Specia, 2017),
which divides work in this field into four stages
of a pipeline: (1) Complex Word Identification, (2)
Substitution Generation, (3) Substitution Selection,
and (4) Substitution Ranking. We also perform
Complex Word Identification as a first stage by
relying on word frequencies, which is a popular
method among previous work (Bott et al., 2012;
Leroy et al., 2013; Shardlow, 2013; Wróbel, 2016).
We also generate substitutions as a second stage by
relying on UMLS, similar to how previous work
relied on word taxonomies (Carroll et al., 1998;
Devlin, 1998). The last two stages are performed
in one shot in DBF, where instead of finding which
candidate substitutions fit the context and then se-
lect the simplest based on a certain metric, we let
the language model decide which is the most prob-
able substitution in terms of meaning and simplic-
ity. Our work is the first work to combine these
stages in a context-aware method tailored for the
healthcare domain. Finally, text simplification has
been modeled previously as a machine translation
task where parallel corpora are available (Wang
et al., 2016; Wubben et al., 2012; Van den Bercken
et al., 2019). Accordingly, we compare against
these methods in this study to assess their capacity
in the low resource setting and their capability to
generalize across healthcare domains.

3 Methods

In this section, we describe our method, DBF, along
with the established baselines it was quantitatively
evaluated against: MetaMap+CHV, Seq2Seq-w-
Attention, and Pointer-Generator.

3.1 Dr. Babel Fish

For reproducibility purposes, following is a de-
tailed system description. DBF is designed as a
3-stage pipeline. First, hard (and easy) words are
identified based on their frequency of usage. Then,
in the second stage, candidate simplifications of
a given hard word are collected and each given a
replacement probability (prm). In the final stage,
every candidate output simplification is assigned
a language model score and a replacement model
score. We will refer to this system as an “unsuper-

Figure 1: Block diagram of DBF for the sample sen-
tence: “Take 3 tablets PO.” RM (replacement model)
score represents prm for the whole system, and LM
(language model) score represents plm for the whole
sentence.

vised” system due its independence of annotated
datasets, as well as “knowledge-aware” due to its
reliance on a knowledge base in the form of UMLS.
The highest scoring simplification is then selected
as the output of DBF. We describe the 3 stages in
the following subsections (see Figure 1).

3.1.1 Stage 1: Identification of Hard Words:
In the first stage, the task is to identify the hard
words to be translated from the source sentence
and to retain the easy words. Let Ct be a corpus of
patient-facing health text. Accordingly, we devise
a simple statistical model which checks a word’s
frequency of usage in Ct. We consider the high
usage frequency of a word by patients (or targeted
towards patients) to be a strong indicator that it
is easy for patients to understand, and vice versa.
Thus, if a given word has a frequency lower than a
tunable frequency threshold (ft), DBF labels it as
hard.

3.1.2 Stage 2: Candidate Generation:
Next, DBF relies on the UMLS to collect all candi-
date replacements of each hard word, and estimates
the probability of each candidate.

A salient feature of the UMLS is its groupings
of words/phrases into clusters, where each cluster
represents one concept. In Table 2, we present
three example concepts, each headed by its “Pre-
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Oral Twice a day Milligram
PO BID Mg
Orally Twice daily Milligramos
By mouth Two times daily Milligrams

Table 2: Example UMLS concepts

Query PO BID
1st Result Portugal BID Protein
2nd Result Oral Twice a day
3rd Result Positive BID gene

Table 3: Example UMLS queries

ferred Name”, followed by three example atoms
(the UMLS term for a phrase in a given concept).
We note the variability of atoms in a concept in
terms of complexity, and language.

A second feature of the UMLS is its ability to
return an ordered list of concepts to best match
a search query. In Table 3, we see the top three
concepts returned for two example queries: “PO”,
and “BID”. The correct concept for “PO” appears
only second in the results, as is the case for “BID”.
This suggests that just relying on the top result
of such a context-insensitive static search of the
UMLS is insufficient for accurate simplifications.

Leveraging these two features, DBF uses the
hard word from the input sentence as a query to
the UMLS search function. Then, all atoms of the
top k returned concepts are considered as candi-
date simplifications, with concepts ranked higher
assigned higher probabilities.

Formally, let {C1, C2, ..., Ck} be the top k con-
cepts returned by the UMLS search feature when
using the hard word c as a query. Also, let
Ci = {ai1, ai2, ..., ain} be all the atoms of the
ith concept. Then, the probability of atom aij
being the simpler replacement of c is assigned
prm(aij |c) ∝ 1

ri
, where r ≥ 1. Thus, an atom

of the ith concept is allocated a probability r times
that of an atom of the (i + 1)th concept. In this
setup, r and k are tunable hyperparameters of the
system. To allow for possibly keeping a hard word
c unaltered on the output side, we also assign the
probability prm(c|c) equal to that of an atom in the
1st concept. This helps in cases where a word was
wrongly identified as hard, or a simpler alternative
does not exist for it. For an easy word e, we assign
p(e|e) = 1 to force retention of easy words.

3.1.3 Stage 3: Decoding via Language Model:

Finally, we consider all possible combinations of
simplifications and choose that with the highest
product of replacement probability and language
model probability.

Formally, we identify T (c) = {t1, t2, ..., tm}
which is the set of possible simplifications for
a word c. Using this, the set of possible sim-
plifications of the input sentence becomes H =
T (c1)×T (c2)×T (cn), where× refers to the Carte-
sian product of sets.

Now consider a sentence t ∈ H and let
t = t1t2...tT where ti is the ith word of t.
Then, P (t|c) ∝

∏T
i=1 prm(ti|ci)∗plm(ti|ti−1:i−5),

where plm(ti|ti−1:i−5) is the probability assigned
by the 6-gram language model (Brown et al., 1992),
for the word ti occurring after the sequence of
words ti−5ti−4ti−3ti−2ti−1. The 6-gram language
model is trained on the patient-friendly corpus to
model the target language. Finally, the sentence t
with the highest assigned probability P (t|c) is se-
lected as the output simplification of the system. To
further advance this knowledge-aware framework,
one can resort to more sophisticated language mod-
els such as the recent masked language models
(Ghazvininejad et al., 2019).

The significance of the language model is, first,
it utilizes the context in which a word like “PO”
appears to reward a simplification like “Oral”, and
penalize a simplification like “Portugal”, especially
considering that “Portugal” is assigned a higher
replacement probability (prm). Second, it encodes
word usage preferences–such as “by mouth” being
preferred over “Oral”– even though they both had
equal replacement probabilities (prm).

From an implementation perspective, sentences
with high count of hard words would lead to a large
H and exponentially slower execution. Hence, we
approximate maximizing P (t|c) over H by em-
ploying beam search. Traversing H from 1 to n,
we maintain only the top 5 sequences as evaluated
by P (t|c) up to the respective index.

3.2 MetaMap+CHV:

To compare DBF to the majority of previously used
methods for simplifying health materials, we im-
plement the following baseline. Text is first passed
through MetaMap, which maps phrases in the text
to their respective UMLS concepts. Then, for ev-
ery phrase identified, we first check if it includes at
least one hard word. If it does, and if that UMLS
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concept is covered by CHV, we replace it by CHV’s
most preferred term for that concept, otherwise, we
replace it with the UMLS preferred term for that
concept. With that being said, all phrases identi-
fied by MetaMap, which are not contiguous, are
ignored to avoid errors in sentence structure when
performing the phrase replacement.

3.3 NMT Baselines:

Representing state-of-the-art approaches, our last
set of baselines are two supervised NMT architec-
tures (Jhamtani et al., 2017; Sutskever et al., 2014),
requiring training data.

One NMT baseline we consider is a Seq2Seq-
with-Attention architecture (Sutskever et al., 2014).
In this deep learning architecture, a Long Short-
Term Memory (LSTM) encoder maps the input
sentence to a fixed length vector, and generates
contextualized representations of the input words.
Then, an LSTM decoder generates the output words
sequentially based on the fixed length vector, and
the contextualized representations, while the at-
tention mechanism indicates which input words
influence each output decision. For this baseline,
we utilize Google’s open source implementation
(Developers, 2017) with default parameters.

Due to the large overlap in the vocabulary of the
source and target sentences, particularly the “easy”
words, we consider a second NMT baseline called
Pointer-Generator capable of copying words as is
from the source sentence (Jhamtani et al., 2017).
It differs from Seq2Seq-with-Attention in that at
every decode step, it estimates a probability g of
generating a new word rather than copying a word
from the source sentence. If g is low, the model
relies more heavily on the estimated attention distri-
bution over the input source words, which increases
the chances of copying the word that is most highly
weighted by the attention mechanism. To imple-
ment the system, we use the author’s original open-
source implementation (Jhamtani et al., 2017) with
default parameters, except for using the Proximal
Adagrad (Singer and Duchi, 2009) optimization
algorithm to maximize performance.

4 Experiments

This section describes the results of two studies.
The first study uses automated evaluation metrics
to assess DBF’s output in comparison to the base-
lines considered. The second study evaluates the
impact of DBF on laypeople comprehension. We

first describe the data used in our experiments and
then present the results.

4.1 Data

Parallel Corpus: For the purpose of training su-
pervised NMT methods, and evaluating all systems,
we collected 4554 unique and de-identified medica-
tion instructions for diabetic patients from the elec-
tronic health records of a collaborating healthcare
institution. They were of two types: (1) Structured–
automatically populated using three drop-down
fields: Dose, Route, Frequency (2) Free-text– man-
ually typed. Free-text instructions tend to have
more hard words due to their uncontrolled nature.

Then, for every instruction, a physician, with
expertise in standard practices for increasing pa-
tient comprehension, annotated each instruction
with its accurate simplification. Although one other
physician was hired for the same task to ensure a
high-quality parallel corpus, it was evident by man-
ual inspection, as well as, overall statistics (such
as sentence length and word frequencies used in
translation), that the former physician’s annotations
had superior quality. We thus relied solely on the
former physician’s annotations.

As shown in Table 4, the ratio of structured in-
structions to free-text ones is around 2:1. On av-
erage, structured instructions are slightly lengthier
due to the consistency of their length, while free-
text instructions vary between the long and short
instructions. In terms of novelty—average count
of unique new words added in the simplification—
simplifications of free-text instructions introduce
more novelty due to the complex nature of these
instructions. Finally, more free-text instructions
were left after simplification. The high level of
novelty despite the high number of unchanged in-
stances shows the disparity in instances between
long ones that require significant simplification and
short ones that require no simplification. We fi-
nally check for the average frequency of words (as
estimated by the monolingual corpus) in the com-
plicated and simplified side of both types of med-
ication instructions. We notice that, as expected,
average frequency increases after simplification.
Also, average frequency of words is lower on the
free-text side due to their complexity, and the im-
pact of simplification is larger on the free-text side
as well. We also include in Appendix A the top 20
most frequent hard words for both types of instruc-
tions for a better understanding of the dataset.
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Structured Free-Text

Instances 3013 1541
Words 11.17 9.94
Novelties 1.44 3.67
Unchanged 200 406
Avg Freq: Compl 68536 59180
Avg Freq: Simpl 69138 65337

Table 4: Parallel Corpus Statistics

Monolingual Corpus: Next, in order to develop a
corpus representative of the target language (acces-
sible to patients), we scraped medication-related
pages from five medicine-related websites2 tar-
geted for laypeople. We selected the five websites
to be: (1) medication-related, and (2) patient-facing.
This corpus Ct (≈ 11M words) was used to: (1)
train a language model, and (2) estimate usage fre-
quency of words by DBF’s target audience.
Human Subjects’ Study: Finally, we designed
an online human subjects’ study (via Mechanical
Turk) that presents medication instructions to par-
ticipants and tests their comprehension of the in-
structions, before and after simplification, using
multiple-choice questions.

Accordingly, we randomly choose 100 of the
free-text medication instructions of varying levels
of hardness (1: 29 instructions, 2: 29 instructions,
and 3: 42 instructions) as measured by the number
of hard (low frequency) words. Then, we simplify
every instruction using DBF, and pair both the orig-
inal and simplified versions of the instruction with
the same multiple-choice question.

4.2 Automated Evaluation:

One standard measure for machine translation tasks
is BLEU score (Papineni et al., 2002), which mea-
sures the overlap in words and phrases between
a system’s output and a reference output. It is
also used frequently in other sequence-to-sequence
problems such as text simplification. Nevertheless,
BLEU has been shown insufficient for text sim-
plification tasks due to the large overlap between
the source and target vocabulary (Xu et al., 2016).
Therefore, we instead consider the SARI metric,
which showed better correlation than BLEU with
human judgement on text simplification tasks (Xu
et al., 2016). SARI, similarly to BLEU, measures
the overlap of the system’s output with a reference
output, but also measures the amount of novelty in-
troduced by the system. The novelty component in

2medlineplus.gov; nia.nih.gov; umm.edu;
mayoclinic.org; medicinenet.com

the metric rectifies BLEU’s shortcoming in measur-
ing the performance of a text simplification system.
Moreover, we also use the PINC metric (Chen and
Dolan, 2011) to measure, in isolation, the amount
of novelty introduced by a system. Readability
measures such as the Flesch-Kincaid index (Flesch,
1948), are not suitable for our experiments for at
least 2 reasons: (1) they penalize higher word and
syllable counts, when most simplifications will in-
crease word and syllable counts such as “PO” to
“by mouth”, and (2) they are designed for document-
level instead of sentence-level assessment.

As for the experimental setup, to avoid evaluat-
ing systems on a limited dataset size, we perform
5-fold cross validation to utilize the full dataset
for evaluation. For every fold, we take 20% of the
training data for tuning.

We present in Table 5 the average performance
of all systems on the evaluation portion of the
dataset for all five folds. Results of neural baselines
were averaged over 3 runs. We also distinguish be-
tween the performance on the full dataset and the
more critical subset – free-text instructions, and in-
clude the results in Table 6. For reference, we also
include a baseline system that performs no change.
For sample simplifications, the reader is referred to
Appendix B.

Method Supervision Type PINC SARI

No Change N/A 0.00 32.83
MetaMap+CHV Knowledge-Aware 25.84 45.64
DBF Knowledge-Aware 19.61 55.33
Pointer-Generator Direct Supervision 32.25 54.75
Seq2Seq-w-Att Direct Supervision 50.81 79.26

Table 5: Performance of the simplification systems on
all medication instructions

Method Supervision Type PINC SARI

No Change N/A 0.00 39.29
MetaMap+CHV Knowledge-Aware 26.32 54.35
DBF Knowledge-Aware 21.52 56.51
Pointer-Generator Direct Supervision 36.34 40.01
Seq2Seq-w-Att Direct Supervision 78.35 48.27

Table 6: Performance of the simplification systems on
the free-text subset of the medication instructions

We first compare the two knowledge-aware sys-
tems: MetaMap+CHV, and DBF. First, and con-
firming our main hypothesis, the context-aware
framework of DBF led to higher quality simplifi-
cations gaining an absolute 9.7% improvement in
SARI scores over MetaMap+CHV, and a 22.5%

medlineplus.gov
nia.nih.gov
umm.edu
mayoclinic.org
medicinenet.com
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Figure 2: Effect of the hyperparameters k and r on the
performance of DBF

gain compared to the No-Change case. Even
though MetaMap has the added flexibility to oper-
ate on a phrase level, we attribute its comparatively
lower quality to its poor WSD. Second, and by
comparing PINC scores, we notice that DBF is
more conservative in its changes, making it less
likely to mistakenly alter key information, arguably
a desired behavior in a critical domain such as
healthcare. This is mainly due to it considering the
identity replacement as a possible simplification,
and letting the context decide whether to attempt
simplification or not. These observations are also
consistent on the free-text subset of the evaluation
data, though we note that the gap shrinks between
the two systems. We hypothesize that this is due to
MetaMap+CHV committing consistent errors over
one or more highly repeated terms in the structured
subset of the medication instructions.

Next, we observe that, including the supervised
deep learning methods, Seq2Seq-w-Attention per-
forms significantly better than all systems. The
high performance of the Seq2Seq-w-Attention is
an expected result, due to the advantage of direct su-
pervision in general, but also because direct super-
vision would allow it to memorize the annotator’s
style as well. The poor performance of the Pointer-
Generator was unexpected considering its mecha-
nism to pass easy words. Upon further inspection,
we noticed two factors that degraded performance.
First, the copy mechanism led to meaningless repe-
tition of words as previously noted in the literature
(See et al., 2017). Second, the copy mechanism led
to copying hard words as is.

Finally, we focus our attention on how perfor-
mance levels are affected when considering free-
text instructions only, which are more represen-
tative of complicated health material. We notice
that all the systems show more activity (higher
PINC scores) in their simplifications, as these sys-

tems encounter more hard words in the original
instructions. This provides further evidence that
the free-text instructions constitute a critical com-
ponent of the evaluation. Second, we notice that
the performance of the supervised systems suf-
fers significantly on the free-text instructions (com-
pared to that on All Instructions), while that of the
knowledge-aware (utilizing background knowledge
such as UMLS and CHV) systems remain compa-
rable, to the extent that DBF becomes the best per-
forming approach on free-text instructions. This
reflects the robustness of the knowledge-aware sys-
tems in a low-resource setting. In a setting where
a sufficient parallel corpus is available, neural ma-
chine translation systems are recommended, most
notably Transformer-based (Vaswani et al., 2017)
for future endeavours. But in the absence of a
sizable in-domain corpus, DBF achieves better per-
formance.

Furthermore, it is notable that DBF was the best
performing system despite it being the only one
limited to lexical simplification. A concrete future
direction would be to extend DBF’s capabilities to
perform phrase-level simplification.

4.3 Simplification Effects on Patient
Comprehension:

We also investigated whether DBF’s simplifica-
tion efficacy helped improve laypeople compre-
hension, by measuring their ability to answer mul-
tiple choice questions (percent correct) on medi-
cation instructions before and after simplification
(see Figure 3). Participants, on Amazon Mechani-
cal Turk, were 160 adults diverse in age, cultural
and academic background, and gender. 100 instruc-
tions were randomly selected from the free-text
subsample of our original set of medication in-
structions (see Materials Section), along with their
DBF simplifications and their respective multiple
choice questions. Each participant read 50 instruc-
tions and answered the corresponding questions.
A counterbalancing scheme ensured that each par-
ticipant read 25 original instructions (as written
by the physician) and 25 instructions simplified by
DBF. No participant encountered both the original
and the simplified version of the same instruction.
Also, hardness levels of medication instructions
were balanced for each participant.

The key result of this experiment was that
the participants understood the simplified instruc-
tions 24.4% better than the original instructions
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Figure 3: Example questions from the online human
subjects study

Figure 4: Impact of DBF on the different hardness lev-
els of medication instructions

(F (1, 7973) = 112.3, p < .0001, 58.23% vs
46.80%). Hardness level also influenced compre-
hension (F (2, 7973) = 14.6, p < .0001; see Fig-
ure 4). The simplification benefit was largest when
there were two difficult words (45.63% relative),
rather than one (16.55% relative) or three difficult
words (15.87% relative). It is possible that having
two rather than one difficult word gave more po-
tential for DBF’s simplification to increase compre-
hension. However, when simplification involved
three words, the propagation of error led to a de-
crease in the quality of the simplification, and this
may have negatively impacted comprehension.

5 Discussion

To better understand the functioning of the
knowledge-aware systems, we study the effect of ft
on their first stage of identifying hard words. Upon
tuning the systems on the validation dataset, ft was
set to 672 for both systems coincidentally. Based

on Figure 5, we deduce that around 18% of words
in the original instructions were attempted for trans-
lation, reflecting a high recall of hard words.

Figure 5: Percentage of words considered hard as we
vary the frequency threshold

Along the same lines, we check the effect of ft
on DBF and MetaMap+CHV in terms of the two
evaluation scores (see Figure 6). In terms of PINC
scores, we observe an expected pattern of increase
as we increase ft for both systems. As ft increases,
both systems attempt to modify more of the original
sentence (including easy words) leading to a lower
overlap with reference sentences. MetaMap+CHV
introduces more novelty as we increase ft since
DBF can retain easy words even if they were iden-
tified as hard, unlike MetaMap+CHV. As for SARI
scores, we observe the significance of tuning the
first stage, where too low of an ft results in reduced
performance due to lack of attempted translations
(low PINC scores), and too high of an ft results in
reduced performance due to translating easy words.
Moreover, we observe consistent enhances in per-
formance for DBF over MetaMap+CHV for all ft
considered.

Figure 6: Effect of the frequency threshold on the per-
formance of DBF, and MetaMap+CHV

Moving our attention to the effect of k and r
on the performance of DBF, we show in Figure 2,
DBF’s SARI score when varying k and r from 1
to 5, and fixing ft to 672. Our first observation is
a positive trend as we increase k, particularly for
r = 1. This shows the aptitude of the language
model at selecting the best translation even when
faced with a plethora of options given equal trans-
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lation probabilities. As for r, we notice reduced
performances for any r value different from 1. We
thus conclude that the model we use for estimating
translation probabilities is not benefiting transla-
tion quality. Moreover, the ranking of the concepts
returned by the UMLS search function has insignif-
icant value, when an appropriate language model
is present.

6 Conclusion

Despite significant efforts to keep patients informed
of their health condition, the gap in health literacy
remains an issue, calling for a necessary text simpli-
fication system to bridge the gap. In this work, we
suggest a context-aware framework to ensure high
accuracy in such a critical domain, while also show-
ing its positive impact on comprehension through
a human subjects’ study. We also conclude that,
while supervised NMT methods are well-suited for
the task, several healthcare subdomains lack suit-
able parallel corpora, which limits the performance
of these supervised methods. To overcome this, we
offer a knowledge-aware text simplification system
to robustly operate in a low-resource setting.

Looking forward, we see great potential in adapt-
ing deep learning architectures to utilize the rich
and highly curated content of UMLS, and explor-
ing better methods or implementations to copy
easy words to the target side. These two adapta-
tions would make the high performing supervised
methods of NMT less dependent on direct supervi-
sion and more generally applicable to the multiple
healthcare domains. This would also address the
limitation of DBF to word-level simplifications.
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Salanterä, Hanna Suominen, David Martinez, Sum-
ithra Velupillai, Noémie Elhadad, et al. 2016. Nor-
malizing acronyms and abbreviations to aid patient
understanding of clinical texts: Share/clef ehealth
challenge 2013, task 2. Journal of biomedical se-
mantics, 7(1):43.

Gustavo H Paetzold and Lucia Specia. 2017. A survey
on lexical simplification. Journal of Artificial Intel-
ligence Research, 60:549–593.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Yifan Peng, Catalina O Tudor, Manabu Torii, Cathy H
Wu, and K Vijay-Shanker. 2012. isimp: A sentence
simplification system for biomedicail text. In 2012
IEEE International Conference on Bioinformatics
and Biomedicine, pages 1–6. IEEE.

Basel Qenam, Tae Youn Kim, Mark J Carroll, and
Michael Hogarth. 2017. Text simplification us-
ing consumer health vocabulary to generate patient-
centered radiology reporting: translation and eval-
uation. Journal of medical Internet research,
19(12):e417.

AK Rotegard, Laura Slaughter, and Cornelia M Ru-
land. 2006. Mapping nurses’ natural language to
oncology patients’ symptom expressions. Studies in
health technology and informatics, 122:987.



125

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368.

Matthew Shardlow. 2013. The cw corpus: A new re-
source for evaluating the identification of complex
words. In Proceedings of the Second Workshop on
Predicting and Improving Text Readability for Tar-
get Reader Populations, pages 69–77.

Yoram Singer and John C Duchi. 2009. Efficient learn-
ing using forward-backward splitting. In Advances
in Neural Information Processing Systems, pages
495–503.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

J RC Tupper. 2008. Plain language thesaurus for health
communications.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Tong Wang, Ping Chen, John Rochford, and Jipeng
Qiang. 2016. Text simplification using neural ma-
chine translation. In Thirtieth AAAI Conference on
Artificial Intelligence.

Michael S Wolf, Laura M Curtis, Katherine Waite,
Stacy Cooper Bailey, Laurie A Hedlund, Terry C
Davis, William H Shrank, Ruth M Parker, and Alas-
tair JJ Wood. 2011. Helping patients simplify and
safely use complex prescription regimens. Archives
of internal medicine, 171(4):300–305.
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Structured Count Free-text Count

route 711 indications 332
tab 439 units 160
ml 319 tab 129
tabs 286 tabs 115
subcutaneous 228 x 108
nightly 191 po 97
units 164 evening 38
cap 149 friday 36
g 115 monday 35
nebulization 78 am 31
evening 74 wednesday 27
mcg 68 ml 26
inhalation 68 scale 25
caps 59 q 24
admin 46 sunday 23
spasms 40 saturday 23
puffs 38 sliding 22
wheezing 35 pt 22
transdermal 28 bedtime 21
breakfast 27 tuesday 21

Table 7: Top 20 Most frequent words identified by our
system as hard for structured and free-text medication
instructions

Jiaping Zheng and Hong Yu. 2016. Methods for link-
ing ehr notes to education materials. Information
Retrieval Journal, 19(1-2):174–188.

A Hard Words

To better understand the dataset and the transforma-
tions DBF performs, we include in Table 7 the top
20 most frequent hard words in both structured and
free-text medication instructions. A word is iden-
tified as hard if its frequency in the monolingual
corpus Ct is less than the tuned hyperparameter
ft = 672.

On the structured side, we notice a concentra-
tion of words describing the route: “subcutaneous”,
“nebulization”, “inhilation”, ”transdermal”. We
also find a concentration of units: “ml”, “g”, “mcg”.
On the free-text side, we observe an abundance of
weekdays, as well as non-standard abbreviations
such as: “po” for “by mouth”, “pt” for “patient”,
and “q” for “every”.

B Example Simplifications

Here, we analyze several example simplifica-
tions from the various systems in Table 8. The
first example shows the incapability of Seq2Seq-
w-Att to recover from a wrongly generated
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Source: Total 90 mg QAM.
Gold: Total 90 milligrams every morning.
DBF: Total 90 mg every morning.
MetaMap+CHV: Total 90 mg every morning.
Seq2Seq-w-Att: Wheeled systolic blood sugar test result is between 301 and 180,
Pointer-Generator: Total 90 mg QAM.

Source: Every 4-6 hours PRN thoracic back pain.
Gold: Every 4 up to 6 hours as needed for chest back pain.
DBF: Every 4-6 hours as needed thoracic back pain.
MetaMap+CHV: Every 4-6 hours PRN thoracic back pain.
Seq2Seq-w-Att: Every 6 hours as needed for back pain.
Pointer-Generator: Every 4-6 hours PRN back pain.

Source: Take 15 g by mouth 2 times daily as needed.
Gold: Take 15 grams by mouth 2 times daily as needed.
DBF: Take 15 grams by mouth 2 times daily as needed.
MetaMap+CHV: Take 15 gram per deciliter by mouth 2 times daily as needed.
Seq2Seq-w-Att: Take 15 grams by mouth 2 times daily as needed.
Pointer-Generator: Take 15 grams by mouth 2 times daily as needed.

Source: For better hearing with the ear, avoid cleaning your cerumen.
Gold: For better hearing with the ear, avoid cleaning your earwax.
DBF: For better hearing with the ear, avoid cleaning your wax.
MetaMap+CHV: For better hearing with the ear, avoid cleaning your earwax.
Seq2Seq-w-Att: Provide syringes dressings with the month, and Sunday more Lantus.
Pointer-Generator: For UNK UNK with the UNK UNK

Table 8: Sample output simplifications from the different systems considered

first word (Wheeled). Moreover, we notice
Pointer-Generator’s tendency to even pass hard
words. In the second example, we notice how
MetaMap+CHV retains “PRN” despite being a
hard word, due to MetaMap not mapping it to any
UMLS concept. Additionally, we see Seq2Seq-w-
Attention’s mishandling of numbers since it does
not have a mechanism for passing easy words. We
also notice how Pointer-Generator wrongly elimi-
nates words (thoracic) essential to the meaning of
the sentence. On the other hand, the next exam-
ple shows the shortcomings of MetaMap+CHV’s
disambiguation algorithms, while DBF was able to
accurately map “g” to “grams”. Whereas both deep
learning methods get the full mark on this example
since it is a structured medication instruction.

The last point we would like to address is the last
example in Table 8. This example, contrary to the
previous ones, was not taken from the medication
instruction dataset, but rather created by us to por-
tray a complicated sentence from another medical
domain, in this case: online health tips. As can be
seen from the systems’ outputs, the robustness of
knowledge-aware systems is evident in comparison
to the supervised deep learning methods, which are
completely off the mark.


